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Panorama
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1.0.1 Topology.

Topology deals with the study of spaces. One of its goals is to answer the following
broad class of questions:

“Are these two spaces the same?”

This naturally leads to the following subquestions:

• What is a space? General topology typically defines topological spaces via open
and closed sets. In order to avoid pathological examples, and with an eye towards
applications, we will take a more concrete approach1: in this course, topological
spaces will be obtained in the form of complexes, that is, by gluing together
fundamental blocks. For example, gluing segments yields a graph, while by
gluing together triangles one can obtain a surface (or something more compli-
cated). The usual notions of distance on these fundamental blocks naturally
induce a notion of proximity on such a complex, and therefore a topology whose
properties are convenient to understand geometrically.

1This is by no means original: see introductory textbooks on algebraic topology, for example
Hatcher [Hat02] or Stillwell [Sti93].
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• What is “the same” ? It very much depends on the context. The most common
equivalence relation is homeomorphism, which is a continuous map with a
continuous inverse function. But in some contexts, when a space is embedded
in another space, one will be interested in distinguishing between different
embeddings. There, a convenient notion is isotopy : two embedded spaces will
be considered the same if one can deform continuously one into the other one.

Let us look at examples.

Example 1: By gluing triangles or quadrilaterals, one can easily obtain a sphere (left
figure), or a torus (right figure).

Are these two spaces homeomorphic? Obviously not: the torus has a hole. But
what is a hole? Two naive answers will guide us to the two fundamental constructs of
algebraic topology:

• Homotopy: On the sphere, every closed curve can be deformed into a single
point. While on the torus, a curve going around the hole can not. Such a curve
is not homotopic to a point.

• Homology: On the sphere, every closed curve separates the sphere into two
regions. While on the torus, a curve going around the hole is not separating.
Such a curve is not trivial in homology.

These intuitions can be formalized into algebraic objects which will constitute
invariants (actually, functors) that one can use to distinguish topological spaces.

Example 2: By gluing segments in R3, one can obtain the following knots.

Are they homeomorphic? Certainly: they are both homeomorphic to the circle S1.
But are they isotopic: can one be deformed into the other without crossing itself? The
answer is negative, but this is not that easy to prove. One way to see it is that the knot
on the left bounds a disk, while the one on the right does not. Studying which surfaces
one can find in a 3-dimensional space is the goal of normal surface theory.
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1.0.2 Computational Topology.

Computational topology deals with effective computations on topological spaces.
The main question now becomes:

“How to compute whether these two spaces are the same?”

Note that since we study spaces described by gluings of fundamental blocks, in
most instances this can be made into a well-defined algorithmic problem, with a finite
input. One can then wonder about the complexity of this problem, and aim to design
the most efficient algorithm, or conversely prove hardness results. Throughout the
course, we will investigate the complexity of various instances of this question, with
practical algorithms computing homeomorphism, homotopy, homology or isotopy
for example.

Outline. We will work by increasing progressively the dimension, and thus the com-
plexity of the objects we consider.

1. We start with one of the simplest topological spaces : the plane R2. Describing
it as a union of small blocks amounts to the study of planar graphs. This topo-
logical constraint on graphs has a strong impact on their combinatorics, which
we will study through various angles.

2. Next come surfaces, which look locally like the plane. From a mathematical
point of view, these are still fairly simple, as they can be easily classified. But
once again, there is a very fruitful interplay between the topology of surfaces and
the combinatorics of embedded graphs. Moreover, surfaces are a convenient
and easy framework to introduce homotopy and homology and we will present
efficient algorithms for the computation of these invariants.

3. In dimension 3, we will introduce knots and 3-manifolds. Distinguishing vari-
ous knots is hard: the whole field of knot theory is dedicated to this. We will see
through various examples why this is hard, and will introduce normal surface
theory, one of the main tools used for computational problems in 3 dimensions.
As an application, we will use it to provide an algorithm to recognize trivial knots
in NP.

4. As soon as we hit dimension 4, we start to hit the limits of computational topol-
ogy: many problems are not only hard, they are undecidable. We will introduce
simplicial complexes, which are the main model for high-dimensional topo-
logical spaces, and show that deciding homeomorphism of such complexes is
already undecidable in dimension 4, as is testing the homotopy of curves in
2-dimensional complexes.

5. Although computing homotopy and homeomorphism quickly becomes intractable
in high dimensions, homology does not: its simple algebraic structure allows
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for efficient computations that scale well with the dimension. This can be lever-
aged as a tool for big data: the techniques of topological data analysis aim at
recognizing topological features in point clouds by computing their persistent
homology. As we shall see, this is a surprisingly powerful way to infer informa-
tion from a structured point cloud.

Applications. The approach in this course is to focus on the mathematical motiva-
tions to study topological objects and their computation. This does not mean that this
is all devoid of applications. Quite the contrary: topological spaces are ubiquitous in
computer science, and the primitives we develop here have practical implications in
computer graphics [LGQ09], mesh processing [GW01], robotics [Far08], combinatorial
optimization (see references in [Eri12]), machine learning [ACC16], and many other
fields. Believe it or not, they even revolutionized basketball [Bec12]!
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Planar Graphs
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A graph is planar if it can be drawn on a sheet of paper so that no two edges inter-
sect, except at common endpoints. This simple property not only allows to visualize
planar graphs easily, but implies many nice properties. Planar graphs are sparse: they
have a linear number of edges with respect to their number of vertices (specifically a
simple planar graph with n vertices has at most 3n −6 edges), they are 4-colorable,
they can be encoded efficiently, etc. Classical examples of planar graphs include the
graphs formed by the vertices and edges of the five Platonic polyhedra, and in fact of
any convex polyhedron. Although being planar is a topological property, planar graphs
have purely combinatorial characterizations. Such characterizations may lead to effi-
cient algorithms for planarity testing or, more surprisingly, for geometric embedding
(=drawing).

In the first part of this lecture we shall deduce the combinatorial characterizations
of planar graphs from their topological definition. That we can get rid of topological
considerations should not be surprising. It is actually possible to develop a combinato-
rial theory of surfaces where a drawing of a graph is defined by a circular ordering of its
edges around each vertex. The collection of these circular orderings is called a rotation

8
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system. A rotation system is thus described combinatorially by a single permutation
over the (half-)edges of a graph; the cycle decomposition of the permutation induces
the circular orderings around each vertex. The topology of the surface corresponding
to a rotation system can be deduced from the computation of its Euler characteristic.
Being planar then reduces to the existence of a rotation system with the appropriate
Euler characteristic.

The following notes are largely inspired by the monographs of Mohar and Thomassen
[MT01] and of Diestel [Die05].

2.1 Topology

A graph G = (V , E ) is defined by a set V =V (G ) of vertices and a set E = E (G ) of edges
where each edge is associated one or two vertices, called its endpoints. A loop is an
edge with a single endpoint. Edges sharing the same endpoints are said parallel and
define a multiple edge. A graph without loops or multiple edges is said simple or
simplicial. In a simple graph every edge is identified unambiguously with the pair of
its endpoints. Edges should be formally considered as pairs of oppositely oriented arcs.
A path is an alternating sequence of vertices and arcs such that every arc is preceded
by its origin vertex and followed by the origin of its opposite arc. A path may have
repeated vertices (beware that this is not standard, and usually called a walk in graph
theory books). Two or more paths are independent if none contains an inner vertex
of another. A circuit is a closed path, i.e. a path whose first and last vertex coincide. A
cycle is a simple circuit (without repeated vertices). We will restrict to finite graphs for
which V and E are finite sets.

The Euclidean distance in the plane R2 induces the usual topology where a subset
X ⊂R2 is open if every of its points is contained in a ball that is itself included in X .

The closure X̄ of X is the set of limit points of sequences of points of X . The interior
◦

X
of X is the union of the open balls contained in X . An embedding of a non-loop edge
in the plane is just a topological embedding (a homeomorphism onto its image) of
the segment [0, 1] into R2. Likewise, an embedding of a loop-edge is an embedding of
the circle S 1 =R/Z. An embedding of a finite graph G = (V , E ) in the plane is defined
by a 1-1 map V ,→R2 and, for each edge e ∈ E , by an embedding of e sending {0, 1} to
e ’s endpoints such that the relative interior of e (the image of ]0,1[) is disjoint from
other edge embeddings and vertices1.

A graph is planar if it has an embedding into the plane. Thanks to the stereographic
projection, the plane can be equivalently replaced by the sphere. A plane graph is a
specific embedding of a planar graph. A connected plane graph in the plane has a
single unbounded face. In contrast, all the faces play the same role in an embedding
into the sphere and any face can be sent to the unbounded face of a plane embedding
by a stereographic projection.

As far as planarity is concerned we can restrict to simple graphs. Indeed, it is easily
seen that a graph has an embedding in the plane if and only if this is the case for the
graph obtained by removing loop edges and replacing each multiple edge by a single

1In other words, this is a topological embedding of the quotient space (V t [0,1]×E )/∼, where ∼
identifies edge extremities (0, e ) and (1, e )with the corresponding vertices.
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edge. When each edge embedding [0,1]→ R2 is piecewise linear the embedding is
said PL, or polygonal. A straight line embedding corresponds to the case where each
edge is a line segment.

Lemma 2.1.1. A graph is planar if and only if it admits a PL embedding.

The proof is left as an exercise. One can first show that a connected subset of the
plane is connected by simple PL arcs.

2.1.1 The Jordan Curve Theorem

Most of the facts about planar graphs ultimately relies on the Jordan curve theorem,
one of the most emblematic results in topology. Its statement is intuitively obvious: a
simple closed curves cuts the plane into two connected parts. Its proof is nonethe-
less far from obvious, unless one appeals to more advanced arguments of algebraic
topology. Camille Jordan (1838 – 1922) himself proposed a proof whose validity is
still subject of debates [Hal07b]. A rather accessible proof was proposed by Helge
Tverberg [Tve80] (see the course notes [Laz12] for a gentle introduction). Eventually, a
formal proof was given by Thomas Hales (and other mathematicians) [Hal07b, Hal07a]
and was automatically checked by a computer. Concerning the Jordan-Schoenflies
theorem, the situation is even worse. This stronger version of the Jordan curve the-
orem asserts that a simple curve does not only cut a sphere into two pieces but that
each piece is actually a topological disc. A nice proof by elementary means – but
far from simple – and resorting to the fact that K3,3 is not planar is due to Carsten
Thomassen [Tho92].

The main source of difficulties in the proof of the Jordan curve theorem is that a
continuous curve can be quite wild, e.g. fractal. When dealing with PL curves only,
the theorem becomes much easier to prove.

Theorem 2.1.2 (Polygonal Jordan curve — ). Let C be a simple closed PL curve. Its
complementR2 \C has two connected components, one of which is bounded and each
of which has C as boundary.

PROOF. Since C is contained in a compact ball, its complement has exactly one
unbounded component. Define the horizontal rightward direction ~h as some fixed
direction transverse to the all the line segments of C . For every segment s of C we let
s be the lower half-open segment obtained from s by removing its upper endpoint.
We also denote by hp the ray with direction ~h starting at a point p ∈R2. We consider
the parity function π :R2 \C →{ even, odd } that counts the parity of the number of
lower half-open segments of C intersected by a ray:

π(p ) := parity of
�

�{ segment s of C | hp ∩ s 6= ;}
�

�

Every p ∈R2 \C is the center of small disk Dp over which π is constant. Indeed, let Sp

be the set of segments (of C ) that avoid hp , let S ′p be the set of segments whose interior
crosses hp and let S ′′p be the set of segments whose lower endpoint lies on hp . If Dp
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p

Dp

C

hp

s2 s3 s4
s5

s1

s6

Figure 2.1: The horizontal ray through p cuts the five lower half-open segments
s 2, s 3, s 4, s 5, s 6. Here, we have s1 ∈ Sp , s4, s5 ∈ S ′p and s2, s3, s6 ∈ S ′′p .

is sufficiently small, then for every q ∈Dp we have Sq = Sp , S ′q = S ′p and the parity of
|S ′′q | and |S ′′p | is the same. See Figure 2.1. It follows that π(q ) =π(p ). Since π is locally

constant, it must be constant over each connected component ofR2 \C . Moreover,
the parity function must take distinct values on points close to C that lie on a same
horizontal but on each side of C . It follows that R2 \C has at least two components.
To see that R2 \C has at most two components consider a small disk D centered at a
point interior to a segment s of C . Then D \C =D \ s has two components. Moreover,
any point inR2 \C can be joined to one of these components by a polygonal path that
avoids C : first come close to C with a straight line and then follow C in parallel until
D is reached. Finally, it is easily seen by similar arguments as above that every point
of C is in the closure of both components of R2 \C .

Corollary 2.1.3 (θ ’s lemma). Let C1, C2, C3 be three simple PL paths with the same
endpoints p , q and otherwise disjoint. The graph G = C1 ∪ C2 ∪ C3 has three faces
bounded by C1 ∪C2, C2 ∪C3 and C3 ∪C1, respectively.

PROOF. From the Jordan curve theorem the three simple closed curves Gk =Ci ∪C j ,
{i , j , k} = {1,2,3}, cut the plane into two components bounded by Gk . We let Xk

and Yk be respectively the bounded and unbounded component. We also denote by
◦

Ci :=Ci \ {p , q } the relative interior of Ci . We first remark that a simple PL path cuts an
open connected subset of the plane into at most two components: as in the proof of
the Jordan curve theorem we can first come close to the path and follow it until a small

fixed disk is reached. Since
◦

C3 is included in a face of G3, we deduce that G =G3∪
◦

C3

has at most three faces.
We claim that

◦
Ci⊂ X i for at least one index i ∈ {1,2,3}. Otherwise we would have

Ci ⊂ ûX i , whence G ⊂ ûX i , or equivalently X i ⊂ ûG . So, X i would be a face of G . Since

the X i ’s are pairwise distinct (note that Ci ⊂ X̄ j while
◦

Ci 6⊂ X̄ i ), we would infer that G
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has at least three bounded faces, hence at least four faces. This would contradict the

first part of the proof. Without loss of generality we now assume
◦

C3⊂ X3.
From G =G1 ∪G2 we get that each face of G is a component of the intersection of

a face of G1 with a face of G2. From G3 ⊂G ⊂ ûY3 we get that Y3 is a face of G . Since Y3

is unbounded we must have Y3 ⊂ Y1 ∩Y2.
Now, C1 ⊂ Ȳ3 ⊂ Ȳ1 = ûX1 implies G =G1 ∪C1 ⊂ ûX1. It follows that X1 is a face of G .

Likewise, X2 is a face of G . Moreover, these two faces are distinct (C1 bounds X1 but
not X2). We conclude that Y3, X1 and X2 are the three faces of G .

2.1.2 Euler’s Formula

The famous formula relating the number of vertices, edges and faces of a plane graph
is credited to Leonhard Euler (1707-1783) although René Descartes had already de-
duced very close relations for the graph of a convex polyhedron. See the histori-
cal account of R. J. Wilson in [Jam99, Sec. 17.3] and in J. Erickson’s course notes
http://jeffe.cs.illinois.edu/teaching/topology17/chapters/02-planar-graphs.pdf

Recall that a graph G is 2-connected if it contains at least three vertices and if
removing any one of its vertices leaves a connected graph. If G is 2-connected, it can
be constructed by iteratively adding paths to a cycle. In other words, there must be a
sequence of graphs G0,G1, . . . ,Gk =G such that G0 is a cycle and Gi is deduced from
Gi−1 by attaching a simple path between two distinct vertices of Gi−1.

Proposition 2.1.4. Each face of a 2-connected PL plane graph is bounded by a cycle of
the graph. Moreover, each edge is incident to (= is in the closure of) exactly two faces.

PROOF. Let G be a 2-connected PL plane graph. Consider the sequence G0,G1, . . . ,
Gk =G as above. We prove the proposition by induction on k . If k = 0, then G is a
cycle and the proposition reduces to the Jordan curve theorem 2.1.2. Otherwise, by
the induction hypothesis Gk−1 satisfies the proposition. Let P be the attached path
such that G = Gk−1 ∪P . The relative interior of P must be contained in a face f of
Gk−1. This face is bounded by a cycle C of Gk−1. We can now apply θ ’s lemma 2.1.3 to
C ∪P and conclude that f is cut by G into two faces bounded by the cycles C1∪P and
C2 ∪P , where C1, C2 are the subpaths of C cut by the endpoints of P . Moreover all the
other faces of Gk−1 are faces of G bounded by the same cycles. It easily follows that
the edges of G are each incident to exactly two faces.

Lemma 2.1.5. Let G be a PL plane graph. If v is a vertex of degree one in G then G − v
and G have the same number of faces.

PROOF. We denote by e the edge incident to v in G . Every face of G is contained in
a face of G − v . Moreover, the relative interior of (the embedding of) e is contained
in a face f of G − v . Hence, every other face of G − v is also a face of G . It remains
to count the number of faces of G in f . Let p , p ′ be two points in f \ e . There is a
PL path in f connecting p and p ′. This path may intersect e , but we may avoid this
intersection by considering a detour in a small neighborhood Ne of e in f (indeed,

http://jeffe.cs.illinois.edu/teaching/topology17/chapters/02-planar-graphs.pdf
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Ne \ e is connected). It follows that p and p ′ belong to a same component of f \ e . We
conclude that G has only one face in f , so that G and G − v have the same number of
faces.

Theorem 2.1.6 (Euler’s formula). Let |V |, |E | and |F | be the number of vertices, edges
and faces of a connected plane graph G . Then,

|V | − |E |+ |F |= 2

PROOF. We argue by induction on |E |. If G has no edges then it has a single vertex
and the above formula is trivial. Otherwise, suppose that G has a vertex v of degree
one. Then by Lemma 2.1.5, G has the same number of faces as G − v . Note that G
has one vertex more and one edge more than G − v . By the induction hypothesis we
can apply Euler’s formula to G − v , from which we immediately infer the validity of
Euler’s formula for G . If every vertex of G has degree at least two, then G contains a
cycle C . Let e be an edge of C . We claim that G has one face more than G − e . This
will allow to conclude the theorem by applying Euler’s formula to G − e , noting that G
has the same number of vertices but one edge less than G − e . By the Jordan curve
theorem 2.1.2, C cuts the plane into two faces (components) bounded by C . Since
G =C ∪ (G − e ), every face of G is included in the intersection of a face of C and a face
of G −e . Let f be the face of G −e containing the relative interior of e . Every other face
of G − e does not meet C , hence is also a face of G . Since f intersects the two faces
of C (both bounded by e ), G has at least one face more than G − e . By considering a
small tubular neighborhood of e in f , one shows by an already seen argument that
f \ e has at most two components. It follows that f contains exactly two faces of G ,
which concludes the claim.

Application. Two old puzzles that go back at least to the nineteenth century are
related to planarity and can be solved using Euler’s formula. The first asks whether it
is possible to divide a kingdom into five regions so that each region shares a frontier
line with each of the four other regions. The second puzzle, sometimes called the gaz-
water-electricity problem requires to join three houses to three gaz, water and electricity
facilities using pipes so that no two pipes cross. By duality, the first puzzle translates
to the question of the planarity of the complete graph K5 obtained by connecting
five vertices in all possible ways. The second problem reduces to the planarity of
the complete bipartite graph K3,3 obtained by connecting each of three independent
vertices to each of three other independent vertices. It appears that these two puzzles
are unfeasible.

Theorem 2.1.7. K5 and K3,3 are not planar.

PROOF. We give two proofs. The first one is based on Euler’s formula.

1. Suppose by way of contradiction that K3,3 has a plane embedding. Euler’s formula
directly implies that the embedding has n = 2−6+9= 5 faces. Since K3,3 is 2-
connected, it follows from Proposition 2.1.4 that every edge is incident to two
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distinct faces. By the same proposition, each face is bounded by a cycle, hence
by at least 4 edges (cycles in a bipartite graph have even lengths). It follows from
the handshaking lemma that twice the number of edges is larger than four times
the number of faces, i.e. 18≥ 20. A contradiction.

An analogous argument for K5 implies that an embedding must have 7 faces.
Since every face is incident to at least 3 edges, we infer that 2×10≥ 3×7. Another
contradiction.

2. Let {1,3,5} and {2,4,6} be the two vertex parts of K3,3. The cycle (1,2,3,4,5,6)
separates the plane into two components in any plane embedding of K3,3. By θ ’s
lemma the edges (1, 4) and (2, 5)must lie in the face that does not contain (3, 6).
Then (1,4) and (2,5) intersect, a contradiction. A similar argument applies for
the non-planarity of K5.

Exercise 2.1.8. Every simple planar graph G with n ≥ 3 vertices has at most 3n − 6
edges and at most 2n −4 faces.

Exercise 2.1.9. Every simple planar graph with at least six vertices has a vertex with
degree less than 6.

To conclude, we prove a very strong generalization of Exercise 2.1.8, which allows
to quantify how non-planar dense graphs are. Here, a drawing of a graph is just
a continuous map f : G → R2, that is, a drawing of the graph on the plane where
crossings are allowed. The crossing number c r (G ) of a graph is the minimal number
of crossings over all possible drawings of G . For instance, c r (G ) = 0 if and only if G
is planar. The crossing number inequality [ACNS82, Lei84] provides the following
lower bound on the crossing number.

Theorem 2.1.10. c r (G )≥ |E |3
64|V |2 if |E | ≥ 4|V |.

The proof is a surprising application of (basic) probabilistic tools.

PROOF. Starting with a drawing of G with the minimal number of crossings, define
a new graph G ′ obtained by removing one edge for each crossing. This graph is planar
since we removed all the crossings, and it has at least |E |− c r (G ) edges (removing one
edge may remove more than one crossing), so we obtain that |E |− c r (G )≤ 3|V |. (Note
that we removed the -6 to obtain an inequality valid for any number of vertices.) This
gives in turn

c r (G )≥ |E | −3|V |.

This can be amplified in the following way. Starting from G , define another graph
by removing vertices (and the edges adjacent to them) at random with some probability
1−p < 1, and denote by G ′′ the obtained graph. Taking the previous inequality with
expectations, we obtain E(c r (G ′′)) ≥ E(|E ′′|)− 3E(|V ′′|). Since vertices are removed
with probability 1−p , we have E(|V ′′|) = p |V |. An edge survives if and only if both
its endpoints survive, and a crossing survives if and only if the four adjacent vertices
survive (there may be less than four adjacent vertices in general, but not in the drawing
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minimizing the crossing number, we leave this as an exercise to check), so we get
E(|E ′′|) = p 2|E | and E(c r (G ′′)) = p 4c r (G ). So we obtain

c r (G )≥ p−2|E | −3p−3|V |,

and taking p = 4|V |/|E | – which is less than 1 if |E | ≥ 4|V | – gives the result.

2.2 Kuratowski’s Theorem

2.2.1 The Subdivision Version

We say that H is subdivision of G if H is obtained by replacing the edges of G by
independent simple paths of one or more edges. Obviously, a subdivision of a non-
planar graph is also non-planar. It follows from Theorem 2.1.7 that a planar graph
cannot have a subdivision of K5 or K3,3 as a subgraph. In 1929, Kazimierz Kuratowski
(1896 – 1980) succeeded to prove that this condition is actually sufficient for a graph to
be planar. For this reason K5 and K3,3 are called the Kuratowski graphs, or the forbidden
graphs.

Theorem 2.2.1 (Kuratowski, 1929). A graph is planar if and only if it does not contain
a subdivision of K5 or K3,3 as a subgraph.

As just noted, we only need to show that a graph without any subdivision of a
forbidden graph is planar. We follow the proof of Thomassen [MT01]. Recall that
a graph is 3-connected if it contains at least four vertices and if removing any two
of its vertices leaves a connected graph. By Menger’s theorem [Wil96, cor. 28.4], a
graph is 3-connected if and only if any two distinct vertices can be connected by at
least three independent paths. If e is an edge of a graph G we denote by G //e the
graph obtained by the contraction of e , i.e. by deleting e , identifying its endpoints,
and merging each resulting multiple edge, if any, into a single edge. The proof of
Kuratowski’s theorem first restricts to 3-connected graphs. By Lemma 2.2.2 below we
can repeatedly contract edges while maintaining the 3-connectivity until the graph is
small enough so that it can be trivially embedded into the plane. We then undo the
edge contractions one by one and construct corresponding embeddings. In the end,
the existence of an embedding attests the planarity of the graph. In a second phase we
extend the theorem to any graph, not necessarily 3-connected, that does not contain
any subdivision of K5 or K3,3. This is done by adding as many edges as possible to
the graph without introducing a (subdivision of a) forbidden graph. By Lemma 2.2.5
below the resulting graph is 3-connected and we may conclude with the first part of
the proof.

Lemma 2.2.2. Any 3-connected graph G with at least five vertices contains an edge e
such that G //e is 3-connected.

PROOF. Suppose for the sake of contradiction that for any edge e = x y , the graph
G //e is not 3-connected. Denote by ve the vertex of G //e resulting from the identifica-
tion of x and y . Then we can find a vertex z ∈V (G //e ) such that {z , ve } disconnects
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Figure 2.2: H ′ has more vertices than H even when v ∈ {x , y }.

G //e . In other words, for any edge e = x y of G we can find a vertex z ∈V (G ) such that
G −{x , y , z } is not connected. We choose e and z such that the number of vertices of
the largest component, say H , of G −{x , y , z } is maximal. Let u be adjacent to z in a
component of G −{x , y , z } other than H . See figure 2.2. By the above reformulation,
we can find a vertex v ∈V (G ) such that G −{z , u , v } is not connected. We claim that
the subgraph H ′ induced by (V (H )∪{x , y }) \ {v } is connected. Since H ′ is contained
in G −{z , u , v } and since H ′ has more vertices than H , this contradicts the choice of
H , hence concludes the proof. To see that H ′ is connected we just need to check that
every t ∈V (H ) can be connected to x or y (themselves connected by e ) by a path in
H ′. Since G is 3-connected, there is a path p : t   x in G avoiding z and v . Replacing
x by y if necessary, we can assume that p − x does not contain y . It follows that p − x
is contained in G −{x , y , z , v }, hence in H − v . So p is in H ′.

Exercise 2.2.3. Let e be an edge of G such that G //e contains a subdivision of a forbid-
den graph. Show that G already contains such a subdivision. (Hint: G //e and G need
not contain subdivisions of the same forbidden graph.)

A straight line embedding is said convex if all its faces are bounded by convex poly-
gons.

Proposition 2.2.4 (Kuratowski’s theorem for 3-connected graphs). A 3-connected
graph G without any subgraph isomorphic to a subdivision of a forbidden graph admits
a convex embedding.

PROOF. We use induction on the number of vertices of G . The proposition is easily
checked by hand if G has four vertices. Otherwise, G has at least five vertices, and
by Lemma 2.2.2 we may choose an edge e = x y such that G ′ :=G //e is 3-connected.
Moreover, G ′ contains no subdivision of a forbidden graph. See Exercise 2.2.3. By
induction, G ′ has a convex embedding. Let z be the vertex of G ′ resulting from the
identification of x and y . Since G ′− z is 2-connected, we know by Proposition 2.1.4
that the face of G ′ − z that contains z is bounded by a cycle C of G . Let X = {u ∈
V (G ) | u x ∈ E (G )} and let Y = {u ∈V (G ) | u y ∈ E (G )}. We claim that X and Y are not
interleaved in C , i.e. |X ∩Y | ≤ 2 and we cannot find two vertices in X and two vertices
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Figure 2.3: Left, two vertices x1, x2 ∈ X and two vertices y1, y2 ∈ Y appear in an alternate
way along C . We infer the existence of a subdivision of K3,3 in G . Right, X and Y share
three vertices. We infer the existence of a subdivision of K5 in G .

in Y that alternate along C . Otherwise, G would contain a subdivision of a forbidden
graph as illustrated in Figure 2.3. We can obtain a convex embedding of G from the
convex embedding of G ′ as follows: place x at the position of z and insert y close to x
in the face of G ′−Ey incident to z and Y , where Ey := {z v | v ∈ Y }. We next connect
x and y with line segments to their respective neighbors in X and Y , and finally x
to y . The previous claim implies that the resulting straight line drawing of G is an
embedding. It can easily be made convex using the fact that small perturbations of
the vertices of a convex polygon leave the polygon convex.

