
1 Lecture 1: The systolic inequality and

its relatives.

The systole of a space M , denoted by sys(M) is the length of the
shortest non-contractible closed curve in M . The more general systolic
inequality claims the following:

Theorem 1.1 (Gromov 1983). There exists a constant Cd > 0 such
that every Riemannian essential manifold M satisfies:

sys(M)d ≤ Cdvol(M)

1.1 What is a manifold?

Before a definition remember that manifolds often arise as fibers f−1(~v)
of smooth functions f : Rn+k → Rk. For example consider f to be
given by some polynomial, n = 1 and k = 1, to make things easier let
us assume that the polynomial is of degree two so

p(x, y) = ax2 + bxy + cy2 + dx+ fy + e

In this case one can completely understand what the fibers look like.
It is essentially the same as for each α looking at the solutions of the
equation:

α = ax2 + bxy + cy2 + dx+ fy

For instance if a = c and b = d = f = 0 then fibers are all the circles
centered at the origin. For other coefficients one can completely under-
stand the solutions, each of the fibers is a conic (an ellipse, a hyperbola
a parabola or a union of two lines) geometrically this corresponds
to the intersection of a plane with a cone in three dimensions and
it is completely understood which case is which depending on the
coefficients.

Assume that f is smooth and f−1(t) is a curve and (x0, y0) = t.
The equation of the tangent line to the curve at (x0, y0) is:

∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) = 0
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For example if f(x, y) = x2 + y2, t = 1 and (x0, y0) = (1, 0), then
∂f
∂x

(x0, y0) = 2x|1 = 2, ∂f
∂y

(x0, y0) = 2y|0 = 0, so the tangent line has
equation:

2(x− 1) = 0

Similarly if f : R3 → R then the tangent plane at a point (x0, y0, z0)
such that f(x0, y0, z0) = t on the surface f−1(t) is given by

∂f

∂x
(x0, y0, z0)(x−x0)+

∂f

∂y
(x0, y0, z0)(y−y0)+

∂f

∂z
(x0, y0, z0)(z−z0) = 0

Notice however that these equations for the tangent planes might
fail. If all the partial derivatives are zero, then this equation does
not define a hyperplane at all. In that case we say that the point is
critical.

Definition 1.2. A map f : Rn+k → Rk is smooth if all partial deriva-
tives exist and are continuous.

Definition 1.3. Given a smooth function f : Rn+k → Rk, we say that
a point ~x ∈ Rn+k is critical if the matrix of partial derivatives:

(Jf)i,j(~x) =
∂fi
∂xj

(~x)

has rank smaller than k. In this case we say that f(~x) is a critical
value. Otherwise we say that the point ~x is regular. We say that
~y ∈ Rk is a regular value if all the elements of f−1(~y) are regular.

Example: Show that (0, 0) is a critical point of f(x, y) = x2 − y2.
Interpret this geometrically. Show that 1 is a regular value.

The implicit function theorem tells us that when the Jacobian, i.e.
the matrix of partial derivatives has full rank, then there is a local
diffeomorphism:

Theorem 1.4. If F : Rn+k → Rk is smooth, M := {(x, y) ∈ Rn+k :
F (x, y) = 0} with ∂F

∂y
(x0, y0) of full rank, then there exists ε > 0 and

an open set U ⊂ Rn around x0 and a homeomorphism g : U → Rk

such F (x, g(x)).
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Denote Rn+k
+ := {z ∈ Rn+k : zn+k ≤ 0}. A linear map Rn → Rm.

Denote by Bn := {x ∈ Rn : |x|2 < 1}, and by Bn
+ = {x ∈ Rn : |x|2 <

1, xn ≥ 0}

Definition 1.5. A map f : A ⊂ Rn+k → Rk is smooth if there exists
an open set U ⊃ A and a map F : U → Rk, such that F = f in A,
and all the partial derivatives of F exist and are continuous. A map is
called a diffeomorphism if it is smooth with smooth inverse.

Theorem 1.6. If F : Rn+k
+ → Rk is smooth, M := {z ∈ Rn+k :

F (z) = 0} with Jacobian Jz0(F ) of maximal rank, then there exists
g : Rn → Rn+k that parametrizes M in a neighborhood around z0,
i.e. there exists an open set U ⊂ M ⊂ Rn+k and a diffeomorphism
g : Bn → U .

Definition 1.7. A manifold M ⊂ Rn+k is a subset such that for
every point x ∈M there exists an open neighborhood U ⊂M , x ∈ U
which is diffeomorphic to the open ball Bn.

Definition 1.8. A manifold with boundary is a subset of Rn+k

is a subset such that for every point x ∈ M there exists an open
neighborhood U ⊂M which is diffeomorphic to the open ball Bn or to
the open semiball Bn

+.

Lemma 1.9. Assume that f : M → N is a smooth map between
manifolds of the same dimension, assume that y ∈ N is a regular value
of f . Then there exists an open neighborhood U around y, such that
#f−1(y′) = #f−1(y) for every y′ ∈ U .

Proof. This is a direct consequence of the inverse function theorem.
(Exercise: write down this formally).
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Abstract manifolds One can define a manifold M , which doesn’t
have to be a subset Rn+k. It is a paracompact Hausdorf topological
space which is locally diffeomorphic to euclidean space. The catch
of this definition is then talking about the tangent space. If M is a
manifold embedded in Rn+k then for each p ∈M there exists an open
set U ⊂ M , and V ⊂ Rn. Such that φ : V → U is a parametrization.
This allow us to describe the tangent space at p. It is an affine flat
of dimension n. Then for a map between two manifolds f : M → N ,
the derivative at p sends the tangent space at p, denoted Tp to the
tangent space at Tf(p). One of the difficulties of differentiable geometry
is describing what is the tangent space when M is not necessarily
embedded in Rn+k. If one wants to work seriously on the topic one
should definitely get used to it t realize it is quite easy. For this
course we skip it. Whitney showed that every manifold of dimension
n (not necessarily embedded), can be in fact embedded in dimension
2n. For this reason we feel justified to not discuss abstract manifolds
in detail. As a substitute we will describe a combinatorial cousin of
Whitney’s result in the next section and point out how does one go
around proving Whitney result informally. The important point now is
that we can do not need the definition of abstract manifold. A second
technical remark is that depending on the context the word manifold
might refer topological manifold, rather than smooth manifold as in
the previous definition. A topological manifold is a topological space
which is paracompact Hausdorff that is locally homeomorphic to Rd

for some d.

