Homework 1:Due Friday 23th at midnight.

Systolic Geometry Course

October 15, 2020

- 1. Write a small introductory letter. What are your interests? What is your background in general? What is your background in geometry and topology?
- 2. What are the cardinalities of the fibers of the map $z \to z^3$ on $\{z \in \mathbb{C} : |z| = 1\}$?
- 3. Is 0 a regular value of $p(x,y) = x^2 y^2$? What about 1? Draw the curves p(x,y) = 0, p(x,y) = 1.
- 4. Show for every point $p \in \mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + y^2 = 1\}$ there exists an open neighborhood U, with $p \in U$ and a diffeomorphim $\mathring{\mathbb{D}}^2 \to U$ where $\mathring{\mathbb{D}}^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$.
- 5. For every d construct a map from the sphere \mathbb{S}^2 to itself such that almost every value y has d elements in the fiber: $\#f^{-1}(y) = d$.
- 6. Prove that 2d + 2 random points are affinely independent. Prove that if 2d + 2 points are affinely independent then any partition into two (d + 1)-tuples span affine spaces that do not intersect.
- 7. Show that the complete graph on 5 vertices is not planar.
- 8. Why is the proof of the Jordan theorem we gave not valid for general simple closed curves.
- 9. The Brouwer fixed point theorem claims that every continuous map $f: [0,1]^2 \to [0,1]^2$ has a fixed point, i.e. a point $(x,y) \in [0,1]^2$ such that f(x,y) = (x,y).
 - Using the intermediate value theorem show that every map $f: [0,1] \rightarrow [0,1]$ has a fixed point.
 - Evaluate whether the following argument is correct:
 - Write $f = (f_1, f_2)$. For y let $h_y(x) = f_1(x, y) \colon [0, 1] \to [0, 1]$. Apply the one dimensional fixed point theorem to h_y to obtain a value c(y) such that $f_1(c(y), y) = h_y(c(y)) = c(y)$. Now consider y as a variable and consider the function $g(y) \coloneqq f_2(c(y), y)$. Since g is a function from [0, 1] to [0, 1] by the one dimensional fixed point theorem it has a fixed point. This is a y_0 , such that $g(y_0) = y_0$. Unwinding we have shon the existence of a point $c(y_0), y_0$ such that: $f(c(y_0), y_0) = (f_1(c(y_0), y_0), f_2(c(y_0), y_0)) = (c(y_0), y_0)$. Explain whether you find this proof convincing. Can you make a picture that explains the situation?