The next lemma allows to extend the proposition to graphs that are not necessarily
3-connected and thus concludes the proof of Kuratowski’s theorem.

Lemma 2.2.5. Let G be a graph with at least four vertices, containing no subdivision of
K5 or K3,3 and such that the addition of any edge between non-adjacent vertices creates
such a subdivision. Then G is 3-connected.

PROOF. We argue by induction on the number n of vertices of G . Note that for n = 4
the lemma just says that K4 is 3-connected. Since removing an edge in K5 leaves a
3-connected planar graph, the lemma is also true for n = 5. We now assume n ≥ 6. We
claim that G is 2-connected. Otherwise, we could write G =G1 ∪G2 where G1 and G2

have a single common vertex x . Let yi ∈Gi , i = 1, 2, be adjacent to x . Adding the edge
y1 y2 creates a subdivision K of a forbidden graph. Since K5 and K3,3 are 3-connected
and since x and y1 y2 are the only connections between G1 and G2, the vertices of K of
degree≥ 3 must lie all in G1 or all in G2. Moreover, K must contain a path using both x
and the edge y1 y2. The subpath between x and the edge y1 y2 can be replaced by one
of the two edges x y1 or x y2 to produce another subdivision of the same forbidden
graph that does not use y1 y2, hence contained in G . This last contradiction proves the
claim.

Suppose that G has two vertices x , y such that G − {x , y } is not connected. We
claim that x y is an edge of G . Otherwise, we could write G =G1 ∪G2 where G1 and
G2 are connected and only have the vertices x , y in common. G ∪ x y must contain a
subdivision K of a forbidden graph. As above, the degree three vertices of K must all
lie in the same subgraph, say G1. We could then replace the edge x y in K with a path
connecting x and y in G2 to produce a subdivision of a forbidden graph contained in
G1. We again reach a contradiction.

We now assume for a contradiction that G is not 3-connected and we let x , y be
two vertices disconnecting G . By the previous claim, we may write G =G1 ∪G2 where
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G1 ∩G2 reduces to the edge x y . By the same type of arguments used in the above
claims we see that adding an edge to Gi (i = 1, 2) creates a subdivision of a forbidden
graph in the same Gi . We can thus apply the induction hypothesis and assume that
each Gi is 3-connected, or has at most three vertices. By Proposition 2.2.4, both graphs
are planar and we can choose a convex embedding for each of them. Let zi 6= x , y be
a vertex of a face Fi of Gi bounded by x y . Note that Fi must be equal to the triangle
zi x y . (Otherwise, we could add an edge to Gi inside Fi to obtain a larger planar graph.)
Adding the edge z1z2 to G creates a subdivision K of a forbidden graph. We shall show
that some planar modification of G1 or G2 contains a subdivision of a forbidden graph,
leading to a contradiction.

If all the vertices of K of degree ≥ 3 were in G1, we could replace the path of K in
G2 + z1z2 that uses z1z2 by one of the two edges z1 x or z1 y . We would get another
subdivision of the same forbidden graph in G1. Likewise, G2 cannot contain all the
vertices of K of degree ≥ 3. Furthermore, V (G1) \ {x , y } and V (G2) \ {x , y } cannot
both contain two vertices of degree ≥ 3 in K since there would be four independent
paths between them, although G1 and G2 are only connected through x , y and z1z2

in G + z1z2. For the same reason, K cannot be a subdivision of K5. Hence, K is a
subdivision of K3,3 and five of its degree three vertices are in the same Gi . Adding a
point p inside Fi and drawing the three line segments p x , p y , p zi we would obtain a
planar embedding of Gi + {p x , p y , p zi } that contains a subdivision of K3,3. This last
contradiction concludes the proof.

Corollary 2.2.6. Every triangulation of the sphere with at least four vertices is 3-connected.

PROOF. By Euler’s formula it is seen that such a triangulation has a maximal number
of edges. By the previous lemma, it must be 3-connected.

We end this section with a simple characterization of the faces of a 3-connected
planar graph. A cycle of a graph G is induced if it is induced by its vertices, or equiva-
lently if it has no chord in G . It is separating if the removal of its vertices disconnects
G . The set of boundary edges of a face of a plane embedding is called a facial cycle.

Proposition 2.2.7. The face boundaries of a 3-connected plane graph are its non-
separating induced cycles.

PROOF. Suppose that C is a non-separating induced cycle of a 3-connected plane
graph G . By the Jordan curve theorem R2 \C has two components. Since C is non-
separating one of the two components contains no vertices of G . This component is
not cut by an edge since C has no chord. It is thus a face of G .

Conversely, consider a face f of G . By Proposition 2.1.4 this face is bounded by
a cycle C . If C had a chord e = x y then by the 3-connectivity of G there would be a
path p connecting the two components of C −{x , y }. However, p and e being in the
same component ofR2 \C (other than f ), they would cross by an application of θ ’s
lemma 2.1.3. Finally, consider two vertices x , y of G −C . They are connected by three
independent paths. By θ ’s lemma f is included in one of the three components cut
by these paths and the boundary of this component is included in the corresponding
two paths. Hence, C avoids the third path. It follows that G −C is connected.
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This proposition says that a planar 3-connected graph has essentially a unique plane
embedding: if we realize the graph as a net of strings there are only two ways of dressing
the sphere with this net; they correspond to the two orientations of the sphere.

2.2.2 The Minor Version

A minor of a graph G is any graph obtained from a subgraph of G by contracting a
subset of its edges. In other words, a minor results from any sequence of contraction
of edges, deletion of edges or deletion of vertices (in any order). Equivalently, H is a
minor of G if the vertices of H can be put into correspondence with the trees of a forest
in G and if every edge of H corresponds to a pair of trees connected by a (non-tree)
edge (but all such pairs do not necessarily give rise to edges). Being a minor of another
graph defines a partial order on the set of graphs. This partial order is the object of the
famous graph minor theory developed by Robertson and Seymour and culminating in
the proof of Wagner’s conjecture that the minor relation is a well-quasi-order, i.e. that
every infinite sequence of graphs contains two graphs such that the first appearing
in the sequence is a minor of the other. As an easy consequence, every minor closed
family of graphs is characterized by a finite set of excluded minors. In other words, if
a family of graphs contains all the minors of its graphs, then a graph is in the family if
and only if none of its minors belongs to a certain finite set of graphs. The set of all
planar graphs is the archetypal instance of a minor closed family. Its set of excluded
minors happens to be precisely the two Kuratowski graphs.

Theorem 2.2.8 (Wagner, 1937). A graph G is planar if and only if none of K5 or K3,3 is
a minor of G .

Remark that if G contains a subdivision of H , then H is a minor of G , but the con-
verse is not true in general (think of a counter-example). We can nonetheless deduce
Wagner’s version from Kuratowski’s theorem: the condition in Wagner’s theorem is
obviously necessary by noting that a minor of a planar graph is planar and by Theo-
rem 2.1.7. The condition is also sufficient by the above remark and by Kuratowski’s
theorem. In fact, the equivalence between Wagner and Kuratowski’s theorems can be
shown by proving that a graph contains a subdivision of K5 or K3,3 if and only if K5 or
K3,3 is a minor of this graph [Die05, Sec. 4.4].

2.3 Other Planarity Characterizations

We give some other planarity criteria demonstrating the fascinating interplay between
Topology, Combinatorics and Algebra.

An algebraic cycle of a graph G is any subset of its edges that induces an Eulerian
subgraph, i.e. a subgraph of G with vertices of even degrees2. It is a simple exercise to
prove that any algebraic cycle can be decomposed into a set of (simple) cycles in the
usual acception. The set of (algebraic) cycles is given a group structure by defining the
sum of two cycles as the symmetric difference of their edge sets. It can be considered

2An Eulerian subgraph in this sense is not necessarily connected.
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as a vector space over the field Z/2Z and is called the cycle space, denoted by Z (G )
(the letter Z is short for the German word for cycle, Zyklus). The cycle space of a tree
is trivial. Also, the cycle space is the direct sum of the cycle spaces of the connected
components of G . Given a spanning tree of G , each non-tree edge gives rise to a cycle
by joining its endpoints by a path in the tree. It is not hard to prove that these cycles
form a basis of the cycle space. Hence, when G = (V , E ) is connected,

dim Z (G ) = 1− |V |+ |E | (2.1)

This number is sometimes called the cyclomatic number of G . A basis of the cycle
space is a 2-basis if every edge belongs to at most two cycles of the basis.

Theorem 2.3.1 (MacLane, 1936). A graph G is planar if and only if Z (G ) admits a
2-basis.

PROOF. It is not hard to prove that a graph that admits a 2-basis has a 2-basis
composed of simple cycles only. See Exercise 2.3.2. Such a 2-basis must be the union
of the 2-bases of the blocks in the block decomposition3 of G . Moreover, G is planar if
and only if its blocks are. We may thus assume that G has a single block, or equivalently
that G is 2-connected.

Suppose that G is planar and consider the set B of boundaries of its bounded
faces in a plane embedding. Every edge belongs to at most two such boundaries
by Proposition 2.1.4. Furthermore, by the same proposition and the Jordan curve
theorem, a simple cycle C of G is the sum of the boundaries of the faces included in
the bounded region of C . Thus B generates Z (G ). Using Euler’s formula, the number
of bounded faces of G appears to be precisely dim Z (G ). Hence, B is 2-basis.

For the reverse implication, suppose that G has a 2-basis. Note that it is equivalent
that any subdivision of G admits a 2-basis. Moreover, G − e has a 2-basis for any edge
e : if e appears in two elements of the 2-basis replace these two elements by their
sum, otherwise simply remove the basis element that contains e , if any. It follows
that any subdivision of a subgraph of G has a 2-basis. We claim that none of the
forbidden graphs can have a 2-basis, so that G is planar by Kuratowski’s theorem.
Indeed, assume the converse and let C1, . . . , Cd be a 2-basis of a forbidden graph. The
Ci ’s being linearly independent,

∑

i Ci is non-trivial hence contains at least 3 edges. It
follows that

∑

i |Ci | ≤ 2|E | −3. From formula (2.1) we compute dim Z (K3,3) = 4. Since
every cycle in a bipartite graph has length at least four, we have

∑

1≤i≤4 |Ci | ≥ 4 ·4= 16,
in contradiction with

∑

i |Ci | ≤ 2 · 9− 3 = 15. Similarly, we compute dim Z (K5) = 6,
whence

∑

1≤i≤6 |Ci | ≥ 6 ·3= 18, in contradiction with
∑

i |Ci | ≤ 2 ·10−3= 17.

Exercise 2.3.2. Show that a graph with a 2-basis admits a 2-basis whose elements are
simple cycles. (Hint: Any algebraic cycle is a sum of edge-disjoint simple cycles. Try to
minimize the total number of such simple cycles in the 2-basis.)

A cut in a graph G = (V , E ) is a partition of its vertices. A cut can be associated with
the subset of edges with one endpoint in each part. Just as for the cycle space, the set of

3The blocks of G are its subgraphs induced by the classes of the following equivalence relation on its
set of edges: e ∼ e ′ if there is a cycle in G that contains both e and e ′.
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cuts can be given a vector space structure overZ/2Z by defining the sum of two cuts as
the symmetric difference of the associated edge sets. Equivalently, we observe that the
sum of two cuts {V1, V2} and {W1, W2} is the cut {(V1∩W1)∪(V2∩W2), (V1∩W2)∪(V2∩W1)}.
Remark that the cut space is generated by the elementary cuts of the form {v, V − v },
for v ∈V . A cut is minimal if its edge set is not contained in the edge set of another
cut. In a connected graph minimal cuts correspond to partitions both parts of which
induce a connected subgraph. Such minimal cuts generate the cut space.

Given a plane graph G , we define its geometric dual G ∗ as the graph obtained
by placing a vertex inside each face of G and connecting two such vertices if their
faces share an edge in G . Note that distinct plane embeddings of a planar graph may
give rise to non-isomorphic duals. When the plane graph G is connected, its vertex,
edge and face sets are in 1-1 correspondence with the face, edge and vertex sets of
G ∗ respectively. Note that the geometric dual of a plane tree has a single vertex, so
that G ∗ may not be simple even if G is. It is not hard to prove that the set of edges of
a (simple) cycle of G corresponds to a minimal cut in G ∗. The converse is also true
since the dual of the dual is the original graph.

For non-planar graphs the above construction is meaningless and we define an
abstract notion of duality that applies in all cases. A graph G ∗ is an abstract dual of
a graph G if the respective edge sets can be put in 1-1 correspondence so that every
(simple) cycle in G corresponds to a minimal cut in G ∗.

Theorem 2.3.3 (Whitney, 1933). A graph is planar if and only if is has an abstract dual.

The theorem can be proved by mimicking the proof of MacLane’s theorem 2.3.1,
first showing that if a graph has an abstract dual so does its subgraphs and subdivisions.
We provide a shorter proof based on MacLane’s theorem.

PROOF. The theorem can be easily reduced to the case of connected graphs. By
the above discussion a geometric dual is an abstract dual, so that the condition is
necessary. For the reverse implication, suppose that a graph G has an abstract dual G ∗.
The cycle space of G is generated by its simple cycles, hence by the dual edge sets of
the minimal cuts of G ∗. Those cuts are themselves generated by the elementary cuts.
Clearly an edge appears in at most two elementary cuts (loop-edges do not appear in
any cuts). It follows that the cycle space of G has a 2-basis, and we may conclude with
MacLane’s theorem.

We list below some other well-known characterizations of planarity without proof.
A strict partial order on a set S is a transitive, antisymmetric and irreflexive binary

relation, usually denoted by <. Two distinct elements x , y ∈ S such that either x < y
or y < x are said comparable. A partial order is a linear, or total, order when all the
elements are pairwise comparable. The dimension of a partial order is the minimum
number of linear orders whose intersection (as binary relations) is the partial order.
The order complex of a graph G = (V , E ) is the partial order on the set S =V ∪E where
the only relations are v < e for v an endpoint of e .
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Theorem 2.3.4 (Schnyder, 1989). A graph is planar if and only if its order complex has
dimension at most 3.

See Mohar and Thomassen [MT01, p. 36] for more details. The contact graph of a
family of interior disjoint disks in the plane is the graph whose vertices are the disks in
the family and whose edges are the pairs of tangent disks.

Theorem 2.3.5 (Koebe-Andreev-Thurston). A graph is planar if and only if it is the
contact graph of a family of disks.

Section 2.8 in [MT01] is devoted to this theorem and its extensions. A 3-polytope
is an intersection of half-spaces in R3 which is bounded and has non-empty interior.
Its graph, or 1-skeleton, is the graph defined by its vertices and edges.

Theorem 2.3.6 (Steinitz, 1922). A 3-connected graph is planar if and only if it is the
graph of a 3-polytope.

A proof can be found in the monograph by Ziegler [Zie95, Chap. 4]. We end this
section with a nice and simple planarity criterion relying on a result by Hanani (1934)
stating that any drawing of K5 and of K3,3 has a pair of independent edges with an
odd number of crossings. (Recall that two edges are independent if they do not share
any endpoint.) In fact, we have the stronger property that the number of pairs of
independent edges crossing oddly is odd. This can be proved by first observing the
property on a straight line drawing of K5 (resp. K3,3) and then deforming any other
drawing to the given one using a sequence of elementary moves that preserve4 the
parity of the number of oddly crossing pairs of independent edges. Together with
Kuratowski’s theorem, this proves the following

Theorem 2.3.7 (Hanani-Tutte). A graph is planar if and only if it has a drawing in
which every pair of independent edges crosses evenly.

A weaker version of the theorem asks that every pair of edges, not necessarily
independent, should cross evenly. See Mustafa’s course notes for a geometric proof,
not relying on Kuratowski’s theorem.

2.4 Planarity Test

There is a long and fascinating story for the design of planarity tests, culminating with
the first optimal linear time algorithm by Hopcroft and Tarjan [HT74] in 1974. Patrig-
nani [Pat13] offers a nice and comprehensive survey on planarity testing. Although

4Those moves are of five types: (i) two edges locally (un)crossing and creating or canceling a bigon,
(ii) an edge locally (un)crossing and creating or canceling a monogon, (iii) an edge passing over a
crossing, (iv) an edge passing over a vertex, and (v) two consecutive edges around a vertex swapping
their circular order. The three first moves are analogous to the Reidemeister moves performed on knot
diagrams. (i),(ii), (iii) and (v) clearly preserve the number of oddly crossing pairs of independent edges.
For (iv) we use the fact that for every vertex and every edge of K5 or K3,3 the edge is independent with
an even number of the edges incident to the vertex.

http://monge.univ-mlv.fr/~goaoc/lec1.pdf
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most of the linear time algorithms have actual implementations, they are rather com-
plex and we only describe a simpler non optimal algorithm based on works of de
Fraissex and Rosensthiel [dFR85, Bra09]. We first recall that the block decomposition
decomposes a connected graph into 2-connected subgraphs connected by trees in a
tree structure. Hence, a graph is planar if and only if its blocks are planar. We can thus
restrict the planarity test to 2-connected graphs. Note that the block decomposition
of a graph can be computed in linear time using depth-first search. (See West [Wes01,
p. 157].)

root

e1

e2

b1

b2

a. b.

v

t1

t2

t3

b3

Figure 2.4: a. A graph (in blue) and a DFS tree in black. b. v is the branching point of a
fork, b1 and b2 are two return edges for e1, b3 is a return edge for e2 and the lowpoint
of e1 is t2. The back edges b1 and b2 are left and the back edge b3 is right.

Also recall that a depth-first search in a graph discovers its vertices from a root
vertex by following edges that form a spanning tree called a depth-first search tree.
We say that a vertex v1 of that tree is higher than another vertex v2 if v1 is a descendent
of v2. The non-tree edges are called back edges. A back edge always connects a vertex
to one that is lower in the depth-first search tree. The depth-first search induces
an orientation of the tree edges directed from the root toward the leaves of the tree.
The back edges are then directed from their highest toward their lowest vertex. Each
back edge b defines an oriented fundamental cycle, C (b ), obtained by connecting its
endpoints with the unique tree path between its target and source points. We write
u v for an edge directed from u to v . Two fundamental cycles may only intersect along
a tree path, in which case the last edge u v along this path together with the outgoing
edges v w1 and v w2 along the two cycles is called a fork with branching point v . A
back edge v w is a return edge for itself and for every tree edge x y such that w is lower
than x , and v is either higher than y or equal to5 y . The return points of an edge are
the targets of its return edges. The lowpoint of the edge is its lowest return point, if
any, or its source if none exists. The lowpoint of a back edge is thus its target point.
We refer to Figure 2.4 for an illustration of all these concepts.

The idea of the planarity test is as follows. Suppose that a graph G has a plane
embedding and consider a depth-first search tree of G . Without loss of generality,

5a vertex is neither higher nor lower than itself!
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we may assume that the root is adjacent to the outer face of the plane embedding.
The induced orientation of each fundamental cycle may appear clockwise or counter-
clockwise with respect to the embedding of G . A back edge is said right (with respect
to the embedding) if its fundamental cycle is oriented clockwise, and left otherwise.
Consider a fork with outgoing edges e1, e2. They must have return edges since the
graph is 2-connected. Then we have the following necessary conditions:

Fork condition:

1. All return edges of e1 whose lowpoints are higher than the lowpoint of e2 have
fundamental cycles oriented the same way and

2. all return edges of e2 whose lowpoints are higher than the lowpoint of e1 have
fundamental cycles oriented the other way.

e1

e2

b2

root

a.

e2 e1

b1

root

b.

e1

e2

b2

root

d.

e1 e2

b2

root

c.

b

Figure 2.5: a. and c. The two cases occurring in the fork condition. b. a forbidden case.
d. in this case, one chooses e2 ≺ e1.

Lemma 2.4.1. In a plane embedding, the orientations of the return edges satisfy the
fork condition.

PROOF. Let us denote by bi the return edge having the same lowpoint as ei . Then
either the disks bounded by C (b1) and C (b2) have disjoint interior, or one is included
in the other:

• In the latter case, swapping the indices 1 and 2 if necessary, we may assume
that e1 is inside C (b2). This is pictured in Figure 2.5a. Then any return edge of e1

must also be inside the disk bounded by C (b2), and thus be oriented as b2. In
particular, b1 is oriented as b2 and e2 is outside C (b1). It follows that any return
edge of e2 must lie outside C (b1). Furthermore, a return edge b from e2 having
lowpoint higher than the one of b1 must also lie outside C (b2), since otherwise
C (b ) could not join its lowpoint without crossing C (b1). Now, the cycle C (b )
cannot contain the root in its interior as on Figure 2.5b, since the root is on the
outer face. We infer that b is oriented oppositely to b2. The fork condition is
thus satisfied.
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• In the former case, any return edge b of e1 must lie outside C (b2). See Figure 2.5c.
If the lowpoint of b is higher than that of b2, then b must be oriented oppositely
to b2, since C (b ) cannot contain the root in its interior. The mirror argument
shows that a return edge from e2 whose lowpoint is higher than the lowpoint of
b1 must be oriented oppositely to b1. We again conclude that the fork condition
is satisfied.

An LR partition is a left-right assignment of the back edges such that the induced
orientations of the fundamental cycles satisfy the fork condition for all the possible
forks. The above lemma shows that a planar graph has an LR partition deduced from
any particular plane embedding. As the following theorem shows, the existence of an
LR partition happens to be sufficient for attesting planarity!

Theorem 2.4.2 (de Fraysseix and Rosenstiehl, 1985). A connected graph G is planar if
and only if it admits an LR partition with respect to some (and thus any) depth-first
search tree.

PROOF (SKETCH). Essentially, the proof starts by constructing a combinatorial em-
bedding of G from the LR partition, i.e. a circular ordering of the edges around each
vertex, then checking that this combinatorial embedding can indeed be realized in
the plane without introducing crossings. Note that the fork conditions cannot involve
back edges in different blocks in the block decomposition of G , so that we can assume
G to be 2-connected by the above discussion. For each vertex v we define a total
ordering ≺ on its outgoing edges as follows. If v is the root, it can have only a single
outgoing edge by the 2-connectivity of G and there is nothing to do. Otherwise, v has
a unique incoming tree edge e and the total ordering will correspond to the circular
clockwise ordering around v broken at e into a linear ordering. Let e1, e2 be two edges
going out of v , and for i = 1, 2, let bi be equal to ei if ei is a return edge, or a return edge
of ei with the lowest return point (there might be several ones) among its return edges.
We need to decide if e1 ≺ e2 or the opposite. The idea is that in any plane drawing of
the graph, the ordering of e1 and e2 is enforced by the LR-assigment of b1 and b2.

• If b1 is a left back edge while b2 is a right back edge, then we declare e1 ≺ e2 since
it must be the case in any plane drawing of G that respects the LR assignment
(as in Figure 2.5c).

• If b1 and b2 are both right back edges we let e2 ≺ e1 if either the lowpoint of b2 is
lower than the lowpoint b1 (as in Figure 2.5a), or if e1 has another right return
edge towards another return point (as in Figure 2.5d). By the fork condition, it is
impossible for both e1 and e2 to have another right return edge towards another
return point, so this is well-defined.

• If b1 and b2 are both left back edges, the previous situation leads to the opposite
decision.

• If none of this applies, we order them arbitrarily.
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There remains to include the incoming return edges in this ordering. Let e1 ≺ e2 ≺
· · · ≺ e` be the resulting ordering of the edges going out of v . We denote by L (ei ) and
R (ei ) the left and right incoming back edges whose source points are in the subtree
rooted at the target of ei , or equivalently whose fundamental cycles contain ei . We
order the elements of L (ei ) as follows: we let b1 ≺ b2 if and only if the fork of their
cycles C (b1) and C (b2) has outgoing edges a2 ≺ a1. An analogous ordering is defined
for R (ei ). We finally concatenate all those orderings as follows, the rationale is pictured
in Figure 2.6:

L (e1)≺ e1 ≺R (e1)≺ L (e2)≺ e2 ≺ · · · ≺ L (e`)≺ e` ≺R (e`)

e1

e2L (e1)

R (e1)

L (e2)

R (e2)

Figure 2.6: Ordering the incoming return edges.

For the root vertex we define the ordering L (e )≺ e ≺ R (e )where e is the unique
outgoing edge of the root and L (e ), R (e ) and their ordering are defined similarly as
above. It remains to prove that the computed orderings define a planar combinatorial
embedding. To this end, we first embed the depth-first search tree into the plane
by respecting the computed orderings. This is obviously always possible. We then
insert a small initial and final piece for each back edge in its place while respecting
the circular orderings and without introducing crossings. Consider a simple closed
curve C that goes along the embedding of the depth-first search tree, staying close to it.
Each inserted back edge piece intersects C in a single point. Those points are paired
according to the back edge to which they belong. We claim that the constructed order-
ings are such that the list of intersections along C is a well parenthesized expression.
To see this we just need to prove that any two pairs of points appear in the good order
(not interlaced) along C . There are two cases to consider: the pair corresponds to back
edges, say b1, b2, that are either on the same side, or on opposite sides. Suppose for
instance that b1 and b2 are both right edges. If they have the same lowpoint then the
constructed orderings implies that their initial and final pieces indeed appear in the
good order along C . Similar arguments hold for the other cases. It follows from the
claim that we can connect all the paired pieces without introducing crossings, thus
proving that G has a plane embedding.

In order to test if G has an LR partition we can first compute a constraint graph
whose nodes are the back edges and whose links are 2-colored constraints: the blue
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links connect nodes that must be on the same side and the red links connect nodes
that must lie on opposite sides. All the links are obtained from the fork conditions.
This graph can easily be constructed in quadratic time with respect to the number of
edges of G . It remains to contract the blue links and check if the resulting constraint
graph is bipartite to decide if G has an LR partition or not. This can clearly be done in
quadratic time.

2.5 Drawing with Straight Lines

Proposition 2.2.4 together with Lemma 2.2.5 show that every planar graph has a straight
line embedding. One of the oldest proof of existence of straight line embeddings is
credited to Fáry [Fár48] (or Wagner, 1936) and does not rely on Kuratowski’s theorem.
By adding edges if necessary we can assume given a maximally planar graph G , so
that adding any other edge yields a non-planar graph. Every embedding of G is thus a
triangulation, since otherwise we could add more edges without breaking the planarity.
We show by induction on the number of vertices that any (topological) embedding of
G can be realized with straight lines. Choose one embedding. By Euler’s formula, G
has a vertex v of degree at most 5 that is not a vertex of the unbounded face (triangle)
of the embedding. Consider the plane triangulation H obtained from that of G by first
deleting v and then adding edges (at most two) to triangulate the face of G − v that
contains v in its interior. By the induction hypothesis, H can be realized with straight
lines. We now remove the at most two edges that were added and embed v in the
resulting face. Since the face is composed of at most 5 edges, it must be star-shaped
and we can put v in its center to join it with line segments to the vertices of the face.
We obtain this way a straight line embedding of G .

There is another proof of Proposition 2.2.4 due to Tutte [Tut63] that actually pro-
vides an algorithm to explicitly compute a convex embedding of any 3-connected
planar graph G = (V , E ). The algorithm can be interpreted by a physical spring-mass
system. Consider a facial cycle C of G (recall that those are determined by Proposi-
tion 2.2.7) and nail its vertices in some strictly convex positions onto a plane. Connect
every other vertex of G , considered as a punctual mass, to its neighbors by means
of springs. Now, relax the system until it reaches the equilibrium. The final position
provides a convex embedding! The system equilibrium corresponds to a state with
minimal kinetic energy. By differentiating this energy one easily gets a linear system of
equations where each internal vertex in VI :=V \V (C ) is expressed as the barycenter
of its neighbors. The barycentric coefficients are the stiffnesses of the springs. In
practice, we associate with every edge e in E \E (C ) a positive weight (stiffness) λe . In
fact, if u and v are neighbor vertices it is not necessary that λu v =λv u . One may use
“oriented” stiffness. Formally, we have

Theorem 2.5.1 (Tutte, 1963). Every strictly convex embedding of the vertices of C ex-
tends to a unique map τ : V →R2 such that for every internal vertex v , its image τ(v )
is the convex combination of the image of its neighbors N (v ) with weights λv w , for
w ∈N (v ):

∀v ∈VI ,
∑

w∈N (v )

λv w (τ(v )−τ(w )) = 0. (2.2)
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Moreover, τ induces a convex embedding of G by connecting the images of every pair of
neighbor vertices with line segments.