We go back to smooth manifolds. In the following it is assumed that
M and N are embedded in Rn+k and Rm+k and each has dimension n
and m, as before maps are smooth means that there

Example: What are the sizes of the fiber of z → z3 on {z ∈ C :
|z| = 1}? Exercise: For every d construct a map from the sphere S2

to itself such that almost every value y has d elements in the fiber:
#f−1(y) = d.

The fundamental theorem of algebra Let us give a first appli-
cation of these ideas.
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Theorem 1.10. Every non constant complex polynomial has root on
the complex numbers.

The complex numbers are z = a+ib with the rules (a+ib)+(c+id) =
a + c + i(b + d) and (a + ib)(c + id) = ac − bd + i(ad + bc). We can
give a + ib the coordinate (a, b) and represent them in the plane.
Polynomials are expressions of the form p(z) =

∑n
i=0 ciz

i.

Proof. To each polynomial we can assign a function from the plane to
the plane. This function which we still denote by p is differentiable
(in fact it is complex differentiable which is a stronger notion). For
the proof to work we need a compact space. We add one point to
R2 at infinity, what we obtain is diffeomorphic to S2. Specifically
let S2 := {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1}, and consider the
stereographic projection to the plane x3 = 0. That is we draw the line
from the north point to a point in the sphere and we send it to the
point where this line intersects the plane. This is a diffeomorphism
from the sphere minus the north pole and the plane, denote it by sN
(s for stereographic). There is a second homeomorphisms for the south
pole sS. Notice that these two maps are enough to show that the
sphere is a two manifold (one needs to check differentiability). Define
a map p̂ : S2 → S2, by

p̂ = s−1N psN : S2 −N → S2 −N.

For every polynomial the norm of lim|z|→∞ p(z) goes to infinity, so
lims−1

N (z)→N p̂(z) = N , so define p̂(N) := N . One can show that this
map is differentiable even at the nord pole.
Finally the complex derivative p′(z) is another polynomial. Whenever
p′(z) 6= 0, z is a regular point of p and hence s−1N (z) is a regular point
of p̂. Now p′ has only a finite number of zeros. Indeed if z0 is a zero
of a polynomial p then p(z) = (z − z0)q(z) (to see this assume it by
induction and apply Euclid’s algorithm to p and (z − z0) to obtain
p = (z − z0)q + r. With r of smaller degree than q, substituting
z = z0 we obtain that r(z0) = 0, but then (z − z0) divides r, hence
the degree of r must be 0.) So the number of zeros of p′ is at most
(d−1). The complement of the zero set is connected, so outside this set
#p̂−1 = #p−1 must be constant. This fiber cannot have cardinality 0
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everywhere, so it cannot have cardinality 0 anywhere. In other words,
the map must be surjective, and in particular s−1N (0) = (0, 0,−1) is in
its image.

Skipped details: We have not been very cautious about certain
details of the last proof to emphasize the topological essence of the
argument. See if you can find where we have been sloopy and try to
fill in these details.

1.2 Simplicial Complexes

Triangulations appeared as a tool early in the development of topology.
From a pure combinatorics perspective simplicial complexes are very
satisfying. A simplicial complex is a hereditary family of subsets of a
set. We will use [n] = {1, 2, 3 . . . n} for the set and X for the family of
subsets. Hereditary means that if x ⊂ y and y ∈ X, then x ∈ X. The
relation to topology comes from considering the geometric realization
of X. This is a topological space which can be defined as follows: for
every element i ∈ [n], consider the vector ~v ∈ Rn with ~vi = 1 and
~vj = 0 for all j 6= i. Now for each set x ∈ X , consider conv({~vi}i∈x).
The union of these simplicies is a set inheriting a topology from Rn.
For example if all the sets in X have cardinality 1 or 2, then we
obtain a graph. The dimension of a simplicial complex is the maxi-
mum among the cardinalities of its elements minus 1. For example X =
{1, 2, 3, 4, (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (234), (134), (124), (123)}
has dimension two and by construction it is contained in R4. But
in fact we can visualize it in dimension 3. It is the boundary of a
tetrahedron. Topologically a tetrahedron is equivalent to S2. More
precisely there exists a continuous bijective map, with continuous
inverse h : ||X|| → S2.
Let us say that a drawing of a simplicial complex in some space M is
a map f : ||X|| →M if the map is injective then it is an embedding.
Here we are using ||X|| to refer to the geometric realization. That is,
X is a family of finite subsets of a ground set of vertices indexed by
the numbers [n], and ||X|| is a topological space defined by introduc-
ing one simplex for each set in X. We emphasize that once that we
have used the construction above we forget about it and just think
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about it as a topological space. In the future we will forget about
the notation, and just write f : X → M , here X is assumed to be
the geometric realization (probably should be called the topological
realization). The definition of a simplicial complex X is one plus the
maximal cardinality of a subset x ∈ X. The reason is obvious having
the geometric realization in mind.

Proposition 1.11. Every simplicial complex of dimension d can be
topologically embedded in dimension 2d+ 1.

For example every graph can be embedded in R3. The following
embedding works in general: take points {p1, p2, . . . pn} in R2d+1 at
random, and for each set x ∈ X, consider convi∈x(pi). Since the any
subset of 2d + 2 points are affinely independent, than no two such
affine d-planes spanned by them intersect in dimension 2d+ 1 (give a
proof of this fact using linear algebra).
This argument uses general position, which is a very powerful tool.
On the other hand general position and probabilistic constructions are
not always constructive. Let us give a second construction that can
be easily implemented. Consider the Veronesse map ν : R→ R2d+1:

t→ (t, t2, t3 . . . t2d+1),

the image of this map is called the moment curve. This relates bijec-
tively polynomials in one dimension to hyperplanes in 2d+ 1 dimen-
sions. Specifically the polynomial P = a1t+ a2t

2 + . . .+ a2d+1t
2d+1− b

will correspond to the linear space H~a,b := {~v : 〈~v,~a〉 = b}, where
~a = (a1, a2 . . . a2d+1) so that the zeros of P are in bijection via the
Veronesse embedding with the intersections of H~a,b with the moment
curve.
Now we embed the vertex set of the simplicial complex sending i→ ν(i)
and taking the convex hull of the points corresponding to each face.
Notice that no 2d + 2 points on the moment curve lie on the same
hyperplane. Indeed this will correspond to a polynomial of degree
2d+1 with 2d+2 distinct roots which is absurd. This means that every
subset of the 2d+2 points is affinely independent, so two d-dimensional
affine spaces in 2d+ 1 have empty intersection.
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Sperner and Brouwer Let T be a triangulation of a triangle. This
is a 2-dimensional simplicial complex homeomorphic to a disk. Choose
three vertices v0, v1, v2 on the boundary and call a 3-coloring of the
vertices an s-coloring if for every i ∈ {0, 1, 2}, vi is colored i and the
path on the boundary from vi to vi+1 does not use the color i − 1
(indices are understood modulo i).

Proposition 1.12. For any s-coloring T there exists an heterochro-
matic triangle.

The content of this theorem is combinatorial-topological, but in
the classical statement T is an equilateral euclidean triangle and each
face of the triangulation is an euclidean triangle. More formally there
exists a map from the geometric realization of the simplicial complex
to an equilateral triangle in the plane, that is an affine map on each
simplex.

We prove the geometric statement first and then a second proof for
the more general case stated here. Actually it turns out that in two
dimensions they are equivalent. As an exercise explain what does this
mean. How would you show that they are not equivalent in dimension
d?

Proof. For every face σ ∈ T 2, let σt be a triangle which linearly inter-
polates between σ = x0, x1, x2 and vχ(x0), vχ(x1), vχ(x2). The function
P (t) =

∑
σ∈T 2 area(σt)) is a polynomial. On the other hand for t

small enough the union is still a triangulation of T , so this function
must be equal to the area of T for small t. Hence the polynomial
is constant! So P (1) =

∑
σ∈T 2 area(σt)) = area(T ). On the other

hand observe that for every simplex σ which is not heterochromatic
area(σ1) = 0.

Here is another proof that doesn’t use geometry.

Proof. Consider the intersection graph of the simplicies and add a
vertex for the exterior face which is connected to all the faces on the
boundary. Consider the subgraph spanned by edges that have one end
of color 0 and one end of color 1. Now heterochromatic triangles are
in bijection with vertices of degree 1. Monochromatic triangles are in
bijection with isolated vertices and triangles with two 0s and one 1
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or two 1s and one 0 have degree 2. There is an odd number of edges
from the outside face into the triangulation so one of there must exist
a vertex of odd degree in the interior.

Exercise: Generalize these proofs to higher dimensions.

Theorem 1.13. Every map from a topological closed disk to itself has
a fixed point.

A topological closed disk is one is a set that is homeomorphic to
the euclidean disk. Exercise: Show that a disk is homeomorphic to a
simplex.

Proof. Let D be the topological disk, f : D → D the function. Let
h : D → T be a homeomorphism. Showing that f has a fixed point
is the same as showing that hfh−1 has a fixed point. So we can
assume that T = D. Consider a very fine triangulation of T , that is
a triangulation in which every simplex has small diameter (can you
show that there exists such a thing?). Use f to define an s-coloring
using the barycentric coordinates if x =

∑3
i=0 λivi is some vertex of

the triangulation where λi ≥ 0 and
∑
λi = 1, and f(x) =

∑3
i=0 αivi

,αi ≥ 0 and
∑
αi = 1, then if λ0 < α0 color x with 0, otherwise

λ1 < α1 color x with 1 and if neither of the previous ones occurs
then color it 2. This is an s-coloring. We look at the heterochromatic
triangle and restrict f to it,

Classically one shows that:

Claim 1.14. There is no continuous map from the disk to its boundary
that fixes the boundary

and derives the previous theorem from this. Actually this claim
is equivalent to the fixed point theorem above, using the conjugation
argument we can assume that we are on the round disk D. First if
g maps D to ∂D fixing the boundary, we can compose it with the
antipodal map x → −x to obtain a map without fixed points. On
the other hand if there exists a map without fixed points f , then we
can define g(x) to be the point on the boundary intersected by the
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ray starting at f(x) and passing through x. One shows that if g is
continuous whenever it is defined. Clearly g(x) = x for the points in
the boundary, and the only way that g is not defined is when f has a
fixed point.

We are going to generalize these statements later on.

Planar graphs Every graph embeds in R3, but there are some
graphs that embed in R2 and others that do not. Now if a graph
embeds in R2 (show that) equivalently it embeds in S2. Then the
number of edges (subsets of size 2) is at most three times the number
of vertices. To see this we need to show a foundational result in the
field:

Theorem 1.15. (Euler’s formula) For any planar graph

V − E + F = 2

Here V is the number of vertices, E the number of edges and F
is the number of faces. If G is a graph, and f : ||G|| → S2 is an em-
bedding, a face is a connected component of S2 \ f(||G||). A priori the
number of faces depends on the embedding but this formula implies
that it doesn’t.
Excercise: Construct two embeddings of the same graph, f1, f2 : ||G|| →
R2 such that there does not exist a map h : R2 → R2 such that hf1 = f2.
(We used the geometric realization notation: ||.||, for the last time,
from now on we skip it).
The proof of this theorem now rests in the following lemma.

Theorem 1.16 (Jordan). The complement of a simple closed curve
C in the plane has two connected components, one bounded and one
unbounded.

This theorem is hard to proof. A proper write up of Jordan’s proof
by Hales takes 15 pages. It was long thought that Jordan’s proof
was incorrect. According to Hales the only thing that Jordan skipped
was the easy case in which the curve is assumed to be polygonal.
Presumably Jordan thought that this case was obvious, and is the
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one that we care about here: we prove the theorem under the extra
assumption that the simple closed curve is polygonal, that is, it is a
concatenation of segments.

Theorem 1.17 (Jordan). The complement of a simple closed polygonal
curve C in the plane has two connected components, one bounded and
one unbounded.

Proof. For each point y in the complement of C consider an piece-
wise linear ray that departs from y to infinity. For each point x of
intersection between the ray and the curve, consider a metric ball
B(x, ε), where ε > 0 is small enough that it does not contain any
vertex of the polygonal curve, except possibly x itself and it intersects
C in one connected arc. By the choice of ε, C divides B(x, ε) in two
regions and we count the intersection as a proper intersection if the ray
touches both regions. Now to each point we assign a number in {0, 1}
depending on the parity of the number of proper intersections of any
ray. The crucial observation is that this number does not depend on
the ray which can be shown immediately moving around the ray, also
for any y we can choose 0 < ε < d(y, C), and every point in B(y, ε) has
the same number. Choosing points close to the curve on different sides
shows that the parities are different. Now if some two points y, y′ have
the same parity they must be in the same connected component, or in
other words, if they have different parities they must be in different
components. Indeed otherwise we can connect the points with a ray in
a component and continue to infinity. Similarly if two points are in the
same connected component then they must have the same parity.