For conciseness, we number the vertices in VI from 1 to k and the vertices of C
from k +1 to n (hence, k = |VI | and n = |V |). We also write λi j for the weight of edge i j
and denote by N (i ) the set of neighbors of vertex i . We finally put λi j = 0 for j 6∈N (i ).
We follow the proof from [RG96] and from the course notes of Éric Colin de Verdière
http://www.di.ens.fr/~colin/cours/all-algo-embedded-graphs.pdf.

Lemma 2.5.2. If G is connected, the system (2.2) has a unique solution.

PROOF. (2.2) can be written

Λ





τ1
...
τk



=





∑

j>k λ1 jτ j
...

∑

j>k λk jτ j





where τi stands for τ(i ) and

Λ=











∑n
j=1λ1 j −λ12 . . . −λ1k

−λ21

∑n
j=1λ2 j . . . −λ2k

...
...

...
−λk 1 −λk 2 . . .

∑n
j=1λk j











We need to prove that Λ is invertible. Let x ∈Rk such that Λx = 0 and let xi be one
of its components with maximal absolute value. We set xk+1 = xk+2 = . . . = xn = 0.
Since (Λx )i =

∑

j∈N (i )λi j (xi − x j ) = 0 and λi j > 0 for j ∈N (i ) we infer that x j = xi for
j ∈N (i ). By the connectivity of G , all the x j , j = 1, . . . , n , are null. We conclude that Λ
is non-singular.

In the sequel, we refer to τ as Tutte’s embedding. We also assume once and for all
that G is 3-connected.

Remark 2.5.3. Since the weights are positive the Tutte embedding of every internal
vertex is in the relative interior of the convex hull of its neighbors. In particular, this
remains true for the projection of the vertex and its neighbors on any affine line.

We shall derive a maximal principal from this simple remark. Let K be a cycle of
G . By Proposition 2.2.7, G has a unique embedding on the sphere (up to change of
orientation) and its faces can be partitioned into two families corresponding to the
two connected components of the complement of K . The vertices of G −K incident
to a face in the part that does not contain C are said interior to K .

Lemma 2.5.4 (Maximum principle). Let h be a non-constant affine form overR2 such
that the Tutte embedding of K is included in the half-plane {h ≤ 0} and such that at
most two vertices of K are on the line {h = 0}. Then each vertex v interior to K satisfies
h (τ(v ))< 0.

http://www.di.ens.fr/~colin/cours/all-algo-embedded-graphs.pdf
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PROOF. Consider a vertex v interior to K that maximizes h and suppose for a
contradiction that h (τ(v )) ≥ 0. Let H be the subgraph of G induced by the vertices
interior to K and let Hv be the component of v in H . By the above Remark 2.5.3,
all the neighbors w ∈ N (v ), which are either interior to K or on K , must satisfy
h (τ(w )) = h (τ(v )). Hence, the Tutte embedding of Hv is included in {h ≥ 0}. Since G
is 3-connected, Hv must be attached to K by at least three vertices. These attachment
vertices are embedded in {h ≤ 0} and at least one of them, call it u , is embedded in
{h < 0} since at most two are on {h = 0}. Remark 2.5.3 applied to any vertex of Hv

adjacent to u then leads to a contradiction.

Corollary 2.5.5. The Tutte embedding of every internal vertex lies in the interior of the
convex hull of the given strictly convex embedding of C .

PROOF. By the maximum principle, every half-plane that contains C contains the
interior vertices in its interior.

Let h be a nonzero linear form over R2. A vertex of G whose Tutte’s embedding is
aligned with the Tutte embedding of its neighbors in the direction of the kernel of h is
said h-passive, and h-active otherwise.

Lemma 2.5.6. Let h be a non-trivial linear form and let v be an h-active interior vertex.
G contains two paths U (v, h ) and D (v, h ) such that

1. U (v, h ) := v0, v1, . . . vb joins v = v0 to a vertex vb of C and h is strictly increasing
along U (v, h ), i.e. h (τ(v j+1))> h (τ(v j )) for 1≤ j < b .

2. D (s , h ) joins v to a vertex of C and h is strictly decreasing along D (s , h ).

PROOF. Since v is h-active, Remark 2.5.3 implies the existence of some neighbor
w with h (τ(w )) > h (τ(v )). If this neighbor is on C then we may set U (v, h ) = v w .
Otherwise, w is itself h-active and we can repeat the process until we reach a vertex of
C , thus defining the path U (v, h ). An analogous construction holds for the downward
path D (s , h ).

Lemma 2.5.7. For every non-trivial linear form h, all the interior vertices are h-active.

PROOF. By way of contradiction, suppose that some interior vertex v is h-passive.
By Lemma 2.5.5, some vertex w of C satisfies h (τ(w ))> h (τ(v )). Since G is 3-connected,
we can choose three independent paths P1, P2, P3 from v to w . For i = 1,2,3, let Qi

be the initial segment of Pi from v to the first h-active vertex wi along Pi . Remark
that Qi has at least one edge and that it is contained in the line {h = h (τ(v ))}. By
Lemma 2.5.6, we can choose two paths U (wi , h ) and D (wi , h ) from wi to vertices on
C . By the preceding remark, the three paths Qi , U (wi , h ) and D (wi , h ) are pairwise dis-
joint except at wi . Using that Q1,Q2,Q3 only share their initial vertex v , it is easily seen
that C ∪i=1,2,3 (Qi ∪P (wi , h )∪D (wi , h )) contains a subdivision of K3,3, in contradiction
with Kuratowski’s theorem.
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Recall that G is supposed to have a plane embedding with facial cycle C . Using the
stereographic projection if necessary, we may assume that C is the facial cycle of the
unbounded face. We temporarily assume that all facial cycles of G , except possibly C ,
are triangles.

Lemma 2.5.8. Let u v x and u v y be the two facial triangles incident to an edge u v of
G not in C , then τ(x ) and τ(y ) are on either sides of any line through τ(u ) and τ(v ).

PROOF. Note that we do not assumeτ(v ) 6=τ(u ) in the lemma. Let h be a linear form
whose kernel has the direction of a line ` through τ(u ) and τ(v ). By Lemma 2.5.6, there
are two paths U (u , h ) and U (v, h ) embedded strictly above ` connecting respectively
u and v to C . We can extract from {u v }∪U (u , h )∪U (v, h ) a cycle K above `with only
u and v on `. By the maximum principle, all the vertices interior to K are embedded
strictly above `. One of the faces u v x and u v y must be contained in the interior of
K , so that either τ(x ) or τ(y ) is strictly above `. An analogous argument using D (u , h )
and D (v, h ) shows that one of τ(x ) or τ(y ) is strictly below `.

Corollary 2.5.9. All facial triangles u v w are non-degenerate, i.e. τ(u ),τ(v ) and τ(w )
are pairwise distinct.

PROOF. By Corollary 2.5.5 all the triangles with an edge in C are non-degenerate.
By Lemma 2.5.8 all their adjacent triangles are themselves non-degenerate and by
connectivity of the dual graph, all the triangles are non-degenerate.

Corollary 2.5.10. If all the facial triangles other than C are triangles the Tutte embed-
ding indeed induces a straight line embedding of G .

PROOF. Since all the facial triangles are non-degenerate, it is enough to prove that
their embeddings have pairwise disjoint interiors. Let p be a point contained in the
interior of the embedding of some triangle t . Consider a ray r issued from p that
avoids all the embeddings τ(V ) of the vertices of G . This half-line crosses some edge
e0 of t0 := t . By Lemma 2.5.9 the other triangle t1 incident to e0 crosses r on the other
side of t0, away from p . In turn, r crosses another edge e1 of t1 and we define t2 as the
other incident triangle. This way we define a sequence of interior disjoint triangles
t0, t1, . . . , ti and edges e0, e1, . . . , ei all crossed by r , each time further away from p until
we hit C , i.e. ei belongs to C . Remark that ti only depends on r as it is the unique
triangle incident to the intersection of r and C . Let t ′ be another triangle that contains
p in its interior. It gives rise to another sequence t ′0 = t ′, t ′1, . . . , t ′j of triangles crossed
by r . By the preceding remark, ti = t j . Since the preceding triangles are defined
unambiguously, we conclude that the two sequences are equal. In particular t = t ′.

PROOF OF TUTTE’S THEOREM. This last corollary concludes the proof of Tutte’s the-
orem 2.5.1 when all facial cycles other than C are triangles. When this is not the case,
we can triangulate the faces other than C , adding m −3 edges in each face of length
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m to obtain a planar graph G ′ with the above property. It is possible to put weights on
the edges of G ′, including those of G , so that the solution for system (2.2) written for
G ′ is the same as for the initial system for G . This is a consequence of Remark 2.5.3
and of the next exercise. By Corollary 2.5.10, Tutte’s embedding provides a straight line
embedding of G ′. Removing the extra edges, we obtain a straight line embedding of G .
It remains to observe that each face of this embedding is convex since by Lemma 2.5.7
and Remark 2.5.3, the angle at every vertex of a face is smaller than π.

Exercise 2.5.11. Let p be a point interior to the convex hull of a finite point set P . Show
that p is a convex combination of the points of P with strictly positive coefficients
only. (Hint: the convex hull of P ∪{p} is star-shaped with respect to p .)

One may wonder whether the barycentric method of Tutte could be extended in three
dimensions in order to embed a triangulated 3-ball given a convex embedding of
its boundary. However, É. Colin de Verdiére et al. gave counterexamples to such
an extension showing that expressing each interior vertex as the barycenter of its
neighbors does not always yield an embedding [CdVPV03].
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3.1 Surfaces

3.1.1 Surfaces and cellularly embedded graphs

A surface is a Hausdorff and second countable topological space that is locally homeo-
morphic to the plane : that means that every point has a neighborhood homeomorphic
to R2. Recall that a space is Hausdorff if every pair of distinct points have disjoint
neighborhood and is second countable if it admits a countable base of open sets.
In this course, we will only deal with compact surfaces, and will generally consider
surfaces up to homeomorphism, which is why we say “the sphere” instead of “a sphere”.

32
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Figure 3.1: The sphere, the torus and the Klein bottle.

Examples of surfaces include the sphere S2, the torus T2, or the Klein BottleK2,
see Figure 3.1. Note that so far, we have not proved that they are different. We em-
phasize that surfaces are defined intrinsically, i.e., they do not have to be embedded
inR3. For example, the Klein bottle cannot be embedded inR3: as in Figure 3.1, any
representation of it in the usual space induces self-crossings. But this does not prevent
it from being a surface : it is behaved locally like the plane which is all that matters
here.

Exercise 3.1.1. Consider two copies of the sphere and identify all the corresponding
points in the two copies, except for the North pole N . Formally, the resulting space
is S2×{0,1}/∼, where (s ,0)∼ (s ,1) for all s ∈ S2 \ {N }. Show that this space is locally
homeomorphic to the plane but that it is not Hausdorff.

Exercise 3.1.2. Show that the plane is second countable. Deduce that a compact space
locally homeomorphic to the plane is second countable.

Following our approach outlined in the panorama, we will study surfaces by decom-
posing them into fundamental pieces, which can be seen as the faces of an embedded
graph. Analogously to the planar case, an embedding of a graph G into a topological
surface Σ is an image of G in Σwhere the vertices correspond to distinct points and
the edges correspond to simple arcs connecting the image of their endpoints, such
that the interior of each arc avoids other vertices and arcs. We first remark that G can
always be embedded in some surface. To see this, we can make a drawing of G in
the plane and introduce a small handle at every edge intersection as on Figure 3.2 to
obtain an embedding.

Figure 3.2: A plane drawing of K3,3 with a crossing and an embedding in a genus 1
surface.

The faces of an embedding are the connected components of S \G . A graph is
cellularly embedded on S if it is embedded and all its faces are homeomorphic to
a disk, see Figure 3.3. Thus, describing a cellularly embedded graph amounts to
describing a combinatorial way to obtain a surface, by gluing disks together, and one
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Figure 3.3: The complement of the graph in the surface is a disjoint union of open
discs.

can classify surfaces by studying the various possibilities. The following theorem
shows that this approach loses no generality:

Theorem 3.1.3 (Kerékjártó-Radó). On any compact surface, there exists a cellularly
embedded graph.

Since disks can be triangulated, this is equivalent to saying that any compact
surface can be triangulated, which is the way this theorem is generally stated in the
literature.

PROOF. (Sketch) The result is obvious when the surface, call it S , is a sphere, so we
assume this is not the case. Since S is compact and locally planar, it can be covered by
a finite number of closed disks Di , and up to the removal of the superfluous ones, we
can assume that no disk lies in the union of any others. Then, if these disks intersect
nicely enough (for example if two different boundaries ∂ D and ∂ D ′ intersect in a
finite number of points), one obtains a finite number of components in S \∪∂ Di . One
can easily show that each of these is a disk (because S is not a sphere!), and therefore
one obtains a cellular graph by taking as vertices the intersection points, and as edges
the arcs of circles.

So it suffices to show that one can assume that the disks intersect nicely. This can
be done by repeated applications of the Jordan-Schoenflies Theorem, but it requires
significant work. We refer to Thomassen [Tho92] or Doyle and Moran [DM68] for more
details.

Remark: The issue in this (non-)proof due to a possible infinite number of con-
nected components might look like a mere technicality which one can obviously fix.
However, we argue that there is a real difficulty lurking there, because the higher
dimensional theorem is false: there exists a 4-manifold (A topological space locally
homeomorphic toR4 that can not be triangulated1, see for example Freedman [Fre82].

As in the planar case, a triangulation is a cellular embedding of a graph where all
the faces have degree 3. A subdivision of a (triangular) face F is obtained by adding a
vertex v inside the face, and adding edges between the new vertex v and all the vertices
on F , or by adding a vertex w in the middle of an edge and adding edges between w

1On a first approximation, it means that it can not be built from a finite number of balls. More
formally, it can not be realized as a simplicial complex, which we will introduce later on in the course.
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and the non-adjacent vertices in the at most two incident faces. A triangulation is a
refinement of another triangulation if it is obtained by repeated subdivisions. The
same techniques can also be used to prove the following theorem:

Theorem 3.1.4 (Hauptvermutung in 2 dimensions). Any two triangulations on a given
surface have a common refinement.

We refer to Moise [Moi77] for a proof. As the name indicates (“main hypothesis”
in German ), this was widely believed to be true in any dimension, but once again
counterexamples were found in dimensions 4 or higher (see for example [RCS+97]).

3.1.2 Polygonal schemata

a

b

b

c c a

d

d

a a
c c

b d

d

ba c

Figure 3.4: From the polygonal scheme {a b c b̄ , c̄ d ā d̄ } to a cellular embedding.

In order to classify surfaces, we introduce polygonal schemata, which are a way of
encoding the combinatorial data of a cellularly embedded graph : it describes a finite
number of polygons with oriented sides identified in pairs. We will see later on, in
Section 3.2, other avatars of this combinatorial description of a cellularly embedded
graph.

Formally, let S be a finite set of symbols, and denote by S̄ = {s̄ | s ∈ S}. Then a
polygonal scheme is a finite set R of relations, each relation being a non-empty word
in the alphabet S ∪ S̄ , so that for every s ∈ S , the total number of occurences of s or s̄
in R is exactly two.

Starting from a cellularly embedded graph it induces a polygonal scheme in the
following way: we first name the edges and orient them arbitrarily. Then for every
face, we follow the cyclic list of edges around that face, with a bar if and only if an
edge appears in the wrong direction. Every face gives us a relation of R and since
every edge is adjacent to exactly two faces, possibly the same, we obtain a polygonal
scheme. Conversely, starting from a polygonal scheme, for each relation of size n we
build a polygon with n sides, and label its sides following the relation (with the bar
indicating the orientation). Then, once all the polygons are built, we can identify the
edges labelled with the same label taking the orientations into account. See Figure 3.4.

Exercise 3.1.5. The topological space obtained this way is a compact surface.

Thus, polygonal schemes and cellularly embedded graphs are two facets of the
same object. Furthermore, by Theorem 3.1.3, every surface has a cellularly embedded
graph, and thus can be obtained by some polygonal scheme. We leverage on this to
classify surfaces.
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3.1.3 Classification of surfaces

Theorem 3.1.6. Every compact connected surface is homeomorphic to a surface given
by one of the following polygonal schemata, each made of a single relation:

1. a ā (the sphere),

2. a1b1ā1b̄1 . . . ag bg āg bg for some g ≥ 1,

3. a1a1 . . . ag ag for some g ≥ 1.

Figure 3.5: The orientable surface of genus 3 and the non-orientable surface of genus
3.

In the second case, the surface is said to be orientable, while in the third case it is
non-orientable. The integer g is called the genus of the surface (by convention g = 0
for the sphere). In the orientable case, the genus quantifies the number of holes of a
surface : an orientable surface of genus g can be built by adding g handles to a sphere.
A non-orientable surface of genus g can be built by cutting out g disks of a sphere and
gluing g Möbius bands along their boundaries. See Figure 3.5.

PROOF. We follow the exposition of Stillwell [Sti93]. Let S be a compact connected
surface, and let G be a graph cellularly embedded on S , which exists by Theorem 3.1.3.
Whenever an edge of G is adjacent to two different faces, we remove it. Whenever an
edge of G is adjacent to two different vertices, we contract2 it. When this is done, we
obtain a cellularly embedded graph G ′ with a single face and a single vertex. If there
are no more edges, then by uncontracting the single vertex into two vertices linked by
an edge, we are in case 1 of the theorem and the surface is a sphere. Therefore we can
now assume that there is at least one edge.

The graph G ′ induces a polygonal scheme consisting of a single relation. We will
show that this relation can be transformed into either case 2 or case 3 of the theorem
without changing the homeomorphism class of S .

2The contraction is not meant in the graph-theoretical sense introduced in the earlier chapter : it
might result in loops and multiples edges, which we keep.
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Figure 3.6: From a P aQ to b b PQ̄ .

a a

b

b

aa c

b

b

aa

c

c

a a

c

c

a

d
d

c

c

d

P Q

RS

P Q

RS

P

S R
Q

S

P

R

Q
P SRQ

Figure 3.7: From a P bQ ā R b̄ S to c d c̄ d̄ P SRQ .

• If the polygonal scheme has the form a P aQ where P and Q are possibly empty
words, then we can transform it into b b PQ̄ by adding a new edge and removing
a , see Figure 3.6. Inductively, we conclude that each pair of symbols with the
same orientation appears consecutively in the polygonal scheme.

• If the polygonal scheme has the form aU ā V , then U and V must share an
edge b since otherwise G ′ would have more than one vertex. By the preceding
step, b must appear in opposite orientations in U and V , so we have the form
aU ā V = a P bQ ā R b̄ S . This can be transformed into d c d̄ c̄ P SRQ , as pictured
in Figure 3.7. Inductively, at the end of this step the relation is a concatenation
of blocks of the form a a or a b ā b̄ . If all the blocks are of one of these types, we
are in case 2 or 3 and we are done.

• Otherwise, the relation has a subword of the form a a b c b̄ c̄ . This can be trans-
formed into d̄ c̄ b̄ d̄ b̄ c̄ , and then using the first step again this can be transformed
into e e f f g g . Inductively, we obtain a relation of the form 3.

This concludes the proof.
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Figure 3.8: From a a b c b̄ c̄ to d̄ c̄ b̄ d̄ b̄ c̄ .

Let G be a graph cellularly embedded on a compact surface. The Euler character-
istic of this embedding equals v − e + f , where v is the number of vertices, e is the
number of edges and f is the number of faces of the embedded graph.

Lemma 3.1.7. The Euler characteristic of a graph G cellularly embedded on a surface
S only depends on the surface S.

PROOF. Let G and G ′ be two cellular embeddings on the same surface S . Since
triangulating faces does not change the Euler characteristic, one can suppose that
they are triangulated. By Theorem 3.1.4, they have a common refinement. Since
subdividing faces does not change the Euler characteristic, this proves the Lemma.

The Euler characteristic of the surfaces in Theorem 3.1.6 are readily computed
from their polygonal schemes: for the sphere we obtain two, for the orientable surfaces
2−2g and for the non-orientables ones 2−g . Therefore the orientable surfaces are all
pairwise non-homeomorphic, as are the non-orientable ones. Can orientable surfaces
be homeomorphic to non-orientable ones?

Lemma 3.1.8. A surface S is orientable if and only if it has a cellularly embedded graph
G such that the boundary of its faces can be oriented so that each edge gets two opposite
orientations by its incident faces.

PROOF. If the surface S is orientable, then it can be obtained by a polygonal scheme
of type 2, for which the boundaries of the faces can be oriented as the lemma requires.
If the surface is non-orientable, then any cellularly embedded graph G has a common
refinement with one having a polygonal scheme of type 3. Observing that such a graph
can not be oriented as the lemma requires, and that this property is maintained when
refining, this proves the lemma.

Corollary 3.1.9. Orientable surfaces are not homeomorphic to non-orientable ones.

Therefore, we have established that all the surfaces in Theorem 3.1.6 are pairwise
non-homeomorphic. Conversely, any pair of connected surfaces with the same ori-
entability (as defined by Lemma 3.1.8) and Euler characteristic are homeomorphic.
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Remark: This classification of surfaces can be extended to the setting of surfaces
with boundary: a surface with boundary is a topological space where every point is
locally homeomorphic to either the plane or the closed half-plane. The boundary of
such a surface is the set of points that have no neighborhood homeomorphic to the
plane. One can show that up to homoemorphism, in line with the above classification,
surfaces with boundaries are classified by their genus, their orientability and the
number of boundaries (i.e., connected components of the boundary). One way to
obtain this is on the one hand to observe that the number of boundaries is a topological
invariant, and on the other hand that by gluing disks on the boundaries of a surface with
boundary, one obtains a surface without boundary, for which the usual classification
applies. The Euler characteristic of the orientable, respectively non-orientable surface
of genus g with b boundaries is 2−2g − b , respectively 2− g − b .

3.2 Maps

To make things simpler we shall restrict ourselves from now on to orientable surfaces.
Up to homeomorphism, a cellular embedding of a graph can be described by the graph
itself together with the circular ordering of the edges incident to each vertex. These are
purely combinatorial data referred to as a rotation system, a cellular embedding (of
a graph), a combinatorial surface, a combinatorial map, or just a map. The theory
of combinatorial maps was developed from the early 1970’s, but can be traced back
to works of Heffter [Hef91, Hef98] and Edmonds [Edm60] for the combinatorial de-
scription of a graph embedded on a surface. The notion of combinatorial map relies
on oriented edges rather than just edges. An oriented edge is also called an arc or a
half-edge. Formally, a combinatorial map is a triple (A,ρ, ι)where

• A is a set of arcs,

• ρ : A→ A is a permutation of A,

• ι : A→ A is a fixed point free involution.

This data allows to recover the embedded graph easily: its vertices correspond to the
orbits, or cycles (of the cyclic decomposition), of ρ and its edges correspond to the
orbits of ι (so that a and ι(a ) correspond to the two orientations of a same edge). The
source vertex of an arc is itsρ-orbit. We shall often write ā for ι(a ). There are two basic
ways of visualizing the corresponding cellular embedding. One way consists in placing
disjoint disks in the x y -plane of R3, one for each vertex, then attaching rectangular
strips to the disks, with one strip per edge. The strips should expand in R3 so that
they do not intersect. The counterclockwise ordering of the strips attached to a disc
should coincide with the cycle of ρ defining the corresponding vertex. See Figure 3.9
for an illustration. The resulting ribbon graph is topologically equivalent to a surface
with boundary. Finally glue a disk along each boundary component to a obtain a
closed surface where the graph is cellularly embedded. Note that the boundary of each
face, traversed with the face to the right, visits the arcs according to the permutation
ϕ :=ρ ◦ ι. Theϕ-orbits are called facial walks. A facial walk need not be simple as can
be seen on Figure 3.3. Note that this construction is dual to the concept of polygonal
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Figure 3.9: A cellular embedding associated to the map (A,ρ, ι) with A =
{a , b , c , d , e , f , g , h}, ρ = (a , b , c , e )(g , d , h , f ) and ι = (a , b )(c , d )(e , f )(g , h ). The cor-
responding graph has a loop edge and a multiple edge.

scheme that we saw earlier : another way of visualizing the cellular embedding is to
draw one polygon per facial walk, marking its sides with the arcs of the orbit. Then
glue the sides of the polygons that correspond to oppositely oriented arcs (related
by the involution ι). Figure 3.10 illustrates this second construction. The numbers
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Figure 3.10: Left, the same map as above. Middle, the facial walks of ϕ =
(a , c , h , d , e , g , f )(b ). Right, the resulting graph embedding.

|V |, |E |, |F | of vertices, edges and faces of the resulting surface are thus given by the
number of cycles of the permutations ρ, ι and ϕ respectively. Obviously, the number
of cycles of the involution ι is just |E |= |A|/2. The Euler characteristic of this surface
can then be computed by the formula

χ = |V | − |E |+ |F |.

Basic operations on maps. The contraction or deletion of an edge in a graph ex-
tend naturally to embedded graphs. Given a map M = (A,ρ, ι) with graph G , the
contraction of a non-loop edge e = {a , ā } in G leads to a new map M /e obtained by
merging the circular orderings at the two endpoints of e . See Figure 3.11. Formally,
M /e = (A \e ,ρ′, ι′)where ι′ is the restriction of ι to A \e andρ′ is obtained by merging
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Figure 3.11: The contraction of a non-loop edge. ρ(b ) = a =⇒ ρ′(b ) =ρ ◦ ι(ρ(b )) = c .

the cycles of a and ā , i.e.,

∀b ∈ A \ e , ρ′(b ) =







ρ(b ) if ρ(b ) 6∈ e ,
ρ ◦ ι(ρ(b )) if ρ(b ) ∈ e and ρ ◦ ι(ρ(b )) 6∈ e ,
(ρ ◦ ι)2(ρ(b )) otherwise.

Likewise, if e has no degree one vertex, the deletion of e in G leads to new map
M −e = (A\e ,ρ′, ι′)where ι′ is the restriction of ι to A\e andρ′ is obtained by deleting
a and ā in the cycles of ρ, i.e.,

∀b ∈ A \ e , ρ′(b ) =







ρ(b ) if ρ(b ) 6∈ e ,
ρ2(b ) if ρ(b ) ∈ e and ρ2(b ) 6∈ e ,
ρ3(b ) otherwise.

(3.1)

Figure 3.12 illustrates the deletion of a loop edge. Let us look at the effect of an edge

b

ā
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c
b ρ′

c

b

ā

ρ
a

c

b
ρ′

c

Figure 3.12: The deletion of a loop edge. Above, We have ρ2(b ) 6∈ {a , ā } implying
ρ′(b ) =ρ2(b ) = c . Below, ρ2(b ) ∈ {a , ā } so that ρ′(b ) =ρ3(b ) = c .

contraction or deletion on the topology of a cellular embedding.

Lemma 3.2.1. If M is a connected map with at least two edges and e = {a , ā } is a
non-loop edge of M then M /e is connected and has the same Euler characteristic as M .
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PROOF. The lemma is quite clear if one remarks that M /e has the same number of
faces as M but has one edge less and one vertex less than M . Hence,

χ(M \ e ) = (|V (M )| −1)− (|E (M )| −1) + |F (M )|=χ(M )

An edge of an embedded graph is said regular if is it incident to two distinct faces and
singular otherwise.