In fact something stronger is true, one of the components is homeo-
morphic to a disk. Indeed it is bounded and the union with C is closed,
so the union with C is a polygonal compact set. We can subdivide it
into convex triangles. Now observe that the intersection graph of the
convex triangles is a tree, as otherwise it would have two connected
components. We can now embed the tree into the disk in such a way
that each vertex has a convex assigned to it so that the intersection
graph of these convexes is the same as of the convex decomposition of
the polygon.
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PL-manifolds Whitney showed that every smooth manifold is home-
omorphic to a simplicial complex. Such a simplicial complex is called
piecewise linear manifold or PL manifold. This is in fact a third family
of manifolds other than topological and smooth.

The link of a simplex σ is the set of all the simplicies τ disjoint
from σ such that σ ∪ τ is a simplex. The star of a simplex σ is the
set all the simplicies containing σ. Notice that in the case in which
σ is a vertex, then the star is the cone of the link over the vertex.
Now a PL-manifold is a simplicial complex such that the link of every
simplex is a PL-sphere. a 0-sphere consists of two disjoint vertices.
For example a tetrahedra is a PL-sphere. Milnor amazed us showing
that there are PL manifolds that cannot be smoothed! In two and
three dimensions this is not the case.
When the topology of the manifold gets more complicated the number
of simplicies (subsets) grows, more importantly certain operations on
simplicial complexes are not simplicial complexes. Topologists prefer
CW-complexes, or Σ-complexes or simplicial sets. In this course we
are mainly interested in surfaces and graphs so the generalizations
that we need are easy to describe.

Graphs A graph or multigraph is a pair ([n], E), each edge has two
endpoints, two edges might have the same endpoints and one edge
might have twice the same endpoint. The reason we introduce this
more general concept is that we want to take the dual of a graph.

For the proof recall some terms: a cycle is a sequence of edges
e0, e1 . . . ek−1 such that the ei and ei+1 share a common vertex (sub-
indices are modulo k), that a tree is a connected graph without
cycles, and that is easy to see, by induction that a tree satisfies
V (T )−E(T ) = 1. Let us also define the dual graph of G denoted by
G∗: in fact G∗ depends on the embedding f : G→ R2. The vertex set
of G∗ is the set of faces of f(G). Two such vertices of G∗ are connected
by an edge if they are both incident to a common edge. Notice that
G∗ comes equipped with an embedding into R2 in which each pair of
vertices of the dual are connected through a Jordan arc contained in
the union of the corresponding faces. The following follows directly
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from the Jordan curve theorem.

Corollary 1.18. A set of edges of G support a cycle if and only if
erasing the dual edges separates G∗.

Let us give a proof of Euler’s formula.

Proof. Assume the result by induction on the number of edges. If
there is a vertex of degree one, erase it and erase the incident edge.
If there are no vertices of degree 1, there must be a cycle (why?). If
there is a cycle there must be a simple cycle. Erase any edge on that
cycle, the number of faces goes down by one and the number of edges
goes down by one.

Proof. Consider a spanning tree T of G, and let T ∗ be the edges dual
to E(G)−E(T ). By the previous statement T ∗ spans a tree. Indeed it
has no disconnected componnents and if it had cycles than T will not
be spanning. Now E(T ) + E(T ∗) = E(G), but E(T )− V (T ) = 1 and
E(T ∗)−V (T ∗) = E(T ∗)−F (G) = 1, so E(G) = V (G)−1 +F (G)−1,
and the result follows.

To understand the type of difficulties around the Jordan curve one
might consider the following algorithmic question: Given a polygonal
jordan curve of n points and a point not on the curve determine if
the point is in the inside or the oustide of the Jordan curve. Its alos
worth noting that there are jordan curves with positive area, called
the Osgood curve:
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2 Smooth manifolds

2.1 A curve has zero or two boundary points.

After this detour into the discrete and piecewise linear let us go back
to the smooth world. Our point of departure was the implicit function
theorem, with slightly more language let us revisit it. Recall that a
value is regular if each of its inverse images is differentiable and the
differential has the larget possible rank.

Theorem 2.1. Let f : M → N be a smooth map between manifolds.
Then for any regular value y, f−1(y) is a smooth manifold of dimension
m− n. Moreover if M is a manifold with boundary and y is a regular
value when restricted to the boundary then f−1(y) is a manifold with
boundary and ∂f−1(y) = ∂M ∩ f−1(y).

proof idea. We compose the parametrization of M with the map f
and with the coordinate chart of N . We obtain a regular value of a
map from Rm → Rn and the implicit function theorem implies that
the inverse image is a manifold. In the case of a boundary point one
has to be careful about what does it mean to be regular. It means
that the tangent of the boundary intersecst generically to the tangent
of f−1y, which yields the result.
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Theorem 2.2. Any connected compact smooth 1-manifold is either
diffeomorphic to [0, 1] or to S1.

Refer to Milnor little book for a proper proof.
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Theorem 2.3. There is no smooth map from a manifold to its bound-
ary that fixes the boundary

Proof. Let f : M → ∂M be the supposed map. Assume that y is
a regular value of f , then f−1(y) is a 1-manifold. By the previous
theorem this is a union of topological segments and closed curves. The
important part: each component of f−1(y) has 0 or 2 points on
the boundary. There are an even number of boundary points.
This contradicts the fact that f was supposed to be the identity on
the boundary.

16



Theorem 2.4. Any continuous function f : Bn → Bn has a fixed
point.

In fact this statement is equivalent to the previous theorem in the
case of M = Bn and f smooth. We prove it first for smooth functions
and then for continuous ones.
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Here are two tools that we used:

Theorem 2.5 (Sard-Brown). If U is an open set and f : U → Rk is
a smooth map, then the image of the critical points has k-Lebesgue
measure 0. If f : M → N is smooth the set of regular values is dense
in N .

Again Milnor is a good reference, the idea is that
Here is a third useful technical tool which follows from the Weier-

strass theorem (for example):

Proposition 2.6. For any a continuous map between compact smooth
manifolds f : M → N every ε > 0 and every point y ∈ N there exists
a smooth function fε such that |d(fε, f)| < ε and y is a regular point
of fε.

We keep postponing technical issues because we have not defined
a distance between functions. We might assume that M and N are in
fact metric spaces which have the same topology as the one coming
from their embedding in euclidean space. In fact M and N come with
a natural metric. For any pair of points in N consider all the paths
between them, measure their euclidean length and define their distance
as the minimum among these lengths. Once we have a metric in N
we can compare functions f, fε which are valued in N by considering
supx∈M dN(f(x), fε(x))

With this theorem at hand we prove the Brouwer fixed point theo-
rem again for continuous maps. Indeed for each ε, we obtain xε such
that fε(xε) = xε. Taking a convergent subsequence of the xε when
ε = 1/n we obtain limnk→∞ x1/nk

= x which satisfies f(x) = x.
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Now let us recall a crucial concept.