Lemma 3.2.2. Let e be an edge of a map M with at least two edges. If e has no vertex
of degree one, then

χ(M − e ) =

�

χ(M ) if e is regular
χ(M ) +2 otherwise.

Note that the deletion of e may disconnect the map.

PROOF. Clearly, M ′ has the same number of vertices has M and one edge less. Let
ϕ =ρ ◦ ι and ϕ′ =ρ′ ◦ ι′ be the facial permutation of M and M ′ respectively. Writing
e = {a , ā }, we have that e is regular if and only if the ϕ-cycles of a and ā are distinct.
Using formula (3.1), we see that the cycles of ϕ′ are the same as for ϕ except for those
containing a and ā , which are merged if they are distinct for ϕ and which is split
otherwise. We infer that M ′ has one face less in the former case and one more in the
latter. We conclude that

χ(M − e ) = |V (M )| − (|E (M )| −1) + (|F (M )| −1) =χ(M )

if e is regular and

χ(M − e ) = |V (M )| − (|E (M )| −1) + (|F (M )|+1) =χ(M ) +2

otherwise.

We also define an edge subdivision in a map by introducing a vertex in the middle
of one of its edges. Likewise, a face subdivision consists in the splitting of a face
by the insertion of an edge between two vertices of its facial walk. Remark that by
contracting one of the two new edges in an edge subdivision one recovers the original
map. Similarly, the new edge in a face subdivision is regular and its deletion leads to
the original map. It follows from Lemmas 3.2.1 and 3.2.2 that any subdivision of a map
preserves the characteristic. Define the genus of a graph as the minimum genus of
any orientable surface where the graph embeds.

Corollary 3.2.3. The genus of (a subdivision of) a minor of a graph G is at most the
genus of G .

PROOF. Let M be a cellular embedding of G with minimal genus g . Any subdivision
H of a minor of G can be obtained by a succession of edge contractions, deletions
and subdivisions. We can perform the same operations on M . By Lemmas 3.2.1
and 3.2.2 and the preceding discussion, the characteristic may only increase during
these operations. It follows that the resulting embedding of H has genus at most g ,
implying that the genus of H is at most g .
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3.3 The Genus of a Map

Thanks to Euler’s formula it is quite easy to recover the genus of a map given by a triple
(A,ρ, ι). We have:

g = 1−χ/2= 1− (|V | − |E |+ |F |)/2 (3.2)

where V , E , F are the set of vertices, edges and faces of the map. For a graph G , a
certificate that it can be embedded in a surface of genus at most g may be given in
the form of a rotation system for G , checking that the genus of the resulting map is
at most g . In particular, a graph is planar if and only if it admits a rotation system of
genus zero. It follows from the above certificate that computing the genus of a graph
is an NP problem. A greedy approach to compute the genus of G is to compute the
minimum genus of every possible rotation system for G . For a vertex v the number of
possible circular orderings of the incident arcs is (dv −1)! where dv is the degree of v in
G . It ensues that the greedy approach needs to consider as much as

∏

v∈V (G )(dv −1)!
rotation systems. It appears that the problem is hard to solve. Indeed,

Theorem 3.3.1 (Thomassen, 1993). The graph genus problem is NP-complete.

We first remark that we can restrict the problem to connected simple graphs with
at least three vertices. Moreover, given such a graph G , the existence of a rotation
system on G that triangulates a surface, i.e. such that every facial walk has length
three, reduces to the genus problem. Indeed, the number of vertices and edges being
fixed by G , only the number of faces may vary among rotation systems. Since the faces
of a map correspond to its ϕ-cycles and since every face has length at least 3, we have
3|F | ≤ |A|= |E |/2 with equality if and only if the map is a triangulation. Formula (3.2)
shows that g is minimal in this case. In other words, we can directly deduce from
its genus whether G triangulates a surface or not. It is thus enough to show the NP
hardness of the triangulation problem. The proof relies on a reduction of the following
problem to the triangulation problem.

Proposition 3.3.2 ([Tho93]). Deciding whether a cubic bipartite graph contains two
Hamiltonian cycles intersecting in a perfect matching is an NP complete problem.

Recall that a graph is cubic if all its vertices have degree three and it is bipartite if
its vertices can be split into two sets such that no edge joins two vertices in a same
set. A cycle in the graph is Hamiltonian if it goes through all the vertices. Finally, a
perfect matching is a subset of edges such that every vertex is incident to exactly one
edge in the subset.

PROOF OF THEOREM 3.3.1. We shall reduce the problem of Proposition 3.3.2 to the
triangulation problem. By Proposition 3.3.2 and the discussion after the theorem, the
claim implies that the genus problem is NP hard, hence NP complete as we already
know it is in NP. Let G be a cubic bipartite graph with a bipartition A∪B of its vertex set.
We construct another graph by first taking a copy G ′ of G , adding one edge between
each vertex v of G and its copy v ′ in G ′. We further add four vertices v1, v2, v ′1, v ′2 and
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join v1 and v2 to every vertex in G and similarly join v ′1 and v ′2 to every vertex in G ′. Let
H be the resulting graph. We next construct a graph Q by contracting all the edges of
H of the form v v ′ with v ∈ A and v ′ its copy in G ′. We claim that
Q triangulates a surface if and only if G admits two Hamiltonian cycles intersecting in
a perfect matching.
We first prove the direct implication in the claim, assuming that Q triangulates a
surface. In other words there is map with graph Q all of whose faces are triangles. The
local rotation of this map around v1 directly provides a Hamiltonian cycle C1 in G ,
which is the boundary of the union of the triangles incident to v1. Note that every
vertex of C1 is incident to three edges in this union: two edges along C1 and one edge
toward v1. Similarly, the local rotation around v2 provides a Hamiltonian cycle C2. If
C1 and C2 had two consecutive edges in common, then their shared endpoint would
be incident to exactly two more edges: one toward v1 and one toward v2. However, by
construction v is also incident to its copy in G ′ or to v ′1 and v ′2 if v ∈ A, leading to a
contradiction. Moreover, since G is cubic C2 cannot miss two consecutive edges of C1.
It follows that C1 and C2 share one of every two edges, hence a perfect matching.

To prove the reverse implication of the claim, suppose now that G has two Hamil-
tonian cycles C1 and C2 intersecting in a perfect matching. We consider the following
rotation system on H . If v ∈ A, we let ei , for {i , j } = {1,2}, be the arc of Ci \C j with
source vertex v and we let e3 be the third incident arc, hence in C1 ∩C2. The local
rotation around v is then given by the cycle

(e1, v v1, e3, v v2, e2, v v ′)

The local rotation around a vertex in V (G ′) \A′ is defined analogously and so is the
local rotation around a vertex in A′ or in V (G )\A, except that we exchange the indices 1
and 2 in the above cycle. See Figure 3.13. For {i , j }= {1, 2}, we define the local rotation

e1
v1

v2

e2e3

e1 v1

v2

v ′

e3e2

C2

C1

v v
v ′

C2

C1

C1 ∩C2
C1 ∩C2

Figure 3.13: Left, the local rotation at a vertex v ∈ A∪V (G ′)\A′. Right, the local rotation
at a vertex v ∈ A′ ∪V (G ) \A. The vertices v, v ′ are copies of the same vertex in G and
G ′.

around vi as the cycle Ci oriented so that the edges in common with C j (previously
denoted by e3) are directed from V (G )\A to A for i = 1 and from A to V (G )\A for i = 2.
Similarly, we define the local rotation around v ′i as the cycle C ′i oriented oppositely
to Ci , i.e. so that the edges in common with C ′j are oriented from A to V (G ) \A when
i = 1 and from V (G ′)\A′ to A′ when i = 2. It is an exercise to check that the facial walks
of the resulting rotation system have the following form, where {i , j }= {1, 2}:
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• A triangle defined by vi and some edge of Ci , or

• A triangle defined by v ′i and some edge of C ′i , or

• a quadrilateral defined by an edge of Ci \C j , its copy in G ′ and the two edges
between their endpoints from G to G ′.

Figure 3.14 shows some of those facial walks. Hence, by contracting the edges v v ′ of

v2

v ∈V \A

e2

v1

v ∈ A

e1

v

v ′ ∈ A′

e ′1

e1

v ∈V \A

v2

e3

v ′

v ∈ A

e2

e ′2

Figure 3.14: Some faces of the rotation system for H .

H with v ∈ A (and its copy v ′ ∈ A′), the quadrilaterals are transformed into triangles
and one obtain a triangular embedding for Q .

It can be shown that the graph genus problem is fixed parameter tractable (FPT)
with respect to the genus. More precisely, the question whether a graph of size n
has genus at most g can be answered in O ( f (g )n ) time where f (g ) is some singly
exponential function of g [Moh99, KMR08]. Interestingly, the genus of the complete
graphs are known. It was conjectured by Heawood in 1890 that the genus of the
complete graph Kn over n ≥ 3 vertices is

g (Kn ) =
¡ (n −3)(n −4)

12

¤

This conjecture was eventually established in 1968 by Ringel and Youngs. The long
proof [Rin74] provides explicit minimal genus embeddings of Kn with a different
construction for each residue of n modulo 12.

3.4 Homotopy

In a nutshell, two curves drawn on a surface are homotopic if there exists a continuous
deformation between them. This intuitive notion, dating back to Poincaré, naturally
leads to a very rich theory drawing a bridge between topology on one side and group
theory on the other side. We start by introducing the relevant background in group
theory.
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3.4.1 Groups, generators and relations

Although most groups we will be dealing with in this course are infinite, they can often
be very succinctly encoded in terms of generators and relations. The attentive reader
will probably notice some similarities between the formalism established here and
the definitions on polygonal schemata : as we will see later on, this is no coincidence.

Let us consider a set G of generators, and denote by G −1 their inverses G −1 = {g −1 |
g ∈G }. A word is a string over the alphabet G ∪G −1 , and we denote by ε the empty
word. We consider that two words are equivalent if one can switch from one to the
other by adding or removing words of the form g g −1 or g −1g . The set of finite words
quotiented by this equivalence relation can naturally be endowed with the structure
of a group: the law is the concatenation, and the neutral element is ε. Indeed:

• The concatenation is well-defined with respect to the equivalence relation and
is associative.

• For any word w , w ε = εw =w .

• Each element has an inverse obtained by reversing the order of the letters and
inverting them, e.g., c −1b −1a−1 is the inverse of a b c .

This group is called the free group on the set G , denoted by F (G ).
Now, let us also fix a set R of words called the relations, and consider the free

group F (G ), where one also identifies a word with the word obtained by inserting at
any place a word taken from R or their inverses. This defines another group, which is
formally the quotient of F (G ) by the normal subgroup generated by R 3. This group is
said to admit the presentation <G | R >. So the free group admits the presentation
<G | ;>, generally abbreviated by <G >.

Here are a few examples:

• The group Z is the free group on one letter F ({a }).

• The group < a | a a > is the group Z2 (or Z/2Z).

• The group < a , b | a b a−1b −1 > is the two-dimensional lattice Z2: indeed, the
relation a b a−1b −1 implies that a b = b a , thus the group is abelian, and the
isomorphism with Z2 is the map a 7→ (1, 0), b 7→ (0, 1).

Exercise 3.4.1. Recognize the groups< a , b | a a b , a b −1b −1 >and< a , b | a m , b n , a b a−1b −1 >
.

Exercise 3.4.2. Show that any group admits a presentation (with possibly an infinite
number of generators and relations), and that any finite group admits a finite presen-
tation.

3.4.2 Fundamental groups, the combinatorial way

We start by introducing homotopy in a combinatorial setting, which makes computa-
tions very convenient. The baby case is the case of graphs, which corresponds directly
to free groups.

3Recall that a subgroup H ⊆G is normal if g H =H g for any g ∈G .
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Fundamental groups of graphs

Let G denote a graph (not necessarily embedded) where the edges are oriented. An
arc is an oriented edge or its inverse, it has an origin o (a ) and a target t (a ) = o (a−1).
A path in G is a sequence of arcs (e1, . . . , en ) such that the target of ei coincides with
the origin of ei+1. A loop is a path such that the target of en coincides with the origin
of e1, this point is called the basepoint of the loop. The trivial loop is the empty loop.
Two loops with a common basepoint x are homotopic if they can be related to each
other by adding or removing subpaths of the type (e , e −1), and a path is reduced if it
does not contain such a subpath.

Let x be a vertex of G . The set of homotopy classes of loops in G forms a group,
where the law is the concatenation and the neutral element the trivial loop. Indeed:

• The concatenation is well-defined with respect ot the equivalence relation and
is associative.

• Concatenating with the trivial loop does not change a loop.

• Every loop (e1, . . . , en ) has an inverse (e −1
n , . . . , e −1

1 ).

This group is called the fundamental group of G , denoted by π1(G , x ).

Theorem 3.4.3. Let T be a spanning tree of G containing the vertex x . Then the funda-
mental group π1(G , x ) is isomorphic to the free group generated by the edges of G that
are not in T .

PROOF. Let C denote the set of edges not in T . For every arc a , one can associate a
loop based at x denoted by γT

a = γ
T
x→o (a ) ·a ·γ

T
t (a )→x , where γT

x→y denotes the unique
reduced path in T between x and y . Then, every loop (e1, . . . , en ) based at x in G is
homotopic to the loop γT

e1
, . . . ,γT

en
, and for every arc a in T , γT

a is homotopic to the
constant loop. Therefore, π1(G , x ) is generated by the loops γT

a for a and arc not in T ,
and since γT

a−1 = (γT
a )
−1, it is enough to pick one arc for every edge of C . Finally, since

the loop γT
a for a not in T is the only one containing a , there is no non-trivial relation

between the loops γT
a . This proves the theorem.

An alternative way of seeing this proof is to observe that the fundamental group of
G is the same as the fundamental group of G obtained after contracting a spanning
tree of G . The resulting graph is a bouquet of circles, and there is one generator for
each circle.

Fundamental groups of surfaces

Now, let S denote a connected surface and let G be a graph cellularly embedded on S .
Similarly as before, a loop and a path in (S ,G ) is a path, respectively a loop in G . An
elementary homotopy between two loops is either a reduction (deletion/addition of
e e −1) or the deletion/addition of a subpath bounding a face of G . This corresponds
to the idea that in a continuous deformation between two curves, one can flip a face
of a cellularly embedded graph, see Figure 3.15. Elementary homotopies induce
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f f

Figure 3.15: The two red paths are homotopic since they are related by going over the
face f .

an equivalence relation, called homotopy between loops based at a common point,
denoted by ≡.

As before, the set of homotopy classes of loops based at a vertex x of G forms a
group, where the law is the concatenation. Indeed,

• If γ1 ≡ γ′1 and γ2 ≡ γ′2 are two pairs of homotopic loops, then their concatenations
are homotopic : γ1γ2 ≡ γ′1γ

′
2.

• The concatenation law is associative.

• The trivial loop, denoted by 1x or simply 1 is a neutral element for the concate-
nation law.

• Every loop (e1, . . . , en ) admits (e −1
n , . . . , e −1

1 ) as an inverse.

This group is called the fundamental group of S , denoted by π1(S , x )4.

Exercise 3.4.4. Let x and y be two vertices of G , then show thatπ1(S , x ) andπ1(S , y ) are
isomorphic. This justifies the common abuse of notation to just write π1(S )without
specifying a base point.

Let T be a spanning tree of G containing a vertex x , and let C denote the set of
edges not in T . The fundamental group of G is the free group on C , and to obtain the
fundamental group of S from it, one just needs to add the relations corresponding
to the faces of G . Formally, for every face f = (e1, . . . , en ) of G , denote by r f the facial
relation induced by f on C , that is, the word obtained by only keeping the ei that are
in C . Then we have the following theorem:

Theorem 3.4.5. Let S be a connected surface, G be a cellularly embedded graph on S
with a vertex x and a set of faces F , and T be a spanning tree of G containing x . Denote
by C the set of edges not in T and by r f the facial relation induced by a face f of G on
C . Then π1(S ) is isomorphic to the group π presented by

<C | {r f } f ∈F > .

4To be accurate, we should write π1(S ,G , x ) but as we will shortly see, this actually does not depend
on G .
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PROOF. As before, every arc a in G corresponds to a loop γT
a obtained by adjoining

the reduced paths in T between x and the endpoints of a . Let us consider the map
γ : C →π1(S )mapping every arc a in C to γT

a . This map induces a morphism of groups
γ′ : F (C )→ π1(S ). As for homotopy in graphs, this map is surjective since any loop
of S is the image by γ of its arcs in C . We will show that its kernel equals the normal
subgroup N generated by the elements r f for f ∈ F , which proves the theorem.

Let w = e1, . . . en be an element of F (C ) such that γ′(w ) ≡ 1. Then it means that
γ′(w ) can be reduced to the trivial loop by a sequence of elementary homotopies. Then
for every reduction over edges of C , the same reduction can be applied to w , and for
every face flip over a face f , the corresponding facial relation r f can be used to modify
the word w . Thus w can be reduced to the trivial word using the set of relations r f

and the kernel of γ′ is included in N . Reciprocally, an element of N is mapped to the
trivial loop by γ′ since the facial relations r f dictate the face flips to do to simplify the
corresponding relations. This concludes the proof.

Now, let us observe that the group π(S ) stays the same when one

1. contracts an edge of G between two different endpoints,

2. or one removes an edge of G between two different faces.

For 1, let e be the edge we are contracting, and T be a spanning tree of G containing
e . This contraction yields a new tree T ′ with one less edge, but the set C of non-tree
edges stays the same, as well as the set of facial relations. So the group stays the same.

For 2, when one removes an edge e of G between two different faces, one merges
the two adjacent faces f1 and f2 into a single face f . One can pick the spanning tree
so that e is not in it, and thus π1(S ) lost one generator g , and the two relations r1 and
r2 containing g have been merged into one. Observing that this amounts to deleting
every appearance of g in π1(S ) using r1 (or r2), we see that this operation does not
change the group.

Therefore, by the classification of surfaces (or rather its proof), we see that the
graph G can be transformed into one of the polygonal schemata of Theorem 3.1.6
without changing the fundamental group. In particular, π1(S ) only depends on the
surface S and not the graph G , and it is isomorphic to

• the trivial group if S is a sphere,

• the group< a1, b1, . . . ag , bg | a1b1ā1b̄1 . . . ag bg āg bg > if S is the orientable surface
of genus g ,

• or < a1, . . . , ag | a1a1 . . . ag ag > if S is the non-orientable surface of genus g .

Remark: The operations of contraction and deletion of edges used above can be
interpreted in the light of dual graphs: a graph G embedded on a surface S has a
dual graph G ∗, defined by placing one vertex in each face of G and edges between
adjacent faces. Then, contracting an edge in the primal graph amounts to removing
an edge in the dual graph, and vice versa. Contracting every edge between different
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Figure 3.16: A planar graph, its dual graph and a pair of interdigitating spanning trees.

endpoints and removing every edge between different faces amounts to contracting a
spanning tree T of G and a spanning tree T ∗ of G ∗ which are interdigitating, that is,
such that the edges of T are not duals of edges of T ∗, see Figure 3.16. The use of such
interdigitating trees, also called a tree-cotree decomposition, is an important tool in
the study of embedded graphs, especially from an algorithmic point of view, but we
will not rely on it further in this course.

3.4.3 Fundamental groups, the topological way

The homotopies we defined in the previous section are very combinatorial, and do
not match our a priori intuition of a continuous deformation. In this section, we
define homotopies in a topological way, and show that the corresponding notion of
fundamental group matches the one obtained before.

In a purely topological setting, we are now only considering a surface S , without any
mention of a cellularly embedded graph. A path on S is a continuous map p : [0, 1]→ S ,
and a loop based at x is a path p : [0,1]→ S where p (0) = p (1) = x . A homotopy with
basepoint x between two loops `1 and `2 is a continuous map h : [0,1]→ [0,1]→ S
such that h (0, ·) = `1, h (1, ·) = `2 and h (·,0) = h (·,1) = x . The constant loop at x is
the loop p : [0,1] 7→ x . The inverse of a loop `−1 is defined by `−1(t ) = `(1− t ). The
homotopy class of a loop is the set of loops homotopic to it.

The concatenation of two loops `1 and `2 is the loop defined by `1(2t ) for t ∈ [0, 1/2]
and `2(2t −1) for t ∈ [1/2,1]. The set of homotopy classes of loops based at x forms
a group for the concatenation law, where the neutral element is the constant loop.
Indeed:

• If γ1 ≡ γ′1 and γ2 ≡ γ′2 are two pairs of homotopic loops, then their concatenations
are homotopic : γ1γ2 ≡ γ′1γ

′
2.

• The concatenation law is associative.

• The constant loop, denoted by 1x or simply 1 is a neutral element for the con-
catenation law.

• The inverse of a loop is its inverse for the concatenation law.
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This group is called the fundamental group π1(S , x ).

Remark: We are always working with loops with basepoints, and the homotopies
preserve this basepoint. This is needed to obtain a nice algebraic structure: otherwise
there is no natural way to concatenate loops. But the study of homotopies without
basepoints, called free homotopies, is arguably more natural. We will see later on how
to include it in this framework.

The following exercise mirrors Exercise 3.4.4:

Exercise 3.4.6. If S is a connected surface, then for every (x , y ) ∈ S , the groups π1(S , x )
and π1(S , y ) are isomorphic. This justifies the common abuse of notation to just write
π1(S )without specifying a base point.

As the notations suggest, the topological fundamental group and the combinatorial
group turn out to be isomorphic, this is the point of the following theorem.

Theorem 3.4.7. The topological fundamental group is the same as the combinatorial
fundamental group.

PROOF (SKETCH). Just for the time of this proof, let us denote respectively byπc o m b
1 (S )

and πt o p
1 (S ) the combinatorial and topological fundamental groups. We pick a cellu-

larly embedded graph G on S , which will be used to study πc o m b
1 (S ) (but as we saw,

the group itself does not depend on G ). We will study the map ϕ :πc o m b
1 (s )→πt o p

1 (S )
mapping a homotopy class of loops to the corresponding topological homotopy class
of loops.

Claim 1: The map ϕ is well-defined and is a morphism of groups.
Indeed, if two combinatorial loops γ1 and γ2 are homotopic, then they are related

by a sequence of reductions and face flips. Such reductions and face flips can be
realized using topological homotopies, so their imagesϕ(γ1) andϕ(γ2) are homotopic.
This map behaves nicely under composition laws, so it is a morphism.

Claim 2: The map ϕ is surjective.
Let γ be a topological loop on S . It suffices to prove that it is homotopic to a

combinatorial loop of G . By perturbing by a very local homotopy if needed, one can
assume that γ crosses G a finite number of times. Then between each pair of crossings,
on can push γ on one side (for example the left one), so that one obtains a homotopic
loop lying entirely in G . Now, it may happen that γ backtracks in the middle of an
edge of G , but using a homotopy, one can reduce it so that it does not happen, and
thus we obtain a combinatorial loop of G .

Claim 3: The map ϕ is injective.
Let γ be a combinatorial loop such thatϕ(γ) = 1. This means that some topological

homotopy contracts ϕ(γ) to the empty loop. We want to discretize this homotopy so
that it becomes a concatenation of face flips and reductions. To do that, push every
loop in the topological homotopy into a combinatorial loop of G using the previous
technique. By construction, the difference between two consecutive such loops will
be a series of reductions or face flips, and thus we obtain a combinatorial homotopy.
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Remark: The “map” π1 associates a group for any surface, and it can furthermore
be seen as a functor : continuous maps between surfaces also induce morphisms
between their fundamental groups: indeed, such a continuous applications maps
loops to loops, and by taking their homotopy classes, one obtains a morphism. Such
functors are the playground of category theory, which has deep connections with
algebraic topology, but we will not delve at all into these aspects in this course.

All in all, we have just seen that properties regarding continuous deformations of
loops can be rephrased in a purely group-theoretical point of view. This is very fruitful
from a conceptual perspective, as it provides a strong algebraic structure to work with.
But from an algorithmic perspective, the benefits are not that immediate : the issue
is that working with presentations of groups is very unwieldy, as struggling with the
following exercise showcases:

Exercise 3.4.8. Show that the fundamental groups of non-homeomorphic surfaces are
not isomorphic.

In fact, most computational problems for group presentations are actually unde-
cidable. This is the case for example for the following problems:

• Deciding whether two groups provided by a finite presentation are isomorphic.

• Deciding whether a given group provided by a finite presentation is trivial.

• Deciding whether an element in a group provided by a finite presentation is
trivial.

We will establish such undecidability results in a later chapter and see that they
translate into undecidable topological problems in higher dimensions. Fortunately,
fundamental groups of surfaces are simpler than general groups, and thus we will be
able to devise algorithms for homotopy on surfaces, but these algorithms will have
a very strong geometric or topological appeal, instead of a group theoretical one.
More generally, studying groups by realizing them as fundamental groups of some
topological space is one of the drives of combinatorial group theory.

3.4.4 Covering spaces

A covering space of S is a space bS together with a continuous surjective map π : bS → S
such that for every x ∈ S , there exists an open neighborhood U of x such that π−1(U )
is a disjoint union of homeomorphic copies of U . The reader scared by this definition
should look at the example of the annulus on the left of Figure 3.17.

We will only deal with covering spaces in an informal way, and refer to a standard
textbook in algebraic topology like Hatcher [Hat02] for more precise statements.

The reason we are interested in covering spaces is that they are deeply connected
with homotopy and fundamental groups. Indeed, a covering space allows to lift a
path: if p is a path on S such that p (0) = x = π(bx ) for some bx ∈ bS , there is a unique
path bp on bS starting at bx such that p =π ◦ bp . This is pictured in Figure 3.17. Note that
loops do not lift necessarily to loops! This “unique lifting property” derives from the
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U
x

ππ−1(U )

p

bx

bp

Figure 3.17: A covering of the annulus, and one lift of a path p .

x

p xp
bxbp

Figure 3.18: Lifting a loop p on the torus to a path on its universal cover.

definition of covering spaces: when one sits at a point bx of the covering space, the
local homeomorphism π specifies how to move on bS so that one follows the path p .

Every surface has a unique covering space eS that is simply connected, that is, where
every loop in eS is homotopic to a trivial loop, it is called the universal cover of S . If
S is a sphere, its universal cover is itself, so let us assume that it is not the case. One
way to build this cover is as follows: pick a graph G cellularly embedded on S with a
single vertex and a single face (for example one of the graphs used in the classification
theorem). Cutting S along G gives a polygon and one can tile the plane with this
polygon by putting adjacent copies of this polygon next to each other, so that every
vertex of the tiling is adjacent to the correct number of polygons. This construction is
pictured in Figure 8.20 for the torus.

For surfaces of higher genus, the same construction works, but the tiling will not
look as symmetric : indeed it is for example impossible to tile the plane with regular
octagons. This is not an issue for our construction, since any tiling with octagons
will do, even if they do not have the same shape. However, an insightful way to deal
with this issue is to use hyperbolic geometry: it is a non-Euclidean geometry on the
open disk that allows for regular tilings of polygons with an arbitrary number of faces.
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Figure 3.19: The universal covering space of the genus 2 surface.

Figure 3.19 pictures the universal cover of a genus 2 surface as a hyperbolic tiling.
One can readily check that the spaces we obtain are universal covering spaces of

their respective surfaces, since they are simply connected and the mapπ can naturally
be inferred by the tiling. One key property of universal covers is that a loop on S is
contractible if and only if all its lifts in the universal cover are also loops, as can be
tested on the above examples. This will be leveraged in the next section to design an
algorithm to test contractibility of loops on surfaces.