Definition 2.7. Two smooth (or continuous) maps f, g : M → N are
homotopy equivalent if there exists a smooth (or continuous) map
h : M × I → N such that h(x, 0) = f(x) and h(x, 1) = g(x). The map
h is a homotopy between the maps f and g.

The homotopy h is like a movie that starts in f and finishes in g.
From here one can derive the more complicated notion of homotopy
equivalence between spaces. One of the main ideas of algebraic topology
is that by quotiening by homotopy the extremely wiggly world of
topology becomes rigid.

Definition 2.8. A closed curve γ : S1 →M is said to be contractible
if it is homotopic to a constant map.

Observe that a curve is contractible if and only if we can extend
the map γ : S1 →M to a map f : D2 →M .

Theorem 2.9. For any two homotopically equivalent smooth functions
f, g : M → N between manifolds of the same dimension, for any regular
value y of the homotopy h,

#f−1(y) = #g−1(y) mod 2

Proof. Assuming that y is a regular value for h. The fiber h−1(y)
is a one manifold with boundary points on M × 0 ∪M × 1. Since
#f−1(y) = #h−1(y) ∩ (M × 0) and #g−1(y) = #h−1(y) ∩ (M × 1) if
a connected h−1(y) intersects M × 0 in one point then it must also
intersect M × 1. The connected components of h−1(y) that don’t
intersect M × 1 in one point do not modify the parity of neither
boundary component. If y is not a regular value of h then we need
that it is contained in a small neighborhood around a regular value
where we can apply the inverse function theorem.
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Corollary 2.10. Let f : M → N be a smooth function between com-
pact connected manifolds of equal dimension. For any two regular
values y, y′ of f ,

#f−1(y) = #f−1(y′) mod 2

This number is called the degree mod two of the map. Try to give
a definition of the degree of a map.

Proof. Assume that we have a map h : N×I → N which is a homotopy
between the identity and a map that sends y to y′, and which moreover
for each t ∈ I, h(., t) is a homeomorphism. Define f ′ := f ◦ h is
homotopic to f , so f ′−1(y′) = (f ◦ h)−1(y′) = f−1(y). On the other
hand #f−1(y) = #f ′−1(y) mod 2. Now to construct the map h,
observe that it is enough to do it in an open ball, as we can then cover
N by open balls and carry any point to any other point. Specifically
we need to show that there is an isotopy (an homotopy in which every
time is a homemomorphism) from the open ball to itself sending any
point to any other. For this we can assume that one of the points is
the origin and compose the maps. The last statement accepts a proof
by picture
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Let Dn = Bn and Sn−1 be the sphere of radius 1, and rSn−1 be
the sphere of radius r.

Corollary 2.11. Let f : Dn → Dn be a map such that f |∂Dn : Sn−1 →
Sn−1 has degree 1 mod 0, then f is surjective.

Lemma 2.12. If a map g : Sn−1 → Sn−1 can be extended to a map
Dn → Sn−1 then g has zero degree.

Proof. Indeed, we just need to interpret the extension as a homotopy
between g a constant map. Parametrize Dn as ∪r∈[0,1]rSn−1. We
obtain a map G : Sn−1× [0, 1]→ Dn → Sn−1 by composing the closure
of this parametrization with g. The map G is the homotopy bewteen
g and a constant map.

Proof. Assume that f is not surjective let x ∈ Dn be a point that is
not covered and consider a function h that takes each x′ 6= x to the
boundary point on the extension of the segment between x and x′.
Now the function hf is an extension of a map of degree 1 to all of Dn,
this is a contradiction.

Essential and aspherical manifolds As homework try to show
that S1×S2 does not satisfy the systolic inequality. That is an example
of a non-essential manifold. To define essential first we define aspherical,
which is a slightly more particular concept (i.e. aspherical manifolds
are essential).

Definition 2.13. We say that a manifold is aspherical if any map
from any sphere Sn−1 with n > 1 can be extended to a map of the disk
Dn.

The previous corollary shows that spheres are not aspherical. Try
to show that surfaces other than the projective plane and the sphere
are aspherical, and the torus on any dimension is aspherical.
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Theorem 2.14 (Borsuk-Ulam). For every continous map f : Sn → Rn

there exists a pair of antipodal points x,−x such that f(x) = f(−x).

Proof. Equivalently the map g(x) := f(x)− f(−x) has a zero. This
statement is obvious for the projection π that forgets the last coor-
dinate: the north and south pole are mapped to ~0, moreover this is
the only pair of antipodal points which maps to 0. Now consider the
homotopy equivalence h(x, t) = tg(x) + (1− t)π(x). Notice that it is
enough to show that g has some zero when g is smooth and 0 is a
regular value as we can approximate g by a smooth map for which ~0
is a regular value. Now look at g−1(~0). It is a one manifold which is
antipodally invariant at each t. Similarly to our previous argument
the number of pairs of antipodal points which are mapped to zero by
g must be odd.

Corollary 2.15 (Ham-Sandwich theorem). Let µ0, µ1, . . . µd−1 me
measures in Rn then there exists a hyperplane that bisects them simul-
tanously.

Proof. Parametrize oriented hyperplanes by points on a sphere and
define an antipodal map, then by the BU theorem there exists a zero
of this map.
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3 Geometry

A Reimannian metric on a manifold M is one that arises when we
embed M in some Rn+k and consider the length structure given by
paths restricted to M measured by the Euclidean metric. Like in
the definition of smooth manifold there exists an intrinsic definition.
Thanks to a theorem of John Nash (which is much harder than that
of Whitney) every Riemannian manifold embedds in some Eucldiean
space so that the induced length metric is the original one. We can
use the surface area of Euclidean space, alternatively, a map that does
not increase distances is called non-expanding or Lipschitz. We
can define the volume of a euclidean cube to be the product of the
length of its sides, and for a general manifold, volume is a positive
measure (meaning it is additive) which satisfies that if M → N is
non-contracting then vol(M) ≥ vol(N).

In the intrinsic point of view, we can content ouserlves with defining
what a Riemannian metric in one chart is since both length and volume
are additive. On a disk Bn, we have a positive definite form gx at
each point x, and the dependence on the point x of the form gx is
continuous or smooth. Remember that a positive definite form g takes
two vectors v, u and gives back a number, for vectors u = v g(u, u) ≥ 0
with equality if and only if u = 0. One way to represent g in a vector
space with a basis is via a symmetric matrix with positive eignvalues
A, and g(u, v) = uAv∗ = 〈Au, v〉. Euclidean space corresponds to the
matrix A = I. To each such matrix we can assign its unit ball, the set
of v such that 〈Av, v〉 = 1. This is an ellipsoid, an ellipse in the plane.
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To measure the length of a vector we see how much the ellipse needs to
be scaled to be on the boundary. Equivalently |u|g =

√
g(u, u) hence

length(γ) =

∫ √
|γ′(t)|gdt

, and here g might depend on γ(t). As for the volume we integrate∫ √
det(g(x))dvol(x),

where x ∈ Dn and vol is the Lebesgue measure.
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3.1 Kuratowksi embedding

Now we explain one major ingredient of the proof of the systolic in-
equality. We motivated the definition of manifold looking at zeros
of smooth functions. We motivated Reimannian manifolds as length
metrics induced from manifolds embedded in Rn, we mentioned the
theorems of Nash. It is important to remark this theorem gives local
information on the geodesics on the manifold but no global information
Said differently: if M is a Nash embedding in Rn then the distances
dRn(x, y) and dM (x, y) might have nothing to do with each other. One
might wonder if by going even into higher dimension one might get
an isometric embedding. That is one for which dRn(x, y) = dM(x, y),
for every pair of points x, y ∈ M . As it turns out this is impossible,
essentially because M might be curved. More concretely let 0, 1, 2, 3
and define the distances d(i, i + j) = j, where both i and i + j are
considered modulo 4. Is not difficult to construct a manifold that
contains a copy of this metric space, for example a circle of the right
scale contains it, but this cannot be embedded isometrically in any
Euclidean space (you’ll prove this in the homework).

Normed spaces A norm is a nice metric on a vector space. More
precesely it is a function |.| : Rn → R+ that satisfies |0| = 0, |λv| =
|λ||v|, (where λ is a number and |λ| is the absolute value) and |u+v| ≤
|u|+ |v|. The most famous norms are the lp norms: |x|p → (

∑
|xi|p)1/p,

when p→∞ this tends to the function x→ maxi|xi| and is denoted
(Rn, l∞). The other main examples that play roles in computer science
are l1 and l2. The relevance of l1 is intuitively clear in a combinatorial
context, l2 is of course Euclidean space. The lp norms appear in several
areas of analysis, particularly in harmonic analysis. The spaces of
functions Lp have some similarities with (R∞, lp). In finite dimensions
norms are naturally related to their unit balls. It turns out that norms
are in bijection with centrally symmetric convex bodies. Homework:
Draw the unit ball of (R3, l∞), and of (R3, l1). Here is the finite version
of the Kuratowski embedding theorem:

Theorem 3.1. For any finite metric space (X, d), denote X = {x1, x2, . . . xn},
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then the map K(x) = (d(x, x1), d(x, x2), d(x, x3) . . . d(x, xn)), is an iso-
metric embedding into (Rn, l∞)

Proof. Indeed d(xi, xj) ≥ |d(xi, xk)−d(xj, xi)| for all k by the triangle
inequality, so d(xi, xj) ≥ |K(xi)−K(xj)—. On the other hand K(xi)−
K(xj)| ≥ |K(xi)j −K(xj)j| = |d(xi, xj)− d(xj, xj)| = d(xi, xj).

Now if M is a simplicial complex or a manifold with a Riemannian
metric.

Theorem 3.2. If M is a simplicial complex with a Riemannian metric,
then the map x → (d(x, .) : M → R) is an isometric embedding into
the space L∞ of essentially bounded functions.

The proof is essentially the same but L∞ is more intimidating.
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3.2 The isoperimetric inequality

The classic isoperimetric inequality says that for all the decent sets
of euclidean space that have the same perimeter the circle bounds
the largest area. This generalizes to higher dimensions, of all the
decent sets of given surface area the euclidean balls encloses the largest
area. An equivalent way to state this is that among all sets of a
given volume the unit ball has the least surface area. (Prove that
these are equivalent). This theorem is classical, and has many proofs.
The classical proofs either use symmetrization, as we make the set
more and more symmetric the area gets smaller, and after enough
symmetrization we reach a ball. A second important proof uses the
Brunn-Minkowski inequality.
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The sparsest cut problem There are many variants of this inequal-
ity, many of which are important in computer science. For example the
sparsest cut problem: given a graph G find the partition V = A ∪B
such that the number of edges between A and B quotiented by their
product is minimized, i.e. min |E(A,B)|

|A||B| .

It turns out that the best way to approximate this quantity is via
a bilipshitz embedding into l1. Similar to the Kuratowski embedding
we define K(x) as the weighted distance to a random set S. So the
entries of K(x) are indexed by subsets of X and K(x)S = p(S)d(x, S),
where p(S) is the probabilty of S for some distribution.
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Higher co-dimension isoperimetric inequality In geometric mea-
sure theory, the isoperimetric inequality was generalized in an interest-
ing fashion. To get started, suppose that we have a circle embedded in
three dimensions. The Plateau problem consists of finding the surface
of smallest area that bounds this circle. Now we might wonder if
we can bound the area of the surface in terms of the length of the
circle. A generalized isoperimetric inequality (introduced by Federer
and Fleming) generalizes this phenomena in the following way:

Theorem 3.3 (Federer-Fleming 60s). Suppose that M is an n-cycle
in Euclidean space Rn+m. Then there exists C such that ∂C = M
obeying the following estimates:

1. vol(C) ≤ cn+mvol(M)
n+1
n

2. C is contained in a neighborhood of M of size c′m+nvol(M)
1
n

A crucial idea behind this proof which carries out later is to push
M from a random point to the standard cubulation of euclidean space
inductively on the dimension.

Later Simon-Bombieri and Almgreen refined this to obtain the
following:

Theorem 3.4. Suppose that M is an n-cycle in Euclidean space
Rn+m with vol(M) = vol(Sn). Then there exists N such that ∂C = M
obeying the following estimate: vol(C) ≤ vol(Dn+1)
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More generally and coming back to our topic let us introduce a
new concept. Given a manifold M ⊂ Rn+m we define a filling of
M as C ⊂ Rn+m such that ∂C = M . Now the filling volume of
a manifold is the minimal volume of a C that fills M . The filling
radius of M is the smallest r such that the neighborhood denoted
M+r := {x : d(x, y) < r, y ∈ M} contains a C such that ∂C = M .
Here if it is not specified otherwise then it is assumed that M is
embedded in L∞(M) via the Kuratoswki embedding.