Remark: The irruption of hyperbolic geometry here is not random at all: one can
show that surfaces of genus at least 2 do not admit Euclidean metrics, but do admit
hyperbolic ones. It is the lift of such a metric that one uses to obtain a hyperbolic tiling.
Hyperbolic geometry plays a primordial role in the study of the geometric properties
of surfaces, and has been used increasingly as well in the design of algorithms for
computational topology.
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A fundamental problem when dealing with curves on surfaces is to decide if a
given closed curve can be contracted to a point, or more precisely to a constant curve.
This is sometimes referred to as the contractibility problem. More generally, we can
ask whether two closed curves on a surface are related by a continuous deformation.
This question has two variants: we may or may not require the curves to share a given
point that remains fixed during the deformation. Note that the problem with fixed
point has an obvious reduction to the contractibility problem. Indeed, two curves c , d
are homotopic with fixed point if and only if the concatenation c ·d −1 is contractible.
Without the fixed point requirement, that is when the curves are allowed to move
freely on the surface, the problem is known as the transformation problem and can
be expressed as a conjugacy problem. To see this, choose a point v on a surface S
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and suppose that c and d are homotopic1. We can deform c and d so that each of
them passes through p . The resulting curves are still homotopic. In other words, there
is a continuous mapping h : S1× [0,1]→ S such that h S1×{0} = c and h S1×{1} = d , and
viewing S1×[0, 1] as an annulus, each boundary has a point sent on v by h . We connect
these two points by a simple path a in the annulus. The map h sends this path to a
closed path α. See Figure 4.1. Cutting the annulus through a we obtain a disk whose

c
d

c
d

c d

α

α

ααα

v

v

Figure 4.1: c and d are homotopic if and only if their homotopy classes are conjugate.

boundary is sent to c ·α ·d −1 ·α−1 which is thus contractible. Hence, c is homotopic
to α · d ·α−1 or, equivalently, the homotopy classes of c and d are conjugate in the
fundamental group π1(S , v ). For the reverse implication, if c and d have conjugate
homotopy classes we can just read Figure 4.1 from right to left and conclude that c
and d are indeed homotopic.

4.1 Dehn’s Algorithm

Suppose that S is a reduced combinatorial surface, that is a map with a single ver-
tex and a single face. Its graph G is thus composed of loop edges, each of which
corresponds to a generator of the fundamental group of S . We can directly read the
homotopy class of a closed path in G : the sequence of arcs of the path translates
to the product of the corresponding generators and their inverses. This product is
often viewed as a word on the generators and their inverses, so that the contractibility
problem is the same as the word problem where we ask if a product of generators and
their inverses is the trivial element in the fundamental group of S .

Max Dehn was among the first to establish and exploit the connection between
Topology (the contractibility problem) and Algebra (the word problem). He proposed
a solution to the word problem now known as Dehn’s algorithm [Sti87, paper 5]. Dehn
observed that the lift of G in the universal covering space of S induces a tessellation of
the plane composed of copies of the unique polygonal face of G in S . This tessellation
is actually the Cayley complex of π1(S , v ) where v is the unique vertex of G . This
complex S̃ is relative to the set of generators {βi }i of π1(S , v ) – the homotopy classes of
the loop edges in G – and to their relation F obtained from the unique facial walk of
G in S . The vertex set of S̃ are the elements of π1(S , v ) and there is an (oriented) edge
labelled βi between every α ∈ π1(S , v ) and α ·βi . Finally, disks are glued along each

1Homotopy without fixed point is often called free homotopy. For concision, we drop the term free.
In general, it should be clear from the context whether we use free homotopy or homotopy with fixed
point, and we will specify when necessary that the homotopy is with fixed point.
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closed path labelled by F in the resulting graph. If a closed path c in G is contractible
in S , then any of its lifts is a closed path in S̃ . Dehn further claims that
any closed path in S̃ contains either a spur, i.e. an arc followed by its opposite arc, or
more than half of F , i.e. a subpath labelled by some word U such that for some other V
shorter than U , the concatenation U V is a cyclic permutation of F or its inverse.
In both cases c is homotopic to a shorter closed path obtained by removing the spur
in the former case and by replacing the path labelled by U with the complementary
path labelled by V −1 in the latter case. This leads to an algorithm where we inductively
search for spurs or large pieces of F until we obtain a word that we cannot reduce
anymore. It then follows from Dehn’s claim that c is contractible if and only if this
word is empty.

In order to prove his claim, Dehn notes that the faces of the complex S̃ are arranged
in rings of faces R1, R2, . . ., where R1 is the set of faces incident with a given vertex2 v0 of
S̃ and Ri+1 is the set of faces not in Ri sharing a vertex with the external boundary of Ri .
Remark that a face of Ri+1 has at most two vertices in Ri . Hence, if S is an orientable
surface of genus g ≥ 2, each face has 4g sides and a face of a ring has at least 4g −2> 2g
vertices on its external boundary. Consider now a closed path c̃ without spurs and
passing through v0. Let i be maximal such that c̃ contains a vertex of the external
boundary of Ri . Figure 4.2 illustrates a factious case of a relation of length 6. Since c̃

v0

R2

c̃

Figure 4.2: The faces of the complex S̃ are arranged in rings of faces.

has no spurs it is easily seen that it contains the whole intersection of a face with the
external boundary of Ri . The previous remark allows to conclude the claim.

Dehn’s algorithm has a simple implementation that runs in O (g |c |) time where g
is the genus of S . A more careful implementation with O (g + |c | log g ) time complexity
was described by Dey and Schipper [DS95]. Finally, optimal O (g + |c |) algorithms were
proposed [LR12, EW13]. We shall describe these last approaches to the contractibility
and deformation problems, not so far from Dehn’s original approach but including
more recent techniques borrowed from geometric group theory.

2In his original work, Dehn defines R1 as a single face.
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4.2 van Kampen Diagrams

4.2.1 Disk Diagrams

A useful tool concerning contractible curves is provided by the so called van Kampen
diagrams. Such diagrams bear different names in the litterature, among which disk
diagrams and Dehn diagrams are the most common. Intuitively, a disk diagram
allows to express the combinatorial counterpart of the following characterization of
contractible loops in a topological space X : a loop S1 = ∂ D2 → X is contractible if
and only if it extends to a continuous map D2→ X , where D2 is the unit disk. Given a
combinatorial map M with graph G , a disk diagram over M is a combinatorial sphere
D with a marked outer face, and a labelling of the arcs of D by the arcs of M such
that opposite arcs are labelled by opposite arcs and such that every facial walk of D
that is not the outer face is labelled by some facial walk of M . In other words, D is a
gluing of faces and edges of M that is homeomorphic to the complement of an open
disk in a sphere. For instance, this complement could be a tree. In general, it is a
tree-like arrangement of topological closed disks connected by trees. The facial walk
of the outer face of D is denoted by ∂ D . The diagram is reduced if any two of its inner
faces (i.e. not the outer one) sharing a vertex v are labelled by facial walks that are not
inverse to each other when starting the facial walks at v .

Lemma 4.2.1 (van Kampen, 1933). A closed path c in M is contractible if and only if it
is the label of the outer facial walk of a reduced disk diagram over M .

The proof uses the intuitive fact that homotopic closed paths are combinatorially
homotopic, where a combinatorial homotopy is a sequence of elementary homo-
topies that consist in either inserting or removing a spur, or replacing a subpath of a
facial walk by the complementary subpath. See Theorem 4.7 in the previous lecture
notes.

PROOF OF LEMMA 4.2.1. We first prove the existence of a not necessarily reduced
disk diagram. Let c0 = 1→ c1→ ·· ·→ ck = c be a sequence of k elementary homotopies
attesting the contractibility of c , where 1 denotes a constant path. By induction on
k , we may assume the existence of a disk diagram D such that ∂ D is labelled by ck−1.
There are three cases to consider.

• If ck−1→ ck consists in inserting a spur a a−1, then we can form a disk diagram
for ck by attaching a pendant edge labelled with a to the boundary of D .

• If ck−1→ ck consists in removing a spur, then either this spur corresponds to two
consecutive arcs of ∂ D with distinct edge support or it corresponds to the two
arcs of a single pendant edge. In the former case, we form a disk diagram for
ck by gluing the two arcs along ∂ D . In the latter case, we contract the pendant
edge.

• Otherwise, ck−1→ ck consists in the replacement of a subpath p by a subpath
q such that p q−1 is a facial walk of M . We then perform a subdivision of the
outer face of D , inserting a new edge between the extremities of p . The new

http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo3.pdf
http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo3.pdf
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outer face is chosen among the two new faces as the one not bounded by p . We
next subdivide the new edge k −1 times, where k is the number of arcs of q . We
finally extend the labelling trivially by sending the subdivided edge to the edges
of q . This amounts to glue a face with facial walk p q−1 along p on D .

If the resulting diagram is not reduced, then there are two facial walks sharing a vertex
v and labelled by opposite facial walks of M . We “open” D at v and identify the two
facial walks according to the labels of their arcs. This produces a new diagram with two
faces less and does not modify the outer face boundary. We repeat the procedure as
long as the diagram is not reduced. By induction on the number of faces this procedure
must end. Note that the final diagram may have no face, in which case its graph must
be a tree corresponding to a closed path that can be reduced to a point by removing
spurs only.

Exercise 4.2.2. Relates the degree of an inner vertex in a reduced disk diagram over M
with the degree of the corresponding vertex in M .

4.2.2 Annular Diagrams

There is an analogous notion of annular diagram defined by a combinatorial sphere
with two marked outer faces instead of one.

Lemma 4.2.3 (Schupp, 1968). Two closed paths c and d in M are homotopic if and
only if there exists a reduced annular diagram over M such that the facial walks of its
outer faces (oriented consistently) are labelled with c and d respectively.

PROOF. By the introductory discussion there exists a path p such that c ·p ·d −1 ·p−1

is contractible. By Lemma 4.2.1, there exists a disk diagram over M whose boundary
is labelled with c ·p ·d −1 ·p−1. We may identify the subpaths corresponding to p and
p−1 respectively and get an annular diagram whose perforated faces are labelled with
c and d . If the diagram is not reduced, we proceed as in the proof of Lemma 4.2.1.

4.3 Gauss-Bonnet Formula

Another interesting tool is given by a combinatorial version of the famous Gauss-
Bonnet theorem. This theorem relates the curvature of a Riemannian surface S (say
a smooth surface embedded into R3) with its Euler characteristic χ , hence a local
geometric quantity with a global topological one. If K is the Gauss curvature of S and
kg is the geodesic curvature along its (smooth) boundary ∂ S then:

∫

S

K ds +

∫

∂ S

kg d`= 2πχ (4.1)

We can obtain a combinatorial version of this formula using some kind of angle struc-
ture over a combinatorial surface. Given an orientable combinatorial map M = (A,ρ, ι),
we consider an angular assignment of its corners, that is a real function θ defined
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over the set of corners. Here, a corner is any pair (a ,ρ(a )), for a ∈ A, of successive arcs
around a vertex. We require that the sum of the angular assignments of the corners of
any face f satisfies

∑

c∈ f

θ (c ) = d f /2−1, (4.2)

where d f is the degree of the face, i.e. the length of its facial walk. Intuitively, this
condition amounts to assume that the faces are Euclidean polygons if we view an
angular assignment as a normalized angle, measuring angles in terms of parts of a
circle instead of radians. Indeed, the total angle of a Euclidean polygon with d f sides
is (d f −2)π, which is d f /2−1 when normalized. We then define the curvature of an
interior vertex v as

κ(v ) = 1−
∑

c∈v

θ (c ), (4.3)

where, c ∈ v indicates that the corner c = (a ,ρ(a )) is incident to the source vertex v of
a . We also define the (geodesic) curvature of a boundary vertex3 v as

τ(v ) = 1/2−
∑

c∈v

θ (c ) (4.4)

Those curvatures thus measure the angle default with respect to the flat situation
(κ= 1 and τ= 1/2). They can be related to the Gauss curvature of the flat conic surface
Sv with one singularity at v obtained by gluing small isocele triangles, one for each
corner c ∈ v , with angle 2πθ (c ) at v . The boundary of Sv is a broken line so that
Formula (4.1) should be corrected with the term

∑

w (π−αw ), where w runs over the
boundary vertices of Sv and αw is the interior angle at w . Since the geodesic curvature
of a line segment is zero, Formula (4.1) becomes

∫

Sv

K ds +
∑

w

(π−αw ) = 2πχ = 2π

Noting that with
∑

w (π−αw ) is the sum of the angles at the corners of v we obtain
∫

Sv
K = 2πκv .

Theorem 4.3.1 (Combinatorial Gauss-Bonnet —). Let M be a combinatorial map
whose boundary is composed of disjoint simple cycles in the graph of M . Denote by χ
the Euler characteristic of M and by V o ∪V ∂ =V its interior and boundary vertex sets.
Then, for any angular assignment, we have

∑

v∈V o

κ(v ) +
∑

v∈V ∂

τ(v ) =χ

It is possible to drop the condition on the boundary of M using a slightly different
notion of curvature, see Erickson and Whittlesey [EW13]. The present presentation is
inspired by Gersten and Short [GS90] and makes the parallel with the differentiable
version rather transparent.

3Formally, a combinatorial surface with boundary is defined by marking some faces as perforated,
and a boundary vertex is any vertex incident to a perforated face.
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PROOF. By definition, we compute
∑

v∈V o

κ(v ) = |V o | −
∑

c∈v∈V 0

θ (c ) and
∑

v∈V ∂

τ(v ) = |V ∂ |/2−
∑

c∈v∈V ∂

θ (c )

It follows that
∑

v∈V o κ(v ) +
∑

v∈V ∂ τ(v ) = |V | − |V ∂ |/2−
∑

c∈v∈V θ (c ). By distributing
the corners according to faces rather than vertices and by the angular assignment
requirement (4.2), we see that

∑

c∈v∈V

θ (c ) =
∑

c∈ f ∈F

θ (c ) =
∑

f ∈F

(
d f

2
−1) =

1

2

∑

f ∈F

d f − |F |

where F is the set of faces of M . Since every arc appears in exactly one facial walk,
except for those on the boundary of M , we have:

∑

f ∈F d f = 2|E |−|E ∂ |where E and E ∂

are the set of edges and boundary edges respectively. Since |E ∂ |= |V ∂ |, we conclude
that

∑

v∈V o

κ(v ) +
∑

v∈V ∂

τ(v ) = |V | − |V ∂ |/2− (|E | − |E ∂ |/2)− |F |)

= |V | − |E |+ |F |

4.4 Quad Systems

From an algorithmic point of view it is more convenient to work with combinatorial
surfaces all of whose faces are quadrilaterals. We call such a surface a quadrangulation
or a quad system. Given a combinatorial surface without boundary, we easily get a
quadrangulation of the same topological surface as follows. We insert a vertex inside
each face and connect this vertex to all the corners of the face. Hence, if a facial
walk has length k we introduce k new edges in the face. This subdivides each face
into triangles. We then delete all the edges of the original graph, thus merging all
the triangles by pairs to form quadrilaterals. In practice, we will also require that the
vertices have a high degree, say at least 8. For a surface of genus g ≥ 2 this is easily
obtained by first reducing the combinatorial surface to a single vertex and a single face
before applying the above quadrangulation process. The resulting quadrangulation
has two vertices, 4g edges and 2g quadrilaterals. Figure 4.3 shows a reduced surface
and its quadrangulation.

Lemma 4.4.1. Let Q be a quadrangulation derived by the previous process from a given
map M without boundary. We can preprocess M in linear time (proportional to its
number of arcs) so that any closed walk c can be transformed in O (|c |) time into a
homotopic closed walk of size at most 2|c | in Q .

To see this, consider a spanning tree T of the graph G of M . Contracting T gives a
surface M ′ with graph G /T and with a single vertex. Next consider a spanning tree of
the dual graph of M ′ and denote by L the corresponding set of primal edges. Deleting
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Figure 4.3: From left to right, a reduced surface is cut-opened and its unique face is
triangulated by inserting a vertex in the center. Triangles of the same color are merged
by deleting the original loop edges.

the edges in L leaves a reduced surface M ′′ and we construct Q by first inserting a new
vertex z in the unique face of M ′′ together with all the edges from z to the corners
of the face. We finally remove the remaining edges of G /T to get Q . Note that any
edge e of G /T is homotopic to the path of length two in Q connecting z to the two
endpoints of e . We can precompute and store these length two paths for each e in
total linear time. Now, given any c , we contract all the occurrences of edges of T in c
to obtain a homotopic closed walk c ′ in M ′. We further replace every remaining edge
by the corresponding length two path to obtain a homotopic closed walk as desired in
Q . This transformation takes O (|c |) time.

Exercise 4.4.2. Propose a construction of quadrangulation starting from a combinato-
rial surface with nonempty boundary. Can you extend Lemma 4.4.1 accordingly?

4.5 Canonical Representatives

The last and most important ingredient of the homotopy test is the construction
of a canonical representative in each free homotopy class. Given a closed walk in
a quadrangulation, the idea is to shorten the walk as much as possible to obtain
a combinatorial geodesic. As a homotopy class may contain several geodesics, we
further consider the rightmost geodesic to define a canonical representative. Once a
canonical representative has been computed for two given closed walks we can decide
if the walks are homotopic by just checking if their representative are equal up to a
circular permutation. The shortening process is based on successive simplifications
of spurs and brackets as explained below.

4.5.1 The Four Bracket Lemma

Let (a1, a2) be a pair of arcs sharing their origin vertex v on a quadrangulation M .
Following the terminology of Erickson and Whittlesey [EW13], we define the turn of
(a1, a2) as the number of corners between a1 and a2 in counterclockwise order around
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v . Hence, if v is a vertex of degree d in M , the turn of (a1, a2) is an integer modulo
d that is zero when a1 = a2. The turn sequence of a subpath (ai , ai+1, . . . , ai+ j−1) of a
closed walk of length ` is the sequence of j + 1 turns of (a−1

i+k , ai+k+1) for −1 ≤ k < j ,
where indices are taken modulo `. The subpath may have length `, thus leading to
a sequence of `+ 1 turns. Note that the turn of (a−1

i+k , ai+k+1) is zero precisely when
(ai+k , ai+k+1) is a spur. A bracket is any subpath whose turn sequence has the form
12∗1 or 1̄2̄∗1̄ where t ∗ stands for a possibly empty sequence of turns t and x̄ stands
for −x . Intuitively, if we imagine that every corner of M has a right angle, a bracket
corresponds to a straight path ending with right angles. A quadrangulated disk is
non-singular if its boundary is a simple cycle of its graph.

Lemma 4.5.1 (Four bracket —, [GS90, EW13]). Let D be a non-singular quadrangulated
disk all of whose interior vertices have degree at least four. Then, the boundary of D
contains at least four brackets.

Figure 4.4 illustrates the Lemma.

Figure 4.4: The quadrangulated disk has four highlighted brackets. Can you find them
all?

PROOF. Consider the constant angular assignment 1/4 over D . By the Gauss-
Bonnet theorem 4.3.1, we have

∑

v∈i n t D κ(v )+
∑

v∈∂ D τ(v ) =χ(D ) = 1. By (4.3), every
interior vertex has non-positive curvature. It follows that

∑

v∈∂ D

τ(v )≥ 1 (4.5)

Remark that τ(v ) = (2− cv )/4 where cv is the number of corners incident to the bound-
ary vertex v . Call v convex, flat or concave if cv = 1, cv = 2 or cv ≥ 3 respectively. In
other words v is convex, flat or concave if its curvature is respectively 1/4, zero or
negative. Inequality (4.5) implies that the boundary of D contains at least four more
convex vertices than concave vertices. The lemma easily follows.

Corollary 4.5.2. A nontrivial contractible closed walk in a quadrangulation all of whose
interior vertices have degree at least four contains either a spur or a bracket.



4.5. Canonical Representatives 64

PROOF. Suppose that a nontrivial contractible closed walk c has no spurs. By the
van Kampen Lemma 4.2.1, c is the label of the boundary of a reduced disk diagram D .
Let H be the dual graph of D : it has one dual vertex per quadrilateral of D and one dual
edge for each pair of quadrilaterals sharing an edge. If H is connected then D is non-
singular. Indeed, if the boundary of its outer facial walk ∂ D was not a cycle it would
contain a degree one vertex, which would contradicts that c has no spurs. We can thus
apply the four brackets Lemma 4.5.1 to conclude that ∂ D has at least one bracket.
However, the turn t at a vertex of ∂ D is the same as the turn of the corresponding
vertex in c (up to a multiple of the degree of that vertex in the quadrangulation). It
follows that c has also a bracket. If H is not connected, then D consists of a tree-
like arrangement of non-singular disks connected by trees through cut vertices. This
arrangement has a “degree one” non-singular disk connected to the rest through a
single cut vertex. By the four vertex theorem this disk has four brackets, two of which
do not contain the cut vertex. These two brackets thus correspond to brackets in c .

Exercise 4.5.3. Show that we can actually claim the existence of a spur or four brackets
in Corollary 4.5.2.

4.5.2 Bracket Flattening

A bracket flattening consists in replacing a bracket and the two incident edges with the
“straight line” between their endpoints. Some care must be taken when the incident
edges of the bracket share their endpoints or when these edges are part of the bracket.
Figure 4.5 depicts the different cases. Corollary 4.5.2 provides a practical algorithm to
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Figure 4.5: Left, a typical bracket flattening. Middle, the edges incident to the bracket
share their endpoints. Right, the bracket covers the whole closed walk.

test if a given closed walk c is contractible: remove the spurs and flatten the brackets
until there is no more. Then c is contractible if and only if the resulting walk is reduced
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to a vertex. Since each spur removal or bracket flattening decreases the number of
edges by two the number of steps is linear in |c |. Note that the non-typical bracket
flattening (Figure 4.5, Right) may only occur when c is non-contractible (why?).

4.5.3 Canonical Representatives

A homotopy class may contain distinct closed walks without spurs and brackets. In
order to get a canonical representative in each homotopy class we further push such
reduced walks as much as possible “to their right”. Say that a vertex of a walk is convex
if its turn is 1 in the turn sequence of the walk. If a closed walk c contains a convex
vertex v we consider the maximal subpath including v whose turning sequence has the
form x 2∗12∗y , where x , y 6= 2. This subpath, say p , bounds an L-shaped sequence of
quadrilaterals that lies to its right. Replacing p by the complementary path bounding
the sequence of quadrilaterals gives a closed walk homotopic to c with one less convex
vertex. Note that this replacement does neither introduce a bracket nor a spur. Some
care must again be taken when p covers c . See Figure 4.6 for all the possible typical
and non-typical configurations. A right push reduces the number of convex vertices
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Figure 4.6: The different configurations for a right push.

by one, so that only a linear number of pushes can be applied. A last exceptional case
occurs when the turn sequence of c is composed of 2’s only. We also apply a right push
in this case, which transforms the turn sequence into a sequence of 2̄ as on Figure 4.7.
When no right pushes apply, the closed walk is said reduced .

Proposition 4.5.4. Let M be a quadrangulation all of whose vertices have degree at
least five. Then each homotopy class contains a unique reduced closed walk.

PROOF. Let c and d be homotopic reduced closed walks. We need to show that
c = d . Following Lemma 4.2.3 we consider a reduced annular diagram A for c and d .
We first claim that the two boundaries of A are simple. Otherwise, one boundary has a
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Figure 4.7: In case all the turns are equal to 2, we push the walk to the right to obtain a
sequence 2̄∗ of turns.

cut vertex that separates A into a smaller annular part A′ and a disk part D connected
to A′ through a single cut vertex. By the four brackets theorem, the boundary of D
has one (in fact at least two) bracket disjoint from this cut vertex. In turn, this bracket
would appear in c or d , contradicting the hypothesis that c and d are reduced.

• If the two boundaries of A have a common vertex then cutting through that
vertex gives a disk diagram D ′ bounded by (circular permutations of) c and d .
This diagram is a tree-like arrangement of non-singular disks connected by trees
through cut vertices. For convenience, we also call cut vertices the two common
endpoints of c and d . If a non-singular disk is incident to a single cut vertex,
then it is bounded by a subpath of one of c or d . By the four bracket theorem
this subpath would contain a bracket, in contradiction with the reduction hy-
pothesis. It follows that D ′ is a linear sequence of non-singular disks connected
by simple paths (otherwise c or d would have a spur). We claim that none of
those non-singular disks can have an interior vertex. Otherwise, considering
the constant angular assignment 1/4 over D ′, this interior vertex would have
negative curvature. An argument similar to the proof of the four bracket the-
orem 4.5.1 shows that the boundary of D ′ would contain five brackets, one of
which not incident to any cut vertex. This would again lead to the contradiction
that c or d has a bracket. The dual graph of each non-singular disk is thus a tree.
However, no matter the shape of this tree and no matter how its boundary is
split one of the resulting boundary paths would contain a bracket or a convex
vertex. In both cases this would contradict the fact that c and d are reduced. It
follows that D ′ has no non-singular disk, hence is a simple path, implying that
c = d .

• Suppose now by way of contradiction that the two boundaries of A are disjoint.
Then we can argue similarly as above that A has no interior vertex. The dual
graph of A is thus a single cycle with some attached trees. It must actually be
a cycle, since otherwise one of the boundaries of A would have a bracket. This
cycle has to go straight without bending since otherwise c or d would have a
convex vertex or a bracket. (This last case occurs even with a single bend as on
Figure 4.5, Right.) It follows that one of the boundaries of A has 2-turns only as
on right Figure 4.7, contradicting that c and d are reduced. In any case we have
reached a contradiction, so that the boundaries of A cannot be disjoint.
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A reduced closed walk can thus play the role of canonical representative for its ho-
motopy class.

4.6 The Homotopy Test

We now have all the necessary ingredients to perform a linear time homotopy test.
Thanks to Lemma 4.4.1, we can assume given two closed walks in a quadrangulation.
We compute the canonical form of each closed walk by first removing spurs and
brackets as described in Sections 4.5.2. We can first remove all the spurs in linear time.
The flattening of a bracket may introduce new spurs but their removal can be charged
to the removed edges, so that the total time spent to remove spurs is still linear in
the end. Note that a flattening transforms a bracket into a flat part (a run of 2-turns
or of 2̄-turns) that may be part of a larger flat part. In order to avoid loosing time
for traversing several times the same flat parts, we add jump pointers between the
endpoints of each flat part before we perform any flattening. We also store the turns at
these endpoints and the length of the flat part. Then, after each bracket flattening we
update the turns at the endpoints and check if the resulting flat part should be merged
with the at most two surrounding flat parts. This can be done in constant time thanks
to the jump pointers. This way each bracket flattening costs a constant time. Since
each flattening decreases the number of edges, there can only be a linear number of
them and the total cost for removing spurs and brackets is thus linear. The sequence
of edges of the resulting closed walk is easily recovered from the jump pointers and
the lengths of the flat parts. We just need to know one edge along the walk, which we
can update easily as spurs and brackets are simplified.

Once spurs and brackets have been removed we obtain a geodesic that needs to be
pushed to its right as described in Section 4.5.3. Each right push transforms a subpath
of the geodesic into another subpath of the same length without 1-turns or 2-turns. It
follows that none of the vertices of this subpath will be pushed again. The total time
needed to obtain a rightmost geodesic is thus linear. This shows that

Theorem 4.6.1. The canonical representative of a closed walk c in a quadrangulation,
all of whose vertices have degree at least five, can be computed in O (|c |) time.

Corollary 4.6.2. Given two closed walk of length at most ` in a combinatorial map of
size n we can decide if they are homotopic in O (n + `) time.

PROOF. According to Lemma 4.4.1, we can reduce the combinatorial map to a
quandrangulation in O (n ) time and get closed walks homotopic to the given one in
O (`) time. By Theorem 4.6.1 we can compute the canonical form of the walks in O (`)
time. Now these canonical forms, say c and d , are homotopic if and only if one is
a circular permutation of the other. This can be tested in linear time by checking
whether c is a substring of d · d thanks to the Knuth-Morris-Pratt string searching
algorithm [KMP77] [CLRS02, Sec. 32.4].
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In the second lecture we saw that a graph could be associated with a vector space,
called the cycle space. We will see that this cycle space can be extended to surfaces
giving birth to the first homology group. We also introduced the fundamental group of
a graph or of a surface in another lecture. Hence, we now have two group structures
that encode the topology of a space X , where X is either a graph or a surface. These
structures are both generated by closed walks in the graph of X and we call a basis any
generating set with the minimum number of closed walks. In order to derive a more
informative notion of minimality we assume that the edges of the considered graph
have a positive weight. This allows to define the weight of a closed walk as the sum
of its edge weights (counted with multiplicity). A minimum weight basis is then a
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basis such that the sum of the weights of its members is minimum. The computation
of minimum weight bases has received much attention when X is a graph and was
studied more recently for combinatorial surfaces. Good references on the subject
include a comprehensive survey on cycle bases in graphs by Kavitha et al. [KLM+09]
and another survey on optimization of cycles and bases on surfaces by Erickson [Eri12].
We shall use the qualifiers minimum and shortest interchangeably to designate a walk,
tree or subgraph of minimum weight.