The filling radius measures how thick a Riemannian manifold is.
For example, the filling radius of the cylinder S1 × R is π/3, but
the filling radius of R2 is infinite.The filling radius of an ellipse is
equal to its smallest principal axis. The filling radius of the cylinder
S1 ×R ⊂ R3 is the radius of S1. Now we can give two theorems that
together imply the systolic inequality.

Theorem 3.5. If M is a closed aspherical manifold then

sys(M, g) ≤ 6FillRad(M, g)

Theorem 3.6. For any closed manifold M ,

FillRad(M, g) ≤ CnV olume(M, g)1/n

.

There is a huge detail under the rug that won’t be discussed
precisely. Some manifolds are not the boundaries in the topological
sense, so C is not quite a set, it is a chain in the sense of homology. We
do not have enough time to present this properly, we might use some
other way to avoid filling radius and filing area. However we prove
an important theorem using them in the case n = 1. The following
theorem is important both in metric geometry, in topological graph
theory and in scientific computing.
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3.3 Separator theorem

Theorem 3.7. Let M be a Riemannian 2-sphere (S2, g) or an em-
bedded graph (S2, G) with vertex set V . Then there exists a simple
loop γ ⊂ S2 such that if we denote A ∪ B = S \ γ = the connected
components of its complement. Then

1. min(area(A), area(B)) ≥ area(M)/4

2. length(γ) ≤ 2
√

2area(S2)

In the discrete case, there are no edges between A and B, and

1. min(#A,#B) ≥ #V/4

2. #(V ∩ γ) ≤ 2
√

2#V )

31



3.4 The filling area of the circle

Similar to the Kuratowski embeddings L∞, l∞ satisfy the following
nice property:

Lemma 3.8. Given Y ⊂ X metric spaces, any Lipschitz function
f : Y → L∞ or f : Y → l∞ can be extended to a Lipschitz function
defined on all of X.

We don’t proof this but just emphasize that we could give an
alternative definition of filling radius and filing area. In this section we
are interested in the filling area of the simplest of case, the circle S1 ⊂
R2 with its induced length Riemannian metric. An isometric filling of
S1 is a surface with boundary M , such that ∂M is isometric to S1. We
abuse notation and set S1 = ∂M and we say that M is an isometric
filling of S1 if dS1(x, y) ≥ dM(x, y) for all x, y ∈ ∂M = S1. Similarly
if C2n is the cycle graph of 2n vertices we ask for the quadrangulated
surface M such that ∂M = C2n and dC2n(x, y) ≥ dM(x, y), for any
x, y ∈ ∂M = C2n. The filling area problem is to estimate the minimal
area of such M . In the discrete case this is the minimal number of
quadrangles. We denote by Sn+ a hemisphere.

Theorem 3.9. If M Riemannian is an isometric filling of S1 then
area(M) ≥ 1

2
area(S2

+). If M a quadrangulation which is an isometric
filling of C2n then the number of quadrangles is at least 1

4
n(n− 1).

It has long been conjectured that the filling area of the circle is
the area of a round hemisphere. That is area(M) ≥ area(S2

+) in the
continuous setting and 1

2
n(n− 1) in the discrete one.
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3.5 Systole-Filling radius inequality

Let us proof

Theorem 3.10. If M is a closed aspherical manifold then

sys(M, g) ≤ 6FillRad(M, g)

Proof. Let C be a filling of M which we assume is triangulated and
for contradiction we assume that it is contained in NR(M) for some
R < sys(M)/6 in the space L∞ (which we pretend to be RN for some
large N). We can assume that every edge in the triangulation is
very short. The contradiction will come because we construct a map
f : C →M that is the identity in M , but by definition ∂C = M and
this contradicts a theorem we have shown suing degree theory. We
define f : ∂C → ∂C to be the identity. To extend this map we induct
on the dimension of the cells of the tringulation. We begin defining
f on the vertices of C. For each v a vertex of C, there exists a point
on ∂C at distance less than R, pick any such point to define f(v).
Now we want to define the map on the edges which are very short,
call an upper bound on this distance δ. Notice that if e = (v, u) is an
edge then d(f(u), d(v)) ≤ 2R + δ by the triangle inequality we define
f(e) to be a shortets path between f(v) and f(u). Now we look at a
triangle, it has perimeter 6R + 3δ. Since R < sys(M)/6, if δ is small
engough then 6R + 3δ < sys(M). This means that if σ is a face, and
f(∂σ) ⊂ M is contractible. This means that we can fill it by some
triangle to define f(σ). Now we look at a tetrahedra τ ⊂ C, since
M is aspherical we can extend the map from the boundary f(∂τ) to
the interior, we continue going up in dimension. At the end of this
process we have defined a map from C → ∂C that is the identity on
the boundary.

Stephan Wenger has a very short proof of the second theorem we
need:

FillRad(M, g) ≤ CnV olume(M, g)1/n

. However short and mostly elementary it is not easy. The constant in
this isoperimetric inequality is very big, so the constant it derives for
the systolic inequality 6 times very big. In fact the examples of the
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torus and the projective plane show that the optimal constant should
be around

√
n, Wegner’s proof gives something around 27nn!. A much

smaller constant was obtained recently by Nabutovsky, following ideas
of Papasoglu and Guth, which is around n and is somehow simpler.

3.6 Nerves and partitions of unity

Given a family of sets U1, U2 . . . Uk the nerve N [U1, U2, . . . Uk] is a
simplicial complex that has one vertex for each set Ui and one simplex
σ for any family of sets with non-empty intersection: ∩i∈σUi 6= 0 iff
σ ∈ N [U1, U2, . . . Uk].
The dimension of this covering is the the multiplicity of the nerve
minus one. If {Ui} is an open covering of a space X and there are
functions φi : Ui → R such that for any point x,

∑
φi(x) = 1 then

we call the pair of open cover and functions a partition of unity .
It comes handy in manifold theory to pass from statements in Rn to
statements in a manifold. For example to show Sard’s theorem or
to show that the smooth approximation of a continuous function has
enough regular points this is the technical tool to use. We will use it
in slightly different fashion as our main object is a distance function,
we are interested in metric rather than smooth objects.

Lemma 3.11. If {Ui} are open subsets the map φ(x) = d(.,X\Ui)∑
j d(.,X\Uj)

is

a partition of union, and ψ : X → N ,

ψ(x) :=
∑
i:x∈Ui

vi
d(., X \ Ui)∑
j d(., X \ Uj)

is a 1-Lipschitz map such that ψ(Ui) ⊂ st(vi).