5.1 Minimum Basis of the Fundamental Group of a Graph

Let G be a connected graph with basepoint v and let |.| : E →R+ be a weight function.
The fundamental group π1(G , v ) is a free group whose rank is the number of chords
of any spanning tree of G , which is 1−n +m , where n and m are respectively the
number of vertices and edges of G . Indeed, as we saw, every chord e of a spanning
tree T gives rise to a loop γT

v,e obtained by connecting v to each endpoint of the chord
using paths in the tree, and these loops form a basis of π1(G , v ). Not all bases arise
this way but a minimum one may indeed be obtained by this construction. For this,
we take for T a shortest path tree with root v : every vertex w of G is linked to v by a
path in T whose weight is minimum among all the paths from v to w in G . When all
the weights are equal a shortest path tree can be computed by a breadth-first search
traversal in time O (m ). In the general case, one may use Dijkstra’s algorithm [CLRS09]
to compute a shortest path tree in O (m +n log n ) time. Remark that γT

v,e is a shortest
loop through the chord e .

Theorem 5.1.1. The basis of π1(G , v ) associated with a shortest path tree with root v is
a minimum weight basis.

The following proof is based on an purely algebraic preliminary lemma. First note
that a free group F over a set (x1, x2, . . . , xr ) gives rise to a free Abelian group (this is the
same a freeZ-module) F a b by making all the generators commute. Hence, if we let R be
the set of relations {xi x j = x j xi }1≤i< j≤r , a presentation for F a b is < {x1, x2, . . . , xr } |R >.
We thus have a quotient F � F a b = F / <R > and we denote by [x ] ∈ F a b the image of
any x ∈ F . Note that [x ] can be uniquely written as a linear combination of the [xi ]’s.

Lemma 5.1.2. Let (x1, x2, . . . , xr ) and (y1, y2, . . . , yr ) be two bases of a free group F . De-
note by yj (x1, x2, . . . , xr ) the expression of yj in terms of the basis (x1, x2, . . . , xr ). Then,
there exists a permutation σ of {1, . . . , r } such that for each i the coefficient of [xi ] in
[yσ(i )(x1, x2, . . . , xr )] is nonzero.

PROOF. The automorphism of F defined by xi 7→ yi , 1 ≤ i ≤ r , quotients to an
automorphism of F a b . Let ci j be the coefficient of [x j ] in [yi (x1, x2, . . . , xr )]. Viewing
F a b as a free Z-module over the [xi ]’s, the matrix (ci j )1≤i , j≤r of this automorphism
has nonzero determinant. It follows that at least one term

∏

1≤i≤r ciσ(i ) of the usual
Leibnitz expansion of the determinant must be nonzero. This implies the lemma.
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PROOF OF THEOREM 5.1.1. Let T be a shortest path tree from v . We denote by
e1, e2, . . . , er the chords of T in G . Let (b1, b2, . . . , br ) be a basis for π1(G , v ). Accord-
ing to the preliminary lemma, there is a permutation σ of {1, . . . , r } such that the
coefficient of [γT

v,ei
] in [bσ(i )] is nonzero. It follows that bσ(i ) goes through ei , hence is

at least as long as γT
v,ei

by the remark before the theorem. As a direct consequence
∑

i |bi | ≥
∑

i |γT
v,ei
|.

5.2 Minimum Basis of the Cycle Space of a Graph

As we saw, the set of Eulerian subgraphs Z (G ) of a connected graph G can be given a
vector space structure over the coefficient field Z/2Z. We also observed that a basis
could be obtained from any spanning tree T of G by considering for each chord e of
T the cycle γT

e composed of e and the path in T connecting e ’s endpoints. Such a
basis is called a fundamental cycle basis. As opposed to the case of the fundamental
group, a minimum weight basis of the cycle space is not always a fundamental cycle
basis. The counterexample in Figure 5.1 was found by Hartvigsen and Mardon [HM93].
In general, looking for the minimum weight fundamental basis is NP-hard [DPeK82].

1

1

1

1

1

1

Figure 5.1: Each spanning tree in this graph is a path of length 2. The corresponding
fundamental basis is composed of two cycles of length 2 and two cycles of length 3
leading to a fundamental cycle basis of total weight 10. However, a minimum weight
basis of total weight 9 is given by the three outer cycles of length 2 and the central
triangle.

However, Horton [Hor87] proved that computing a minimum weight basis with Z/2Z
coefficients can be done in polynomial time. His algorithm is based on the greedy
algorithm over combinatorial structures called matroids.

5.2.1 The Greedy Algorithm

As a vector space, Z (G ) inherits a matroid structure. A matroid is indeed an abstraction
of a vector space that only retains linear dependencies. It is defined by a ground set
S (intuitively the set of vectors) and a nonempty family of independent sets I ⊂ 2S

that satisfies

• the hereditary property: J ∈I and I ⊂ J implies I ∈I , and

• the exchange property: I , J ∈I and |I |< |J | implies that I ∪{x } ∈ I for some
x ∈ J \ I .

http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo2.pdf
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A basis is just a maximally independent set. By the exchange property, all the bases
have the same cardinality. Matroid theory was introduced by Hassler Whitney (1935)
and has many applications including combinatorial optimization, discrete geometry,
etc. When the elements of the ground set are weighted, there is a famous greedy
algorithm that determines a minimum weight basis. It works as follows: maintain
an independent set starting from the empty set, and iteratively add an element x to
the current set I if I ∪{x } is independent and if x has minimum weight among such
elements. The algorithm stops when no x can be found, i.e. when I is a basis. In
practice, the elements of S are scanned in increasing order of weights, so that each
time an x is found such that I ∪{x } is independent it can be added to the current I .
The whole set S is thus scanned only once during the algorithm.

Theorem 5.2.1. The greedy algorithm returns a minimum weight basis.

PROOF. Let (x1, x2, . . . , xr ) be the basis returned by the greedy algorithm, where xi is
the i th inserted element. By the choice of each element we have |x1| ≤ |x2| ≤ · · · ≤ |xr |,
where |x | is the weight of x . Consider any other basis (y1, y2, . . . , yr ) indexed in non-
decreasing order: |y1| ≤ |y2| ≤ · · · ≤ |yr |. Suppose by way of contradiction that there is
some index i such that |yi |< |xi | and choose such i as small as possible. Then, by the
exchange property we can find y ∈ {y1, . . . , yi } such that {x1, . . . , xi−1, y } is independent.
Since |y | ≤ |yi |< |xi | this would contradict the choice of xi . It follows that |yi | ≥ |xi | for
all i , implying that (x1, x2, . . . , xr ) has minimum weight.

Since the cycle space contains 2r cycles, the greedy algorithm per se does not seem
very efficient. In order to restrict the search of a new basis element at each step of the
algorithm, Horton [Hor87] gave a characterization of the cycles that may belong to a
minimum weight basis.

Lemma 5.2.2. Suppose b = c +d is a cycle of a basis B of Z (G ). Then either B \{b }∪{c }
or B \ {b }∪ {d } is a basis.

PROOF. If c and d were both in the linear span of B \ {b }, then so would b .

Corollary 5.2.3. Assuming positive weights, the cycles of a minimum weight basis are
simple.

PROOF. Suppose that b is a non-simple cycle of a minimum weight basis B . Then
b can be written as the sum b = c +d of two edge disjoint cycles. In particular, b is
longer than c or d . By the preceding lemma, we can replace b by c or d in B to get a
shorter basis, contradicting the minimality of B .

Note: if some of the weights cancel, then basically the same proof shows the existence
of a minimum weight basis with simple cycles only.
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Lemma 5.2.4. Let b be a cycle of a minimum weight basis. Let p and q be two edge
disjoint paths such that b = p ·q−1. Then p or q is a shortest path.

PROOF. Let t be a shortest path from the common initial vertex of p and q to their
common last vertex. With a little abuse of notation, we can write b = p · t −1+ t ·q−1. By
Lemma 5.2.2, b must be no longer than p · t −1 or t ·q−1, implying with Corollary 5.2.3
that either q or p is a shortest path.

Corollary 5.2.5. Let v be a vertex of a cycle b of a minimum weight basis. Then b
decomposes into p ·a ·q−1 where a is an arc and p , q are two shortest paths with v as
initial vertex.

PROOF. Consider the arc sequence (a1, a2, . . . , ak ) of b with v the origin vertex of a1

and the target of ak . Let i be the maximal index such that (a1, a2, . . . , ai ) is a shortest
path. Then b = (a1, a2, . . . , ai ) ·ai+1 · (ai+2, . . . , ak ) and the previous lemma implies that
(ai+2, . . . , ak ) is a (possibly empty) shortest path

When there is a unique shortest path between every pair of vertices, this corollary
allows us to reduce the number of scanned cycles at each addition step of the greedy
algorithm to nm cycles, one for each (vertex, edge) pair. For the rest of this section, we
assume uniqueness of shortest paths and discuss the general case in the next section.
We denote by γv,e the cycle obtained by connecting the endpoints of e with shortest
paths to v . By the uniqueness of shortest paths, γv,e = γT

v,e where T is the shortest path
tree rooted at v .

Proposition 5.2.6. Let G = (V , E ) be a connected graph with n vertices and m edges
and let r = 1−n +m be the rank of its cycle space. A minimum weight basis of Z (G )
can be computed in O (n 2 log n + r 2nm ) =O (nm 3) time.

PROOF. By Corollary 5.2.5, we can restrict the scan step of the greedy algorithm to
the cycles γv,e with (v, e ) ∈V ×E . For each vertex v , we compute a shortest path tree
T in O (n log n +m ) time using Dijkstra’s algorithm. There are r nontrivial cycles of the
form γT

v,e , each of size O (n ). Their computation and storage for all the vertices v thus

requires O
�

n (n log n +m + r n )
�

time. They can be sorted according to their length in
O (r n log(r n )) time. In order to check if a cycle is independent of the current family of
basis elements, we view a cycle as a vector in (Z/2Z)E . We use Gauss elimination to
maintain the current family in row echelon form. This family has at most r vectors
and testing a new vector against this family by Gauss elimination needs O (r m ) time.
The cumulated time for testing independence is thus O (r 2nm ). The whole greedy
algorithm finally takes time

O
�

n (n log n +m + r n ) + r n log(r n ) + r 2nm
�

=O (n 2 log n + r 2nm ).
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Note that the above scan can be further reduced by discarding the cycles γv,e that
are not simple. We can also decompose a cycle into a linear combination of a fixed
fundamental basis associated to a tree. The decomposition of a cycle is just given by
its trace over the chords of that tree. This allows to represent the current family of basis
elements by a matrix of size r × r instead of r ×m . Further improvements were pro-
posed [KMMP04, KMMP08, MM09], often based on randomization. In particular, the
algorithm by Kavitha et al. [KMMP08] runs in O (m 2n +mn 2 log n ) time. Using integer
coefficients rather than Z/2Z gives a more general notion of cycle space. However,
this space does not form a matroid in general and the greedy algorithm cannot be
applied anymore. The status of the computation of a minimal weight cycle basis with
integer coefficients is still unknown.

5.3 Uniqueness of Shortest Paths

The proof of Proposition 5.2.6 is based on the uniqueness of shortest paths. In fact,
the proof can be adapted to show that the same algorithm works even if we do not
assume that there is a unique shortest path between every pair of vertices. See [Hor87]
or [Laz14, Lem. 1.6.7]. It may happen for other applications that we strongly need
uniqueness to ensure correctness of the algorithms. We usually get the uniqueness by
a perturbation schema, where the weight of each simple path is replaced by a slightly
different one. Let Px y be the set of simple paths with minimal unperturbed weight
between vertices x and y . The perturbation should be such that Px y contains a unique
path of minimum perturbed weight. In other words, the aim is to get an order on each
Px y so that we can choose the smallest path as the unique shortest path. This can be
achieved by adding an infinitesimal weight of the form (i ) εc (e ) or (i i ) c (e )ε to every
edge e , where ε > 0 is some arbitrarily small number and c (e ) is an appropriately
chosen coefficient.

Using the exponential form (i )we can simply choose pairwise distinct edge coeffi-
cients, for example the edge indices, assuming that they are indexed from 1 to m . This
way, distinct paths are perturbed by distinct polynomials in ε and get distinct weights
for ε small enough. We can view the polynomials as bit vectors of length m where a 1
coordinate at index i indicates the presence of the monomial εi . The ordering in Px y is
simply the lexicographic ordering on the bit vectors. This perturbation schema would
a priori require an extra O (m ) time for comparing path lengths. Cabello et al. [CCE13,
Sec. 6.2] propose to reduce the comparison time to O (log m ) using some sophisticated
data structure. However, their algorithm assumes that two paths need to be compared
only when they intersect along a common prefix.

We can avoid this restriction using the linear form (i i ), that is when the weight of
an edge e is perturbed by c (e )ε. The perturbation of a path is now ε times the sum
of its edge coefficients. Choosing the edge coefficients such that there is a unique
minimum weight sum in each Px y is more tricky than for the form (i ). Cabello et
al. [CCE13, Sec. 6.1] propose the following random perturbation schema based on the
Isolating Lemma of Mulmuley et al. [MVV87, Lem. 1].
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Lemma 5.3.1 (Isolating –). Let I be an arbitrary family of subsets of {1, . . . , m}. For a
vector c = (c1, c2, . . . , cm ) of m integers and for I ∈I , we put c (I ) =

∑

i∈I ci . Choosing c
uniformly at random in {1, . . . , M }m , the probability that c (I ) is minimized by a unique
I ∈I is at least 1−m/M .

PROOF. We suppose thatI contains at least two subsets, since otherwise the lemma
is trivial. For i ∈ {1, . . . , m}we set

I +i = {I ∈I | i ∈ I } and I −i = {I ∈I | i 6∈ I }

Suppose that none of I +i and I −i is empty. Note that the quantities minI∈I +i c (I )− ci

and minI∈I −i c (I ) do not depend on ci . Fixing all the coefficients c j , for j 6= i , the
constant minI∈I −i c (I ) − (minI∈I +i c (I ) − ci ) equals ci with probability at most 1/M .
It follows that minI∈I +i c (I ) = minI∈I −i c (I ) holds with unconditional probability at
most 1/M . Hence, with probability at least 1−m/M , minI∈I +i c (I ) 6=minI∈I −i c (I ) for
all i such that I +i and I −i are both nonempty. Consider a vector c such that this
occurs and let I0 ∈I for which c (I0) is minimum. Then, any other J ∈I must differ
from I0 by some index i . If i ∈ I0 and i 6∈ J then c (I0) = minI∈I c (I ) = minI∈I +i c (I )
while c (J ) ≥minI∈I −i c (I ). Since minI∈I +i c (I ) 6=minI∈I −i c (I ) we deduce c (J ) > c (I0).
Likewise, we again obtain c (J )> c (I0) if i 6∈ I0 and i ∈ J .

Lemma 5.3.2. Choose for each of the m edges of an edge weighted graph G an integral
coefficient in {1, . . . , m 4} uniformly and independently at random. Consider the linear
perturbation schema (ii) as described above. With probability at least 1− 1

2m , there is a
unique shortest path between any pair of vertices.

PROOF. For each pair {x , y } of vertices, Let Ix y be the family of subsets of edge
indices corresponding to the paths in Px y . Applying Lemma 5.3.1 to Ix y , we deduce
that with probability at least 1−1/m 3 there is a unique shortest path between x and
y for the perturbed weights. There are n ≤m vertices in G (we may assume that G is
not a tree). Hence, the

�

n
2

�

pairs of vertices are each connected by a unique shortest

path with probability at least 1−
�

n
2

�

/m 3 ≥ 1− 1
2m .

We shall turn to the computation of minimum bases on surfaces. We first extend the
notion of cycle space to surfaces.

5.4 First Homology Group of Surfaces

5.4.1 Back to Graphs

First recall that the cycle space Z (G ) of a graph G = (V , E ) is the space of its Eulerian
subgraphs. One can define such subgraphs thanks to the boundary operator. This
operator δ1 sends any edge to the mod 2 sum of its endpoints. In particular, if e is
a loop-edge, δ1e = 0. By linear extension, δ1 defines a linear map from the vector
space (Z/2Z)E of formal mod 2 sum of edges to the space (Z/2Z)V of mod 2 sum of
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vertices. Viewing a subgraph as a mod 2 sum of its edges, it is easily seen that Eulerian
subgraphs correspond to the mod 2 sum of edges with empty boundary. In other
words,

Z (G ) = kerδ1.

We define the mod 2 abelianization of a group A as the quotient A/S (A) by the sub-
group S (A) generated by its squares. Note that S (A) is normal and contains the derived
subgroup [A, A] generated by the commutators [a , b ] = a b a−1b −1. Indeed, one check
that

[a , b ] = (a b a−1)2a 2(a−1b −1)2 and a s a−1 = s [s−1, a ]

Hence, if s is a product of squares, so is any conjugate a s a−1. We can now relate the
cycle space with the fundamental group of a graph thanks to the following mod 2
version of the Hurewicz theorem.

Proposition 5.4.1. For any vertex v of a connected graph G the cycle space Z (G ) is
isomorphic to the mod 2 abelianization of π1(G , v ).

PROOF. Denote by L the set of loops of G with basepoint v . Consider the map
ϕ :L → Z (G ) defined by (a1, a2, . . . , ak ) 7→

∑k
i=1 ai , where the coefficient in the sum

are taken modulo 2. Adding or removing a spur in a loop does not change its image
by ϕ. The map ϕ thus quotients to a morphism ϕ : π1(G , v ) → Z (G ). Let T be a
spanning tree of G and let C = E (G ) \ E (T ) be its set of chords. We know that Z (G )
is generated by the cycles {γT

e }e∈C . Since ϕ(γT
v,e ) = γ

T
e , the map ϕ is onto. Let γ =

γT
v,e1
·γT

v,e2
· · ·γT

v,ek
be a representative of some element of π1(G , v )written over the basis

{γT
v,e }e∈C . Then ϕ(γ) =

∑

e∈C neγ
T
e where ne is the cumulated exponent of γT

v,e in γ.
Hence, the homotopy class of γ belongs to kerϕ if and only if all the ne cancel. This is
exactly saying that γ belongs to the subgroup S (π1(G , v )) of π1(G , v ). We thus have

Z (G )'π1(G , v )/kerϕ =π1(G , v )/S (π1(G , v ))

Exercise 5.4.2. Given a product w in the generators {x1, x2, . . . , xr } (and their inverses)
of a group Γ , show that w = x n1

1 ·x
nr
2 · · · x

nr
1 ·p where each ni is the cumulated exponent

of xi in w and p is a product of commutators. (It might be useful to notice the relation
b a = a b [b −1, a−1].) Deduce that S (Γ ) is equal to the set of products whose cumulated
exponents are all even.

5.4.2 Homology of Surfaces

The graph G of a combinatorial surface M has its own cycle space Z (G ). However, a
topological surface may have distinct cellularly embedded graphs with non-isomorphic
cycle spaces. In order to get a topologically invariant notion of cycle space, we further
quotient Z (G ) by identifying cycles that bound together a subset of faces of M . More
formally, let C2(M ) := (Z/2Z)F be the vector space of subsets of the set F of faces of M .
The elements of C2(M ) are called 2-chains. The boundary ∂2 f of a face f ∈ F is the
mod 2 sum of the edges of its facial walk. It is clearly a cycle of Z (G ), meaning that
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∂1∂2 f = 0. This boundary ∂2 extends linearly to a boundary operatorδ2 : C2(M )→ Z (G ).
Two cycles c , d ∈ Z (G ) are said homologous, which we write [c ] = [d ], if their mod 2
sum is the boundary of some 2-chainσ ∈C2(M ): c −d = ∂2σ. We can now define the
first homology group of M as the space of homology classes:

H1(M ) := kerδ1/Imδ2.

The fact that this homology group is indeed a topological invariant is an immediate
consequence of the invariance of the fundamental group and of the following mod 2
version of the Hurewicz theorem for surfaces.

Proposition 5.4.3. For any vertex v of a connected map M the first homology group
H1(M ) is isomorphic to the mod 2 abelianization of π1(M , v ).

PROOF. Let G be the graph of M . As in the proof of Proposition 5.4.1, denote by
L the set of loops of G with basepoint v and by ϕ :L → Z (G ) the mapping defined
by ϕ(a1, a2, . . . , ak ) =

∑k
i=1 ai . The composition [ϕ] :L → Z (G )→H1(M ) is compatible

with elementary homotopies in M . This is obvious for the addition or removal of a
spur. If λ ·p ·µ 7→λ ·q ·µ is an elementary homotopy with p ·q−1 the facial walk of a
face f , then ϕ(λ ·p ·µ)−ϕ(λ ·q ·µ) = ∂2 f ∈ Im∂2. Whence [ϕ(λ ·p ·µ)] = [ϕ(λ · q ·µ)]
in H1(M ). It follows that [ϕ] descends to the quotient ϕ : π1(M , v ) → H1(M ). On
the other hand, homotopic loops in G are homotopic in M so that we have an onto
morphism π1(G , v ) � π1(M , v ). We also know from the proof of Proposition 5.4.1
that the morphism π1(G , v )� Z (G ) is onto. We thus have two equal compositions

π1(G , v )� Z (G )� H1(M ) andπ1(G , v )� π1(M , v )
ϕ
→ H1(M ) implying thatϕ is onto.

It remains to prove that kerϕ is the subgroup S (π1(M , v )) generated by the squares
of π1(M , v ) to conclude that H1(M ) ' π1(M , v )/kerϕ is the mod 2 abelianization of
π1(M , v ). Since multiplication by 2 gives zero in H1(M ), we have S (π1(M , v ))⊂ kerϕ.
For the reverse inclusion we consider a loop γwhose homotopy class is in kerϕ, i.e.
such that [ϕ(γ)] = 0. Hence, there must be a 2-chain

∑

j f j such thatϕ(γ) =
∑

j ∂2 f j . For
each j , we choose a vertex v j incident to f j and we let pj be the facial walk of f j starting
at v j . Using the path γT

v,v j
from v to v j in T we form the loop γ j := γT

v,v j
·pj · (γT

v,v j
)−1

with basepoint v . On the one hand, since ϕ(γ j ) = ∂2 f j , we have ϕ(γ) = ϕ(
∏

j γ j ) in
Z (G ). Equivalently, ϕ(γ)+ϕ(

∏

j γ j ) = 0. By Proposition 5.4.1, the homotopy class of
γ ·
∏

j γ j is in S (π1(G , v )). It is thus in S (π1(M , v )) viewed as a loop in M . On the other
hand, since each γ j is contractible in M , the loops γ ·

∏

j γ j and γ are homotopic in
M . It follows that the homotopy class of γ is in S (π1(M , v )).

Corollary 5.4.4. Let M be a combinatorial surface of genus g without boundary. We
have

H1(M )'

¨

(Z/2Z)2g if M is orientable, and

(Z/2Z)g otherwise.

PROOF. If M is orientable, we know that its fundamental group as combinatorial
presentation π1 '< a1, b1, . . . , ag , bg | [a1, b1] · · · [ag , bg ]>. By Proposition 5.4.3, we have
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H1(M )' π1/S (π1). Since [a1, b1] · · · [ag , bg ] ∈ S (π1), we also have π1/S (π1)' F2g /S (F2g )
where F2g :=< a1, b1, . . . , ag , bg | −> is the free group over {a1, b1, . . . , ag , bg }. Now, it is
easily seen that the mod 2 abelianization of a free group of rank r is the Z/2Z-vector
space of dimension r , whence H1(M )' F2g /S (F2g )' (Z/2Z)2g . A similar proof holds
when M is non-orientable.

5.5 Minimum Basis of the Fundamental Group of a Sur-
face

Let M be a combinatorial surface with graph G . As in Section 5.1, we assume that the
edges of G are positively weighted. Given a vertex v of M , a minimum weight basis of
π1(M , v ) is a set of loops with basepoint v whose homotopy classes form a basis of
π1(M , v ) and whose total weight is minimum. Erickson and Whittlesey [EW05] have
proposed a simple algorithm to compute a minimum weight basis. We first describe
how to formally cut M along a subgraph of G .

5.5.1 Dual Maps and Cutting

The dual map M ∗ of M is obtained by inverting the roles of vertices and edges in M .
Its graph G ∗ is the dual graph of G . If H is a subgraph of G , we denote by H ∗ the
subgraph of G ∗ induced by the edges dual to the edges of H . We also denote by M \\H
the map with boundary obtained by cut opening M along H . It boils down to double
the edges of H , updating the rotation system of M to include these new edges. Equiv-
alently, if one views M as a polygonal schema, i.e. as a gluing of polygons by pairwise
identifications of their sides, cutting along H amounts to forbid the identification
between the sides that correspond to edges in H . In the dual map, the effect is to
delete the corresponding dual edges. Hence,

Lemma 5.5.1. The adjacency graph of the faces of M \\H is G ∗−E (H ∗). In particular,
the connected components of M \\H and of G ∗−E (H ∗) are in 1-1 correspondence.

As usual, E (H ∗) designates the set of edges of H ∗.

5.5.2 Homotopy Basis Associated with a Tree-Cotree Decomposition

Recall that a tree-cotree decomposition (T , D ∗, C ) of M is given by a spanning tree
T of G , a spanning tree D ∗ of G ∗− E (T ∗), and the complementary set of edges C =
E (G ) \ (E (T )∪E (D )).

Lemma 5.5.2. If (T , D ∗, C ) is a tree-cotree decomposition of M , then C contains 2−χ(M )
edges. In particular the cycle spaces of the graphs T ∪C and D ∗ ∪C ∗ have dimension
2−χ(M )
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PROOF. The trees T and D ∗ being spanning we have |E (T )| = |V (M )| − 1 and
|E (D ∗)|= |F (M )| −1. Thanks to Euler formula, we can write

|V (M )|+ |F (M )| −χ(M ) = |E (M )|= |E (T )|+ |E (D ∗)|+ |C |= |V (M )|+ |F (M )| −2+ |C |,

whence |C |= 2−χ(M ).

In analogy with the basis of the fundamental group of a graph associated with a
spanning tree, we can associate a basis of the fundamental group of M with a tree-
cotree decomposition.

Lemma 5.5.3. Let v be a vertex of M , and let (T , D ∗, C ) be a tree-cotree decomposition
of M . The set of loops {γT

v,c }c∈C is a basis of π1(M , v ).

PROOF. Since D ∗ is a tree, the gluing of faces of M along the edges of D is a disk. In
other words, M \\(T ∪C ) is a disk. Hence, every edge d ∈ E (D ) cuts this disk into two
disks. Choose one of those disks. Its boundary writes (d , e1, . . . , ek )where each ei is an
edge of T ∪C . This boundary is obviously contractible. By inserting a round-trip to v in
T at each vertex along this boundary, we see that γT

v,d ·γ
T
v,e1
· · ·γT

v,ek
is contractible. This

shows thatγT
v,d is in the span of {γT

v,c }c∈C sinceγT
v,ei

is contractible for every ei in T . Now,
since {γT

v,e }e∈E (D )∪C is a (fundamental) basis of π1(G , v ), it is also a generating set for
π1(M , v ). In turn this generating set is generated by {γT

v,c }c∈C . Finally, by Lemma 5.5.2
we note that C contains the minimum number of elements required for a basis of
π1(M , v ).