3.7 Width and volume profile

The radius of a set U on a metric space is the smallest R such that
there exists a point x ∈ U such that U ∈ B(x,R). The i-width is
the least upper bound R > 0 such that X can be covered with open
sets {Ui} of radius R each, such that the multiplicity of the covering
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is at most i+ 1. Clearly the i-widths are decreasing in i. For compact
metric spaces, one can equivalently define the i-width as the least
upper bound, of the maximal radius of a fiber of a map f : X → T ,
where T is a simplicial complex of dimension i. As an exercise you
can show the equivalence between these two definitions.

Volume profile For a given Riemannian manifold, or more generally
Riemannian simplicial complex X the volume profile is the function
vX(r) := sup{vol(B(p, r)) : p ∈ X}, this function is not decreasing
and for r big enough vX(r) = vol(X). Here is an easy observation that
will work as the basis of the induction of the following theorem.

Lemma 3.12. Let X be a Riemannian graph, if vX(R) < R for some
R > 0 then width0 < R.

Our next goal are the following theorems:

Theorem 3.13. Let X is an n-dimensional Riemannian polyhedron,
if for some R

R > n(vX(R))
1
n

then
widthn−1(X) < R.

In particular widthn−1(X) ≤ nvol(X)
1
n

Theorem 3.14. Let X is an n-dimensional aspherical Riemannian
manifold, then sys(X) < 6widthn−1(X).

Together they imply the systolic inequality. Let’s begin from the
second one, its proof is similar to the filing radius systole inequality.
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Theorem 3.15. Let X is an n-dimensional aspherical Riemannian
manifold, then sys(X) < 6widthn−1(X).

Proof. Assume the opposite. Let N be the nerve equipped with
ψ : X → N , let us construct a simplexwise smooth map f : N → X
and a homotopy h between the identity in X and fψ. This is absurd
because on one hand the identity has degree 1 and on the other, a
smooth approximation of fψ has degree 0, because f is simplex-wise
smooth and N is of dimension n − 1, this means that it f(N) has
n-volume 0, so for the map f and hence for the map fψ almost every
regular value has 0 fibers.
For every vertex vi ∈ N , choose some point pi ∈ Ui ⊂ X, f(vi) = pi.
For each edge e = vi, vj in N choose the shortest path between pi
and pj, so f(e) = [pi, pj]). Notice that d(pi, pj) < 2widthn−1(X) so
triangles in N1 map to triangles with perimeter < sys(X) we can fill
them and then use asphericity to fill f going up in dimensions.
Now assume that we have a very fine triangulation on X such that
every edge is contained in one of the sets of the open cover. Extend
this triangulation to a triangulation of all of X × [0, 1]. We have the
map h defined on the top and on the bottom. We extend the map to
the 0-skeleton, and built the map inductively on the dimension.
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3.8 Almost minimal separating complexes

Let us come back to the width volume inequality. We have shown that
for a graph if vX(R) < R for some R > 0 then width1 < R. This is

the base of an induction proof, claiming taht if (vX(R))
1
n < R

n
then

widthn−1(X) < R. The main idea of the proof is similar to the proof
of the separator theorem. Let’s call S an R-separating simplicial
complex if S ⊂ X has dimension (n−1) and X\S consists of connected
components of radius less than R.

Lemma 3.16. Let X be a Riemainnian simplicial complex, for any
R > 0 and any ε > 0, there exists an R-separating complex Q ⊂ X,
such that for any r0 < rr < R:

vQ(r0) <
1

r1 − r0
vX(r1)

As before we need to use Sard’s theorem to transform the distance
function into a smooth 1-Lipschitz function of each simplex. As in
the proof of the systolic inequality for surfaces we need the co-area
formula. We need it for Riemannian complexes but it easily follows
from the formula on each simplex, namley we need that if f : X → R is
a simplex-wise smooth Lipschitz function then

∫ r1
r0
voln−1(f

−1(t))dt ≥
voln(f−1([r0, r1]).

Proof. We apply Sard theorem to the distance from a fixed point x
obtain a function dist′(p, .) which is close to the distance function and
for which the ”spheres” S ′(p, c) := {x ∈ X : dist′(p, x) = c} are unions
of smooth (n−1)-manifolds with boundary which after possibly further
subdividing into smaller simplicies becomes a Riemannian complex.
We can assume that for every c ∈ [r0 + δ, r1 − δ],

voln−1(S
′(p, c)) ≤ 1

r1 − r0 + δ
voln(B(p, r1)) <

1

r1 − r0
vX(r1) + ε/2

Now suppose that Q is the R-separating complex with minimal volume
upto a ε/2 error. Note that for any p and any c < R cutting out
B′(p, c) ∩Q and substituing it by S ′(p, c) yields a new R-separating
complex, so by minimality:

voln−1[Q ∩B′(p, r0)]− ε/2 ≤ voln−1(S
′(p, c))
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so,

voln−1[Q ∩B′(p, r0)]
1

r1 − r0
vX(r1) + ε

Since distances in Q are not smaller than the distances in X so
BQ(p, r0) ⊂ Q∩B′(p, r1). Since p was arbitrary: vQ(r0) ≤ 1

r1−r0vX(r1)+
ε as desired.

The previous lemma stated an upper bound on the area of a near
minimal R-separating complex of X. The next lemma relates the
width of an R-separating complex Q with the width of the complex
X.

Lemma 3.17. Let Q be an R-separating complex of X, if widthn−2(Q) ≤
R then widthn−1(X) ≤ R

Proof. We begin with the open cover U1, U1, . . . Uk of Q and we thicken
the sets without increasing the multiplicity of any intersection we add
the connected components X −Q.
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We are ready to put the ingredient together, remember what we
want to show

Theorem 3.18. Let X is an n-dimensional Riemannian polyhedron,
if for some R, R > n(vX(R))

1
n then widthn−1(X) < R. In particular

widthn−1(X) ≤ nvol(X)
1
n

Proof. The induction step: By assumption, R > nvX(R)
1
n for some R.

Let Q be a minimal separating complex, we can take r = n−1
n
R, and

use minimality to obtain:

vQ(r) <
1

R− r
vX(R) + ε =

n

R
vX(R) + ε

We can assume that ε was chosen small enough so that,

n

R
vX(R) + ε <

n

R
(
R

n
)n = (

R

n
)n−1 = (

r

n− 1
)n−1

We have shown that vQ(r) < ( r
n−1)n−1 which by the induction hypoth-

esis implies that widthn−2(Q) ≤ r < R. But Q was R-separating, so
by the previous lemma widthn−1(X) < R.
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