5.5.3 The Greedy Homotopy Basis

For each chord e of T , the loop γT
v,e is a shortest loop through e with basepoint v and

we define the weight of the edge e ∗ dual to e as

w (e ∗) = |γT
v,e |,

where |.| denotes the given weight function in G . We consider a maximum weight
spanning tree K ∗ of G ∗−E (T ∗)with respect to the weight function w , and we let C be
the set of edges primal to the chords of K ∗ in G ∗−E (T ∗). We thus have a tree-cotree
decomposition (T , K ∗, C ) and the set of loops

Γ := {γT
v,e }e∈C

is the associated basis of π1(M , v ). Following [EW05], we call Γ a greedy homotopy
basis. The name comes from a greedy computation of the maximum spanning tree K ∗

which makes the loops in Γ appear in a greedy fashion. It results from Proposition 5.4.3
that the set of homology classes of the loops in Γ is a basis of H1(M ). A greedy factor
of a loop `with basepoint v is any loop in Γ which appears with a non-zero coefficient
in the decomposition of ` in this homology basis.
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Lemma 5.5.4. The weight w (e ∗) of any chord e of T in G is larger or equal to the
weights (with respect to |.|) of the greedy factors of γT

v,e .

PROOF. The set of chords of T is the disjoint union E (K )∪C . If e ∈C , then γT
v,e is its

own and unique greedy factor and the result is trivial. We now assume that e ∈ E (K ).
We put C1 := {c ∈ C | w (c ∗) ≤ w (e ∗)} and C2 := {c ∈ C | w (c ∗) > w (e ∗)}. We consider
the connected graph K ∗

e :=G ∗− (E (T ∗)∪C ∗1 ) = K ∗+C ∗2 . We claim that K ∗
e − e ∗ is not

connected. Otherwise, e ∗ would belong to a cycle of K ∗
e . This cycle would contain an

edge c ∗ in C ∗2 and exchanging e ∗ with c ∗ in K ∗ would produce a spanning tree with
strictly larger weight, contradicting the maximality of K ∗. It ensues from Lemma 5.5.1
that M \\(T ∪C1) is connected while M \\(T ∪C1∪{e }) is not. Hence, e appears exactly
once in the boundary of each component of M \\(T ∪C1∪{e }). Considering the formal
sum of the faces of one component and its image by the boundary operator, we obtain
that e +κ is 0-homologous for some chain κwith support in T ∪C1. We conclude that
the greedy factors of γT

v,e are contained in {γT
v,c }c∈C1

, as desired.

Lemma 5.5.5. Let ` be a loop with basepoint v in G . Any greedy factor of ` has weight
at most |`|.

PROOF. We consider ` as a loop of G and express its homotopy class in the free basis
of π1(G , v ) associated with the chords of T in G : `∼ γT

v,e1
·γT

v,e2
· · ·γT

v,ek
. We assume this

expression reduced, so that each ei , 1≤ i ≤ k , occurs at least once in `. In particular,
|`| ≥w (e ∗i ). Since any greedy factor of `must occur as a greedy factor of some γT

v,ei
, we

can apply Lemma 5.5.4 to ei and conclude.

We denote byγ1, . . .γ|C | the loops in the greedy homology basis Γ . Similarly to Lemma 5.1.2,
we can easily show that

Lemma 5.5.6. For any basis {`i }1≤i≤|C | of π1(M , v ), there exists a permutation τ of
{1 . . . |C |} such that for each i ∈ {1 . . . |C |}, the loop γi is a greedy factor of `τ(i ).

It directly follows from the two preceding lemmas that

Proposition 5.5.7. Any greedy homotopy basis is a minimum weight basis.

In order to compute a greedy homotopy basis one needs to compute a shortest
path tree and a maximum weight spanning tree. A shortest path tree of a graph
with n vertices and m edges can be computed in O (n log n +m ) time using Dijkstra’s
algorithm. Classic maximum (or minimum) weight spanning tree algorithms run1

in O (n log n +m ) time [Tar83]. Since a homotopy basis of a map of genus g has O (g )
loops, and since each loop of a greedy basis may have size O (n )we obtain

1A faster O (m ) algorithm exists for embedded graphs. See for instance Sec. 3.1. of Éric Colin de
Verdière course notes.

http://www.di.ens.fr/~colin/cours/all-algo-embedded-graphs.pdf
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Theorem 5.5.8 ([EW05]). Let M be a finite connected map of genus g without bound-
ary with n vertices and m non-negatively weighted edges. Given a vertex v of M , a
minimum weight basis of π1(M , v ) can be computed in O (n log n + g n +m ) time.

5.6 Minimum Basis of the First Homology Group of a Sur-
face

5.6.1 Homology Basis Associated with a Tree-Cotree Decomposition

In analogy with the fundamental cycle basis of a graph associated with a spanning
tree, we can associate a basis of H1(M )with a tree-cotree decomposition.

Lemma 5.6.1. Let (T , D ∗, C ) be a tree-cotree decomposition of M . The set of cycles
{γT

c }c∈C is a basis of H1(M ).

PROOF. We can either reproduce the proof of Lemma 5.5.3, replacing contractible
by 0-homologous, or directly apply Proposition 5.4.3.

5.6.2 The Greedy Homology Basis

We again assume that the edges of the graph G of M are positively weighted. We also
assume uniqueness of shortest path between each pair of vertices in G , see Section 5.3.
Analogously to Section 5.2, we look for a basis of H1(M ) such that the sum of the
weights of the cycles in the basis is minimal. Since H1(M ) is a vector space, the greedy
matroidal algorithm of Section 5.2.1 remains valid as well as the characterization in
Corollary 5.2.3 and 5.2.5 of the cycles in a minimum basis. For each vertex v of M
we let Tv be a shortest path tree rooted at v . By Corollary 5.2.5, we can restrict the
cycle scan in the greedy algorithm to simple cycles of the form γv,e := γTv

v,e , one for each
chord e of Tv . In fact, we can further restrict the scan to a subset of O (g ) candidate
cycles per vertex.

Lemma 5.6.2. The set of loops Lv = {γv,e | e ∈ E (G ) \ E (Tv )} contains at most 3(1−
χ(M )) =O (g ) distinct homology classes. Furthermore, we can select in O (n log n +m )
time a subsetSv ⊂Lv of at most 3(1−χ(M )) loops that contains a homologous loop of
minimal weight for each homology class inLv .

PROOF. Following Section 5.5.1 we use a ∗ superscript to denote duality. Put K ∗ :=
G ∗−E (T ∗v ). Since Tv is a tree, it can be completed to a tree-cotree decomposition of M
and it results from Lemma 5.5.2 that the cycle space Z (K ∗) has dimension 2−χ(M ). If
e ∗1 , . . . , e ∗k are the edges incident to a vertex dual to a face f of M , then ∂2 f =

∑

i ei =
∑

i γv,ei
, so that

∑

i γv,ei
is null-homologous. This sum can be restricted to ei ∈ E (K )

because γv,ei
is null-homologous otherwise. It follows that γv,e is also null-homologous

whenever e ∗ is a pendant edge in K ∗. We can delete recursively all the pendant edges
in K ∗ since their corresponding cycle is null-homologous. We are left with a subgraph
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K ∗
1 without degree one vertex and with the same cycle space as K ∗ . If two edges e ∗

and e ′∗ share a degree two vertex in K ∗
1 we also have that γv,e and γv,e ′ are homologous.

It follows that the number of distinct homology classes is at most the number of
maximal chains, i.e. of maximal paths with degree two internal vertices in K ∗

1 . This is
also the number of edges of the graphs K ∗

2 obtained by contracting each such maximal
chain to a single edge. Because each vertex of K ∗

2 has degree three or more, we have
2|E (K ∗

2 )| ≥ 3|V (K ∗
2 )| by double counting of the vertex-edge incidences. On the other

hand,

2−χ(M ) = dim Z (K ∗) = dim Z (K ∗
1 ) = dim Z (K ∗

2 ) = 1− |V (K ∗
2 )|+ |E (K

∗
2 )|

It ensues that |E (K ∗
2 )| ≤ 3(|E (K ∗

2 )|−|V (K
∗

2 )|) = 3(1−χ(M )) as desired. In practice, we first
compute Tv and the distance of each vertex to the root v in O (n log n +m ) time using
Dijkstra’s algorithm. For any edge e of M , the length of γv,e can then be computed
in constant time. We recursively remove the pendant edges of K ∗ and traverse each
maximal chain of the resulting graph K ∗

1 in linear time, only keeping inSv the loop
γv,e corresponding to the traversed edge e ∗ if the loop has minimum weight in the
maximal chain.

The greedy matroidal algorithm requires to test if a loop is homologically independent
of the already selected loops. To this end we consider a fixed homology basisB :=
{γT

c }c∈C associated with some tree-cotree decomposition (T , D ∗, C ).

Lemma 5.6.3. We can compute the homology coordinates with respect toB of each of
the loops inSv in O (g m ) total time.

PROOF. We first compute for each edge e of M , the coordinates of γT
e with respect

toB . This can be done in O (g m ) time for all the edges in D by a simple traversal of
the dual tree D ∗. We then traverse the shortest path tree Tv from its root v in order to
compute for each vertex x the homology coordinates with respect toB of the loop
γv (x ) := γTv

v,x · γ
T
x ,v composed of the two (x − v )-paths in Tv and T respectively. The

traversal needs O (g n ) time, spending O (g ) time per vertex to compute the coordinates
of [γv (x )] = [γv (y )]+[γT

y x ]using the predecessor y of x in Tv . The coordinates of anyγv,e

inSv can now be decomposed into the sum of the coordinates of γv (x ), γT
e and γv (y )

where x , y are the endpoints of e . It thus takes O (g ) time to compute the coordinates
of any loop inSv and the whole computation needs O (g m ) time.

Theorem 5.6.4 ([EW05]). Let M be a finite connected map of genus g with n vertices
and m weighted edges. A minimum weight basis of H1(M ) can be computed in
O (n 2 log n + g nm + g 3n ) time.

PROOF. We can select O (g n ) loop candidates for the minimal weight basis and
compute their weights in O (n 2 log n + nm ) time according to Lemma 5.6.2. Their
homology coordinates with respect to B is computed in O (g nm ) time following
Lemma 5.6.3. After sorting the O (g n ) candidate loops according to their weight in
O (g n log n ) time, the greedy algorithm consists in scanning the candidate loops in
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increasing order, keeping the scanned loop in the minimal basis if it is homologically
independent of the previously selected loops. This last test can be answered in O (g 2)
time using Gauss elimination to maintain the O (g ) selected loops in row echelon form.
The whole scan thus takes O (g 3n ) time. Summing up all the steps we may conclude
the theorem.

When g = o (n 1/3), a faster O (g 3n log n ) algorithm was obtained by Borradaile et
al. [BCFN16]. It combines the approach of Kavitha et al. [KMMP08] for the mini-
mum cycle basis with the use of a certain cyclic covering to compute each cycle of the
minimum weight basis.
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As we have seen in the previous lecture, as the dimension of the space under study
increases, most topological problems become very quickly undecidable. In this lecture,
we investigate one of the only topological notions that remains computable no matter
the dimension: homology.

6.1 Complexes

In order to talk about algorithms, we first explain how to describe and manipulate topo-
logical spaces of arbitrary dimension. Following the path that we used for surfaces, we
will build complicated spaces by gluing together fundamental blocks, called simplices.
The resulting object is generally called a complex. However, there are many different
ways in which this can be done, each of which having advantages and disadvantages.

83
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We will focus on two closely related concepts: we first introduce simplicial complexes,
which are very simple to define but sometimes cumbersome to use, which is why we
generalize them slightly to∆-complexes.

An affine simplex in dimension n is the convex hull of n +1 affinely independent
points in Rp for some big enough p and a simplex is the topological space defined by
this affine simplex. The points are called the vertices of the simplex and a face of a
simplexσ is a simplex defined by a subset of the vertices ofσ. A simplicial complex
is a collection X of simplices such that every face of a simplex in X is also in X , and
any two simplices of X intersect in a common face, possibly empty. The dimension
of a simplicial complex is the maximal dimension of its simplices.

For technical reasons, we will require orientations on simplices. For a simplexσ
with vertices s0, . . . , sn , we consider two permutations on the vertices si to be equivalent
if they have the same parity, and an orientation is such an equivalence class. We will
use the notation [s0, . . . , sn ] to denote a simplex endowed with the orientation induced
by the permutation (s0, . . . , sn ). For an oriented simplexσ, we denote by −σ the same
simplex with the opposite orientation. In the rest of these notes, we will always consider
that the simplices in a simplicial complex are oriented in an arbitrary fashion.

The notion of simplicial complex is a bit awkward, because it requires some am-
bient space, and more restrictive than the notions of triangulations that we saw for
surfaces and 3-manifolds: it allows gluings between different simplices, but not iden-
tifications within a single simplex: for example the weird triangulation of Exercise
3.6 in the lecture on knots and 3-manifolds is not a simplicial complex. The notion
of ∆-complex is a generalization of simplicial complexes that allows us to identify
the faces of a collection of simplices pretty much as we want. An n-simplex is the
image of an affine simplex by a homeomorphism. A∆-complex is the last space in
an inductively defined sequence of topological spaces X (0) ⊆ . . . ⊆ X (n ) = X , where
each space X (k ) is called the k -skeleton of X . For each integer k > 0, we inductively
construct the k -skeleton X (k ) by attaching a set of k -simplices to the (k −1)-skeleton
X (k−1). Each k -simplex∆k is attached by a gluing mapσ : ∂∆k → X (k−1) that maps the
interior of each face of∆k homeomorphically to the interior of a simplex in X (k−1) of
the same dimension. Such maps are called cellular.

For example, a triangulated map is a 2-dimensional∆-complex. If the underlying
graph is a simple graph this can even be realized as a simplicial complex. Note however
that some maps that we used for surfaces (for example the polygonal schemes) are
complexes which are still not∆-complexes. They fit within a further generalization
which is the notion of polyhedral complexes, which allows the building blocks to be
arbitrary polyhedra and not just simplices. We will not define it in this course, but
everything homological works the same for them. An even further generalization leads
to the notion of a CW-complex, where the gluing maps are not required to be cellular.
We will also not define these, and just say that everything homological works almost
the same, except that some care must be taken when handling attaching maps.
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6.2 Homology

6.2.1 Chain complexes

The homology of a∆-complex is obtained by first defining a chain complex out of a
∆-complex, and then taking the homology of this chain complex. This chain complex
depends on the choice of a coefficient ring which we will denote by R in these notes.
The correct level of generality to study homology will involves modules over this ring
R , but for the reader not very acquainted with commutative algebra, only considering
the cases where R is the set of integers Z (leading to finitely generated abelian groups)
or the p -element field Zp for p prime (leading to vector spaces over Zp ) is enough for
intuition and for most practical purposes.

The space of k-chains of a∆-complex X is the set of formal linear combinations
over R of its oriented simplices of dimension k , i.e., a k-chain is a function α : Xk →R
where Xk is the set of simplices of dimension k in X . A k -chain is generally written as
a formal sum

∑

i αi∆k ,i where∆k ,i is the i th oriented k -simplex in X and αi =α(∆k ,i ).
Morally, α describes how many times one picks each simplex in the complex X . We
denote by Ck (X ) the space of k-chains of a complex X . It is isomorphic (as a module)
to R nk where nk denotes the number of k -simplices in X .

The boundary of an oriented simplex is defined by

∂k [s0, . . . , sk ] =
n
∑

i=0

(−1)i [s0, . . . , ŝi , . . . , sk ]

where ŝi denotes the omission of the vertex si . Thus the boundary of a k -chain is a
(k −1)-chain, and by linear extension the boundary operator ∂k can be defined on the
set of k -chains Ck (X ) in the following way:

∂k : Ck (X ) → Ck−1(X )
∑

i

αi∆k ,i 7→
∑

i

αi∂k (∆k ,i ).

The key relation in homology is that the boundary of a boundary is empty:

Lemma 6.2.1. ∂k−1 ◦ ∂k = 0.

PROOF. By linearity, it is enough to prove that the boundary of the boundary of a
k -simplex is the empty (k −2)-chain. This is a matter of computation:

∂k−1[s0, . . . , ŝi , . . . , sk ] =
∑

j<i

(−1) j [s0, . . . , ŝ j , . . . , ŝi , . . . sk ]−
∑

j>i

(−1) j [s0, . . . , ŝi , . . . , ŝ j , . . . sk ]

and thus
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∂k−1 ◦ ∂k [s0, . . . , sn ] =
k
∑

i=0

∑

j<i

(−1)i+ j [s0, . . . , ŝ j , . . . , ŝi , . . . sk ]−
k
∑

i=0

∑

j>i

(−1)i+ j [s0, . . . , ŝi , . . . , ŝ j , . . . sk ] = 0

since both sums are equal.

Thus, for an n-dimensional∆-complex X , we have a sequence of boundary mor-
phisms linking the chain groups:

0→Cn (X )
∂n→Cn−1(X )

∂n−1→ . . .
∂2→C1(X )

∂1→C0(X )→ 0,

where ∂k−1 ◦ ∂k = 0 and 0 denotes the trivial group. Such a sequence is called a chain
complex.

6.2.2 Simplicial homology

The space of k -cycles, denoted by Zk (X ), is the space of simplices without boundary,
i.e., the kernel of the morphism ∂k . The space of k -boundaries, denoted by Bk (X ) is
the image of ∂k+1. Since ∂k−1 ◦ ∂k = 0, we have Bk (X ) ⊆ Zk (X ), and this allows us to
define the k th homology group Hk (X ) as the quotient

Hk (X ) = Zk (X )/Bk (X ) = ker∂k/Im∂k+1.

The collection of all the homology groups Hk (X ) is usually denoted by H∗(X ).
Obviously, this definition depends heavily on the∆-complex we consider, but it

turns out that the homology groups are invariant under homeomorphism.

Theorem 6.2.2. If X and Y are homeomorphic∆-complexes, then H∗(X ) =H∗(Y ).

One naive way to establish it could be to follow the same line of thought as when
we proved the invariance of many topological properties for surfaces:

PROOF. (False!) A∆-complex X is a refinement of another∆- complex Y if there
is a homeomorphism from Y to X mapping any simplex of Y to a subcomplex of X .
If X is a refinement of Y , one can easily prove that H∗(X ) = H∗(Y ). Thus, if we can
prove that any two homeomorphic ∆-complexes have a common refinement, this
will prove the theorem. This is the (in)famous Hauptvermutung which we alluded
to in the lecture notes for surfaces and 3-manifolds, which turns out to be false for
dimensions four of higher.

In order to circumvent the difficulty in this false proof, a more general formulation
of homology, called singular homology has been introduced, which gives identical
results for ∆-complexes, but can also be applied to spaces that have no triangula-
tions. We will not delve into these technicalities and refer to Hatcher [Hat02] for the
appropriate background on singular homology and the equivalence with the simplicial
homology under study here.
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6.2.3 Examples and the question of the coefficient ring

Morally, the homology groups count the number of holes in each dimension. But the
situation is more subtle due to the torsion that may appear in the homology groups.
We illustrate this on a few examples.

In order to compute the homology of a surface, the first step is to describe this
surface as a ∆-complex. While, this can be definitely be done, this easily gets a bit
unwieldy so we will cheat a bit, and work instead directly with polygonal schemes (i.e.,
with a polyhedral complex). The reader can verify that it gives the same result.

Let us start with the orientable surface S of genus g over the coefficient ring Z, we
take a system of loops made of 2g loops so that the resulting complex has 1 face, 1
vertex and 2g edges. Then the boundary of the vertex is trivial (as is always the case),
but the boundary of the edges as well, since every edge is a loop. And in the boundary
of the face, every edge appears once with each orientation, so they cancel out and the
boundary is trivial as well. Thus the computation ends up being trivial and we have
H0(S ) =Z, H1(S ) =Z2g and H2(S ) =Z. We observe that the 1-dimensional homology
is the abelianization of the fundamental group, which we already saw in the lecture
notes on minimum weight bases (Proposition 4.2). It is a general fact, true in any
dimension, known as the Hurewicz Theorem (see Hatcher [Hat02, Section 4.2]).

Now, for the non-orientable surface S of genus g , let us pick a system of loops
corresponding to the polygonal scheme a1 . . . ag ā1 . . . ¯ag−1ag , which (exercise) is the
non-orientable surface of genus g . The boundary of the vertex and the edges is still
trivial, but now the boundary of the face f is not, since ag appears twice with the
same orientation. Thus we have ∂ f = 2ag . Thus there are no non-trivial 2-cycles. The
space of 1-dimensional cycles is generated by a1, . . . ag and the space of 1-dimensional
boundaries is generated by 2ag , thus H1(S ) is isomorphic to Zg−1⊕Z2. Thus there is a
1-dimensional “hole” that disappears when taken twice! Once again, one can verify
that H1(S ) is the abelianization of π1(S ).

Exercise 6.2.3. Verify that the homology group is the same when computed with a
canonical polygonal scheme a1a1a2a2 . . . ag ag .

This is also a good illustration of the role of the coefficient ring. The reader can
verify that for the orientable surface of genus g , taking the ring Z2 instead of Z yields
H0(S ) = Z2, H1(S ) = Z

2g
2 and H2(S ) = Z2, so it makes virtually no difference. But for

the non-orientable surface, we obtain ∂ f = 2ag = 0 since 2= 0 in Z2. Thus there is a
2-dimensional cycle, and the homology groups are now H0(S ) = Z2, H1(S ) = Z

g
2 and

H2(S ) =Z2. In some sense, the coefficient ring Z2 prevents us from seeing the torsion
that was detected with Z.

Finally, let us try with the ringQ. Now, ∂ f = 2ag is non-trivial, butQg /2Q is iso-
morphic toQg−1, so we have yet another result: similarly the ringQ does not see the
torsion. In some sense, the homology overZ is the one that contains the most informa-
tion, this can be formalized in the universal coefficient theorem (see Hatcher [Hat02,
Section 3.A]), which provides somewhat intricate algebraic constructions to deduce
the homology groups over any ring from those over Z.
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6.2.4 Betti numbers and Euler-Poincaré formula

When the homology is taken with the coefficient ring R =Z, the homology groups are
finitely generated abelian groups, which can be decomposed as a product of cyclic
groups:

Hk (X ) =Zβk (X )×
∏

i

(Z/diZ)

for some integers βk and 1 ≤ d1 ≤ d2 ≤ . . . ≤ dm where each integer di is a divisor
of its successor di+1. Furthermore this decomposition is unique. The rank βk (X )
of the free component of Hk (X ) is called the k th Betti number of X . The following
formula is a wide-reaching generalization of the Euler formula we saw for planar and
surface-embedded graphs.

Theorem 6.2.4 (Euler-Poincaré formula). Let X be a finite∆-complex of dimension n,
and let ni be the number of simplices in dimension i , then

n
∑

i=0

(−1)iβi (K ) =
k
∑

i=0

(−1)i ni .

PROOF. We have βi (X ) = rank (Hi (X )) = rank (Zi (X ))− rank (Bi (X )), and by the rank
formula, rank (Zi (X )) = ni − rank (Im (∂i )), thus

k
∑

i=0

(−1)iβi (K ) =
k
∑

i=0

(−1)i (ni − rank Im (∂i )− rank Im (∂i+1))

=
k
∑

i=0

(−1)i ni − (−1)k rank Im (∂n+1)− rank Im (∂0)

which concludes the proof since the boundaries ∂0 and ∂n+1 are empty.

The quantity χ(X ) =
∑n

i=0(−1)iβi (K ) =
∑k

i=0(−1)i ni is called the Euler character-
istic of X . Since the homology groups are a topological invariant, so is the Euler
characteristic. The reader can cross-check with the examples in the previous subsec-
tion that for the case of graphs cellularly embedded on surfaces, we recover the Euler
formula.

Remark: One could also define the Betti numbers as the alternate sum of the ranks
of the homology groups obtained when taking a field of characteristic zero for the
coefficient ring. By the aforementioned universal coefficient theorem, the two defini-
tions coincide, but note that the hypothesis of characteristic zero is necessary here, as
the computation of the Z2 homology groups of non-orientable surfaces illustrate.

6.2.5 Homology as a functor

We saw that the fundamental group of a surface not only associates a group to the
surface, or more generally a topological space, but also associates a group morphism
to every continuous maps: it is a functor from the category of topological spaces to the
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category of groups. The same can be said for the homology, which maps the category
of topological spaces to the one of modules, or vector spaces if the coefficient ring is
a field. We will see how it works for the restricted case of∆-complexes. A simplicial
map f : K → L between two complexes K and L is a map that sends the vertices
of K to the vertices of L and the simplex on the vertices s0, . . . , sk to the simplex on
the vertices f (s0, . . . , sk ). An example of a simplicial map is the inclusion map for a
∆-complex K included in another∆-complex L .

One would like to extend by linearity a simplicial map into a map on the chains
of the complex, but the orientations get in the way. Thus we define, for a simplicial
map f , another map f# that maps [s0, . . . , sk ] to [ f (s0), . . . , f (sk )] if the restriction of f to
{s0, . . . , sk} is injective, and 0 otherwise. Now this map can be extended by linearity to
the chains of the complexes K and L , and it verifies ∂k ◦ f# = f#◦∂k , thus it is a morphism
of chain complexes. This property ensures that the maps f# can be quotiented by the
boundary groups: indeed, f#(a + ∂ b ) = f#(a ) + ∂ ( f#(b )), so that the image of a and
a + ∂ b is the same when quotiented by the boundary space. This allows to define a
map f# : H∗(K )→H∗(L ), which can also be denoted by H∗( f ).

Exercise 6.2.5. Check that H∗(I dK ) = I dH∗(K ) and that if f : K → L and g : L → M
are two simplicial maps, then H∗(g ) ◦H∗( f ) = H∗(g ◦ f ). This property is called the
covariance of the homology functor.

6.3 Homology computations

6.3.1 Over a field

One of the perks of homology is that it is a topological invariant living in the realm of
modules, vector spaces or finitely generated abelian groups (depending on the choice
of the coefficient rings). Unlike general groups where most problems are undecidable,
these algebraic structures are very convenient to exploit in terms of computation. For
instance, when the coefficient ring is a field like Z2, the spaces of chains, boundaries,
cycles, and thus the homology groups are all vector spaces. In particular, computing
the homology groups in this case amounts to computing kernels and images of explicit
operators (the boundaries), and this boils down to linear algebra. For example, using
Gaussian elimination, one can easily compute the homology groups in polynomial
time in this case, and faster techniques for matrix multiplication allow us to do this
even faster.

6.3.2 Computation of the Betti numbers: the Delfinado-Edelsbrunner
algorithm

In order to compute the Betti numbers, there is a conceptually simple algorithm
due to Delfinado and Edelsbrunner [DE95]which allows to bypass the use of linear
algebra in low dimensions. The idea is to add the simplices of a∆-complex one by one,
i.e., to consider a∆-complex K as a sequence of inclusions (technically, a filtration)
K1 ⊆ K2 . . .⊆ Km = K , and to compute the Betti numbers incrementally.
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Proposition 6.3.1. Let K and K ′ be two∆-complexes such that K ′ = K ∪σ whereσ is
a k -simplex. If the boundary ofσ in K ′ is a boundary in K , we have

βi (K
′) =

�

βi (K ) +1 if i = k
βi (K ) otherwise.

Otherwise,

βi (K
′) =

�

βi (K )−1 if i = k −1
βi (K ) otherwise.

PROOF. Let us denote with a prime the objects related to K ′. The chain complexes
of K and K ′ are identical except for the part Ck →∂k Ck−1, thus β ′i =βi for i 6= k , k −1.

If ∂ ′kσ is a boundary in K , i.e., ∂ ′kσ ∈ Im∂k , then Im∂ ′k = Im∂k . Thus β ′k−1 = βk−1,
and

rank ker∂ ′k = rank C ′k − rank Im∂ ′k = rank Ck +1− rank Im∂k = rank ker∂k +1.

Thus, β ′k =βk +1.
In the other case, we have rank Im∂ ′k = rank Im∂k + 1 and ker∂ ′k = ker∂k , which

gives similarly β ′k−1 =βk−1−1 and β ′k =βk .

This proposition allows to compute the Betti numbers of a∆-complex inductively,
provided one can test whether the boundary of each newly added simplex was already
a boundary. In low dimensions, this is easy: a 0-dimensional complex, i.e., a vertex
has no boundary, and a 1-dimensional complex, i.e., an edge, has two vertices as its
boundary. These were already a boundary if and only if they are in the same connected
component of K , which can be tested easily (or not so easily but very efficiently using
a Union-Find data structure). Some extensions to 2 and 3-dimensional complexes
embedded in S3 are discussed in the article of Delfinado and Edelsbrunner [DE95],
and for the general case this test can be done using the linear algebraic machinery
alluded to above.

6.3.3 Over the integers: the Smith-Poincaré reduction algorithm

When the coefficient ring is not a field, one can still compute the homology groups,
but this requires slightly more advanced techniques, which we now introduce in the
paradigmatic case of the integers Z. The Smith-Poincaré reduction algorithm is a
variant of Gaussian elimination, tailored to deal with the integers instead of the reals.

The Smith normal form of an r × c integer matrix M is the description of M as a
product M = SM̃ T , where S is an invertible integral r × r matrix, T is an invertible
integral c × c matrix and M̃ is an integral r × c matrix with only diagonal coefficients
and each coefficient is a multiple of the previous one (some diagonal coefficients can
be zero, but by this condition they have to be the last one). Throughout this paragraph,
we will use without mention the well known connections between the multiplication
by invertible matrices and the elementary operations on rows and columns. Note
the similarity with Gaussian elimination, which consists of a similar factorization but
without the constraint that the matrices are integral.
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Let us assume that we put all the boundary operators ∂k in Smith normal form,
with diagonal elements dk1

, . . . , dkmk
, then the boundary, cycle, and homology groups

are as follows: Zk =Znk−mk , Bk =Zmk+1 and

Hk =Znk−mk−mk+1 ⊕
mk+1
⊕

i=1

Zdki
,

where it is understood that Z1 is trivial and is to omitted from this decomposition.
To prove the existence of a Smith normal form, we start with the following prepara-

tory lemma:

Lemma 6.3.2. There exist integral matrices S ′ and T ′ such that M = S ′M̃ T ′ and in
M̃ = (m ′

i j ), all the m ′
i j are multiple of m ′

11.

PROOF. We can assume that M is non-empty, otherwise the lemma is trivial. Let
mi j be the coefficient with the smallest absolute value. The proof is an induction on
this absolute value.

If all the other coefficients are a multiple of mi j (which includes the base case of
the induction mi j = 1), we can put it in the top-left corner using permutations of the
rows and the columns, which translate into permutation matrices for S and T .

Otherwise, there is some mk l that is not a multiple of mi j . If k = i or j = l , doing the
Euclidean division of mk l =λmi j +α, and subtracting λ times the ith/jth row/column
to the kth/lth row/column, we have α<mi j and we proceed by induction.

Finally, if all the coefficients on the ith row and the kth column are multiples of
mi j , but some mk l persists in not being one, then we have mi l = λmi j for some λ.
Subtracting λ−1 times the jth column to the lth column, mi l gets transformed into α,
and either |mk l |<α and we proceed by induction, or we are in the previous case.

We can now prove the theorem

Theorem 6.3.3. Every integral matrix can be decomposed in a Smith normal form.

PROOF. By the previous lemma, we can transform the top left element into one that
divides all the other ones. Then, this element can be used to kill all the non-diagonal
elements in the first row and column, and to obtain the matrix







m11 0 . . . 0
0

. . . M ′

0







where all the elements of M ′ are multiple of m11. Then one can further reduce M ′ by
induction.

Exercise 6.3.4. Show that the Smith normal form of a matrix is unique.
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The proof above yields an easily implementable algorithm to compute the Smith
normal form, and thus the integral homology groups of a∆-complex. However, the
complexity of this algorithm is not so good: the size of the integers involved in the
computations may easily explode – it is often hidden under the rug, but the same
problem arises with the usual Gaussian elimination, which can be circumvented
using the Bareiss algorithm (see for example the book of von zur Gathen and Ger-
hard [VZGG13]). More careful algorithms can be used to control the size of the integers
and compute a Smith normal form in polynomial time, we refer to the survey of Dumas
et al. [DHSW03].
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The theory of persistent homology developed from 2000, motivated by practical
problems related to approximation and reverse engineering [Rob99, ELZ00]. The main
objective is to infer the topology of an object given by a finite cloud of points that
approximates the object. In a typical application one is given a sampling P of the
surface S of a manufactured object captured by some probing device. The question
is to recover topological invariants (e.g., the number of connected components) of
S with the sole knowledge of P . Although S and P may look very different, their
ε-neighborhood have a similar topology for an appropriate range of ε. Recall that
the ε-neighborhood of an object is the union of balls of radius ε centered at every
point of the object. See Figure 7.1. This crucial observation is the basis of persistent
homology. Since the correct range of ε is unknown and depends on the density of the
sampling with respect to S , one is led to study the topology of the whole sequence
of ε-neighborhoods of P for ε ranging from zero to infinity. See Figure 7.2. Note that
ε < η implies the inclusion of the ε-neighborhood in the η-neighborhood. Such a
nested sequence of spaces is called a filtration. By applying the homology functor,
each inclusion X ⊂ Y in the filtration induces a linear map H∗(X )→H∗(Y ). The idea
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S

P

Figure 7.1: Left, an approximate sampling of a curve S . Middle, the ε-neighborhood
of S . Right, the ε-neighborhood of P .

Figure 7.2: As ε increases, the topology of the ε-neighborhoods of P changes.

of persistent homology is to apply the homology functor to the filtration and study
the resulting sequence of maps as a whole rather than the homology of each space
individually. This sequence of maps not only provides topological information on
each space in the filtration but also indicates how the spaces are nested. As a simple
example consider the inclusions of a circle in a 2-dimensional torus as on Figure 7.3.

S1 0−→T2 S1 I d×0−→ T2

⊂ ⊂

Figure 7.3: The circle may be included as a zero homologous cycle (left) or a non-trivial
cycle (right) in the torus. While the induced maps in homology have the same domain
and codomain, the maps themselves are distinct.

7.1 Persistence Modules

For computational reasons we shall only consider homology with coefficients in a field
F. Hence, a filtration X1 ⊂ X2 ⊂ · · · ⊂ Xn gives rise to a sequence H∗(X1)→H∗(X2)→ ·· ·→
H∗(Xn )of linear maps between the vector spaces H∗(X i ). In general, a sequence of linear
maps between spaces indexed by an ordered set (typically [1, n ], or a subset of R) is
called a persistence module. The persistence modules over a fixed set of indices form
a category. Here, taking [1, n ] as indices, a morphism between persistence modules
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( fi : Ei → Ei+1)1≤i<n and (g i : Fi → Fi+1)1≤i<n is a sequence of linear maps φi : Ei → Fi

that makes the diagram

( fi ) : E1
f1 //

φ1

��

E2
f2 //

φ2

��

. . .
fn−1 // En

φn

��
(g i ) : F1

g1 // F2
g2 // . . .

gn−1 // Fn

commute (i.e.,φi+1 ◦ fi = g i ◦φi ). The modules ( fi ) and (g i ) are isomorphic if we can
choose the φi to be isomorphisms. The direct sum of persistence modules ( fi ) and
(g i ) is the persistence module

( fi )⊕ (g i ) : E1⊕ F1
f1⊕g1−→ E2⊕ F2

f2⊕g2−→ ·· ·
fn−1⊕gn−1−→ En ⊕ Fn ,

where, as usual, fi ⊕ g i maps (x , y ) ∈ Ei ⊕ Fi to ( fi (x ), g i (y )).

7.1.1 Classification of Persistence Modules

A persistence module is decomposable if it is isomorphic to the direct sum of two
non-trivial persistence modules. It is otherwise indecomposable. In this section we
only consider finite persistence modules indexed over [1, n ], and for 1≤ a ≤ b ≤ n +1
we denote by I[a , b [ the persistence module

1
0−→ ·· · −→ 0−→

a
F

I d−→ ·· · I d−→
b−1
F −→

b
0 · · · −→

n
0

whose i th space is the 1-dimensional vector space over F if i ∈ [a , b [ and 0 otherwise.

Exercise 7.1.1. Show that I[a , b [ is indecomposable.

The main result about the classification of persistence modules is the uniqueness
of the decomposition into indecomposables.

Theorem 7.1.2. Let ( fi )1≤i<n be a persistence module. There exists a unique multiset I
of subintervals of [1, n +1[ such that

( fi )1≤i<n
∼=

⊕

[a ,b [∈I

I[a , b [,

where each interval in this sum occurs with its multiplicity in I .

The multiset I is the barcode of ( fi )1≤i<n . It is composed of persistence intervals.

Corollary 7.1.3. The barcode is a complete invariant for the isomorphism classes of
persistence modules.

Given a persistence module E1
f1−→ E2

f2−→ ·· ·
fn−1−→ En , we let fi , j : Ei → E j be the

composition of the fk ’s between ei and e j . Precisely, we set

• ∀i ∈ [1, n ] : fi ,i = I dEi
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• ∀1≤ i < j ≤ n : fi , j = fi+1, j ◦ fi and f j ,i = 0.

We also denote the rank of fi , j by βi , j . The multiplicity of interval [i , j [ in the barcode
I is denoted by mi , j .

Lemma 7.1.4. mi , j = (βi , j−1−βi−1, j−1)− (βi , j −βi−1, j )

PROOF. Suppose that E1
f1−→ E2

f2−→ ·· ·
fn−1−→ En

∼=
⊕

[a ,b [∈I I[a , b [. We easily compute

βi , j (I[a , b [) =

�

1 if [i , j ]⊂ [a , b [
0 else.

Note that for any persistence modules (gk ) and (hk )we haveβi , j ((gk )⊕(hk )) =βi , j ((gk ))+
βi , j ((hk )). It follows thatβi , j (( fk )) counts the number of persistence intervals of ( fk ) that
contain [i , j ]. Hence, δi , j :=βi , j −βi−1, j counts the number of persistence intervals of
the form [i ,`[, ` > j . We infer that mi , j =δi , j−1−δi , j = (βi , j−1−βi−1, j−1)− (βi , j −βi−1, j ).

Consider a vector x ∈ Ei in the persistence module ( fi )1≤i<n = E1
f1−→ E2

f2−→ ·· ·
fn−1−→ En .

We put x ( j ) := fi , j (x ). A compatible basis is a family of vectors X ⊂
⋃

i Ei , the union
being considered as disjoint, so that

X (i ) := {x (i ) | (x ∈ X )∧ (x (i ) 6= 0)}

is a basis of Ei for 1 ≤ i ≤ n . In particular, x , y ∈ X and x (i ) 6= 0 implies y (i ) 6= x (i ).
The persistence interval of x ∈ X is defined as Ix = {i | x (i ) 6= 0}. For convenience, we
introduce the activation function a :

⋃

i Ei → [1, n ] such that x ∈ Ea (x ) for all x ∈
⋃

i Ei .
Hence, the lower bound of Ix is a (x ).

Lemma 7.1.5. If ( fi )1≤i<n admits a compatible basis X , then ( fi )1≤i<n has a decomposi-
tion whose barcode is the multiset of persistence intervals {Ix | x ∈ X }.

PROOF.
⊕

x∈X I(Ix ) has an obvious compatible basis Y obtained by choosing for
every x ∈ X a generator of F at index a (x ). It remains to check that the persistence
modules ( fi )i and

⊕

x∈X I(Ix ) are isomorphic by constructing an isomorphism sending
the bases X (i ) to Y (i ).

Proposition 7.1.6. Every persistence module admits a compatible basis.

PROOF. For a persistence module E1
f1−→ E2

f2−→ ·· ·
fn−1−→ En we build a compatible basis

by induction on n . If n = 1, a compatible basis is provided by any basis of E1. We next
assume to have constructed a compatible basis X for

E1
f1−→ E2

f2−→ ·· ·
fn−2−→ En−1. (7.1)

Let k = |X | be the number of basis vectors in X . We recursively define compatible
bases X1 = X , X2, . . . , Xk for (7.1). The goal is to get a compatible basis Xk such that
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{x (n ) | x ∈ Xk ∧ x (n ) 6= 0} is an independent family in En . To this end we first order
the elements x1, x2, . . . , xk of X in a non-decreasing fashion with respect to activation,
i.e. such that 1≤ j < k implies a (x j )≤ a (x j+1). Suppose we have constructed X i−1 =
{y1, y2, . . . , yk} for some k ≥ i > 1, such that the yj are indexed in non-decreasing order
for activation, and such that the nonzero vectors in {y1(n ), y2(n ), . . . , yi−1(n )} form an
independent family in En .

• If yi (n ) = 0 or if {y1(n ), y2(n ), . . . , yi (n )} is independent, we set X i = X i−1,

• otherwise, we may write yi (n ) =
∑

j<i λ j yj (n ). We then put y ′i = yi −
∑

j<i λ j yj (i ),
so that y ′i (n ) = 0, and set X i = X i−1 \ {yi }∪ {y ′i }.

In both cases it is easily seen that X i is a compatible basis for (7.1). By construction the
nonzero images in En of the i first vectors in X i form an independent family. By induc-
tion, Xk satisfies our goal. It remains to complete Xk with a basis of a complementary

space of fn−1(En−1) in En to obtain a compatible basis for E1
f1−→ E2

f2−→ ·· ·
fn−1−→ En .

PROOF OF THEOREM 7.1.2. By Proposition 7.1.6, the persistence module ( fi )i has a
compatible basis, hence a decomposition into indecomposable modules of the form
I[a , b [ by Lemma 7.1.5. This decomposition is determined by its barcode which is
uniquely defined according to Lemma 7.1.4.

7.1.2 Restrictions of Persistence Modules

The barcode of a persistence module and of its sub-sequences can be easily related.
This relationship will be used in the proof of the stability theorem in Section 7.4.1. In
order to formalize the relation, consider a strictly increasing mapκ : [1, m ]→ [1, n ]. The

restriction to κ of the persistence module ( fi ) : E1
f1−→ E2

f2−→ ·· ·
fn−1−→ En is the persistence

module

( fi ) κ : Eκ(1)
fκ(1),κ(2)−−−→ Eκ(2) · · ·

fκ(m−1),κ(m )−−−−−→ Eκ(m )

where fi , j was defined below Corollary 7.1.3. Consider the map

µ : [1, n +1] → [1, m +1]
i 7→ min{ j ∈ [1, m +1] | κ( j )≥ i }

where by convention κ(m +1) = n +1. It is not difficult to see that

I[a , b [ κ =

�

I[µ(a ),µ(b )[ if µ(a )<µ(b )
0 otherwise.

As an immediate consequence:

Lemma 7.1.7. Let I be the barcode of a persistence module. The barcode of its restriction
to κ is the multiset { [µ(a ),µ(b )[}[a ,b [∈I and µ(a )<µ(b ).

Exercise 7.1.8. Prove the above evaluation for I[a , b [ κ.
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7.2 Application to Topological Inference

As explained in the introduction one of the main motivation for the persistence ho-
mology theory is the ability to recover the topology of a shape from a sampled set of
points, say P . We further remarked that it is appropriate to study the filtration (P ε)ε∈R+
of the ε-neighborhoods for ε ranging from 0 to infinity. We are thus faced with the
computation of the barcode of the corresponding induced persistence module. In
general, it is more convenient to use simplicial complexes to represent topological
spaces in a computer. In particular, the computation of homology groups becomes
relatively easy, as seen in the preceding Chapter 6. In order to reduce the filtration (P ε)
to a filtration of a simplicial complexes, we can rely on the following nerve theorem.
The nerve of a cover (Ui )i∈I of a space X is the abstract simplicial complex whose
set of vertices is I and whose simplices are subsets J ⊂ I such that ∩ j∈J Uj 6= ;. See
Figure 7.4 for an illustration. A cover (Ui )i∈I is good if its parts Ui are open sets and if
any nonempty intersection of Ui ’s is contractible1.

Figure 7.4: Left, the nerve, or Čech complex of a union of balls. Right, the Rips complexe
with parameter the diameter of the balls.

Theorem 7.2.1 (Nerve –, Leray’1945, Borsuk’1948). Let (Ui )i∈I be a good cover of X ,
then the nerve of (Ui )i∈I has the same homotopy type as X .

Considering the open balls of radius ε as a cover of P ε, we observe thanks to the
convexity of the balls that they constitute a good cover. Their nerve C ε(P ) thus has the
same homotopy type as P ε. This nerve is sometimes called the Čech complex of P of
parameter ε. What is more, if ε < η the inclusions P ε ,→ P η and C ε(P ) ,→C η(P ) (as a
subcomplex) form a commutative diagram with the homotopy equivalences provided
by the nerve theorem C ε(P )↔ P ε and C η(P )↔ P η:

C ε(P ) �
� //

OO

��

C η(P )OO

��
P ε � � // P η

1i.e., has the homotopy type of a point, where two spaces have the same homotopy type if there
exist maps f : X → Y and g : Y → X , called homotopy equivalences, such that g ◦ f is homotopic to
the identity on X and f ◦ g is homotopic to the identity on Y .
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See [CO08] for a proof. It follows that the persistence modules induced by the filtrations
(P ε)ε∈R+ and (C ε(P ))ε∈R+ are isomorphic, hence have the same barcode.

In practice, the construction of C ε(P ) from P and ε is not very efficient. One should
check for every subset of P if the corresponding ε-balls have a common intersection.
This is why the Rips complex is sometimes preferred. The Rips complex R ε(P ) of
parameter ε associated with P is the clique complex of the graph over P where two
points are linked by an edge if they are at distance less than ε. Recall that the clique
complex of a graph is a simplicial complex over the vertices of the graph and has a
simplex for every clique of the graph. Hence, event though the Rips complexe can
be bigger than the Čech complex it is much easier to compute and can be concisely
encoded by its graph. Furthermore, it is easily seen that

C ε/2(P )⊂R ε(P )⊂C ε(P )

In fact, for P ⊂Rd it was shown [DSG07] that

R ε(P )⊂C η/2(P )⊂Rη(P )

with η= ε
q

2d
d+1 . Such relations can be used to replace the Čech complex by the Rips

complex in the computations of the barcode. See [DSG07] for more details. The next
section explains how to compute the barcode of a filtration of simplicial complexes.

7.3 Computing the Barcode

Consider a filtrationK : K1 ⊂ K2 ⊂ . . .⊂ Kn of a simplicial complex K = Kn . We want
to compute the barcode I (K ) of the induced persistence module. In practice we
restrict to simple filtrations for which each Ki = Ki−1 ∪σi is obtained by adding a
single simplexσi to Ki−1 (by convention K0 = ;). Thanks to Lemma 7.1.7, this actually
allows to compute the barcode of non-simple filtrations.

We fix a coefficient fieldF and denote by C (Ki ), Z (Ki ) and B (Ki ) theF-vector spaces
of chains, cycles and boundaries of Ki , respectively. Hence, the homology group of
Ki (actually an F-vector space) is given by H (Ki ) = ker∂ /Im∂ = Z (Ki )/B (Ki ), where
∂ : C (Ki )→ C (Ki ) is the boundary operator. We omit the dimension of the relevant
simplices in C (Ki ), Z (Ki ), B (Ki ) and H (Ki ), considering that C (Ki ) (resp. Z (Ki ) . . . ) is
the direct sum of the chain spaces Ck (Ki ) for each dimension k . By the rank-nullity
theorem applied to the boundary operator:

dim C (Ki ) = dim Z (Ki ) +dim B (Ki )

Noting that dim C (Ki ) is the number of simplices in Ki , we get

�

dim Z (Ki )−dim Z (Ki−1)
�

+
�

dim B (Ki )−dim B (Ki−1)
�

= 1

Since dim Z (Ki )≥ Z (Ki−1) and dim B (Ki )≥ B (Ki−1), we have

1. either dim Z (Ki ) = dim Z (Ki−1) +1 and B (Ki ) = B (Ki−1),

2. or Z (Ki ) = Z (Ki−1) and dim B (Ki ) = dim B (Ki−1) +1.
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We say that index i (or simplexσi ) is positive in the first case and negative in the other
case. We denote byP (K ) andN (K ) the set of positive, respectively negative, indices.

Lemma 7.3.1. The following are equivalent:

• σi is positive,

• σi is in the support of a cycle z ∈ Z (Ki ). Moreover, Z (Ki ) = Z (Ki−1)⊕Fz ,

• ∂ σi ∈ B (Ki−1),

The proof is left as an exercise. See Figure 7.5. Note that in any case,

σi

Ki−1

Ki−1

σi

Figure 7.5: Left,σi belongs to a cycle of Ki and is thus positive. Right,σi is negative.

B (Ki ) = B (Ki−1) +F∂ σi . (7.2)

The above sum is direct if and only ifσi est negative. The endpoints a and b of the
persistence interval [a , b [ are respectively called its lower and upper bound.

Lemma 7.3.2. Every persistence interval [i , j [∈ I (K ) satisfies

(i , j ) ∈P (K )× (N (K )∪{n +1}).

Moreover,

• Each positive index is the lower bound of a unique interval in I (K ).

• Each negative index is the upper bound of a unique interval in I (K ).

Note that n +1 is not an index of the filtration and that it may be the upper bound
of several persistence intervals.

PROOF. The morphismϕi−1 : H (Ki−1)→H (Ki ) is a quotient of the inclusion Z (Ki−1)⊂
Z (Ki ) by B (Ki−1) at the domain and by B (Ki ) at the codomain. From the definition of a
positive simplex it follows thatϕi−1 is one-to-one and that dim H (Ki ) = dim H (Ki−1)+1
whenσi is positive. In this case i cannot be the upper bound of a persistence interval
of the form [a , i [. Indeed, the corresponding indecomposable module I[a , i [would
appear in the decomposition of (H (Ki ))i . However, the segment of I[a , i [ between
index i − 1 and i is the map F→ 0, which is obviously not injective. Similarly, if σi
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is negative then ϕi−1 is onto and dim H (Ki ) = dim H (Ki−1)− 1. As a consequence, i
cannot be the lower bound of any persistence interval. On the other hand, dim H (Ki )
is the number of persistence intervals that contain i . It easily follows that exactly one
interval starts whenσi is positive and one interval ends whenσi is negative.

We can thus define the birth function as the map b :N (K )→P (K ) such that for all
j ∈N (K ), [b ( j ), j [∈ I (K ). In particular,

I (K ) = {[b ( j ), j [} j∈N (K ) ∪ {[i , n +1[}i∈P (K )\Im b (7.3)

Hence, we may recover the barcode I (K ) from the knowledge of the signs of the
simplices and of the birth function.

7.3.1 Compatible Boundary Basis

A Compatible boundary basis is a family of cycles B (K ) = {x j } j∈J ⊂ Z (K ), with
J ⊂ [1, n ], such that:

1. ∀i ∈ [1, n ],{x j } j∈J∩[1,i ] is a basis of B (Ki ),

2. the map β : J → [1, n ], j 7→ (maximum index of the simplices in x j ) is injective.

Lemma 7.3.3. Suppose thatK has a compatible boundary basis, then β coincides with
the birth function b .

PROOF. The above Condition 1 and the remark after Equation (7.2) show that J =
N (K ). Lemma 7.3.1 also implies that β ( j ) ∈P (K ) for all j ∈ J . For every i ∈P (K ),
define zi ∈ Z (Ki ) as follows.

• If i =β ( j ) for some j ∈ J , then zi = x j .

• Else, choose zi such that Z (Ki ) = Z (Ki−1)⊕Fzi (cf. Lemma 7.3.1).

Remark that the simplex with maximum index in the support of zi isσi . Hence, (cf.
Lemma 7.3.1) {z j } j∈P (K ), j≤i is a basis of Z (Ki ). Let [z ]i denote the homology class
of cycle z in H (Ki ). We need to check that ([z j ] j ) j∈P (K ) is a compatible basis for the
homology sequence ofK and that the persistence interval of each [zβ ( j )]β ( j ) is [β ( j ), j [,
while the persistence interval of [z j ] j , j ∈P (K ) \β (J ), is [ j , n +1[. We claim that

Z (i ) := {[zβ ( j )]i }( j∈J )∧(β ( j )≤i )∧( j>i ) ∪{[z j ]i }( j≤i )∧( j∈P (K )\β (J ))

is a basis of H (Ki ). Since [zβ ( j )] j = [x j ] j = 0, we also have [zβ ( j )]i = 0 for i ≥ j and it
follows from the above remark that Z (i ) spans H (Ki ). To see that Z (i ) is an independent
set, consider a linear combination

∑

( j∈J )∧(β ( j )≤i )∧( j>i )α j [zβ ( j )]i+
∑

( j≤i )∧( j∈P (K )\β (J ))α j [z j ]i
of elements in Z (i ). If it is zero, then the combination c :=

∑

( j∈J )∧(β ( j )≤i )∧( j>i )α j zβ ( j )+
∑

( j≤i )∧( j∈P (K )\β (J ))α j z j of the corresponding cycles must lie in B (Ki ). By the first condi-
tion in the definition of a compatible boundary basis, cycle c must be equal to a linear
combination of {x j | ( j ∈ J )∧ ( j ≤ i )}. Because the maximum index of the simplices
in the support of each zβ ( j ), z j and x j are pairwise distinct, it must be that all the
coefficients α j in c are null, thus concluding the proof of the claim. We finally observe
that the persistence interval of [z j ] j is the set of i ’s for which [z j ]i ∈ Z (i ). Whence,
for j ∈ J the persistence interval of [zβ ( j )]β ( j ) is [β ( j ), j [, while for j ∈P (K ) \β (J ) the
persistence interval of [z j ] j is [ j , n +1[.
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7.3.2 Algorithm

Lemma 7.3.3 and Equation (7.3) show that it is enough to construct a compatible
boundary basis forK to derive the sign of each simplex and the barcode ofK . We
can construct a compatible boundary basis by induction on the size n of the filtration.
The base case n = 1 is trivial because the unique simplex in the filtration must be a
(positive) vertex. We thus assume that we have computed a compatible boundary
basisB (K ′) = {x j } j∈J for the sub-filtrationK ′:

K1 ⊂ K2 ⊂ . . .⊂ Kn−1

We denote by b : J →P (K ′) the corresponding birth function. Suppose that we can
write

∂ σn =
∑

j∈J

α j x j + y , (7.4)

where

1. either y = 0,

2. or the maximum index of the simplices in y is not in b (J ).

In case 1, we have B (Kn ) = B (Kn−1) andB (K ′) remains a compatible boundary basis
forK . In case 2, n is negative andB (K ′)∪{y } is a compatible boundary basis forK .

By the second condition in its definition, every compatible boundary basis is in
echelon form when the cycles are written as combination of simplices. We can thus
apply Gaussian elimination as in the following pseudocode to obtain a decomposition
as in (7.4).

y := ∂ σn

i :=maximum index of the simplices in y
While ( (y 6= 0)∧ (i ∈ b (J )) )

j := b −1(i )
α := coefficient ofσi in y
β := coefficient ofσi in x j

y := y − (α/β )x j

i :=maximum index of the simplices in y \∗ undefined if y = 0 ∗\
End while
\∗ y = 0 or y = xn when leaving the while loop ∗\

We can store each x j as a table of coefficients indexed by the n simplices of the
filtration. We represent the birth function as a table of length n ; the j th entry contains
b ( j ) if j is negative and 0 otherwise. We also store the inverse map b −1 in a table of
length n . The computation of xn by the above loop takes O (n 2) time. Hence,

Proposition 7.3.4. We can compute a compatible boundary basis and the birth function
of a filtration of length n in O (n 3) time on an F-RAM machine. We can moreover
compute the barcode of the filtration in the same amount of time.
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7.4 Persistence Diagrams

A function f : K →R over a simplicial complex K is non-decreasing if

∀σ,τ ∈ K :σ≺τ =⇒ f (σ)≤ f (τ)

whereσ≺τmeans “σ is a face of τ”. A filtration of K can be equivalently described
by a non-decreasing function f over K . Indeed, if f1 < f2 < . . .< fn is the sequence of
values of f , then the sequence

f −1([−∞, f1])⊂ f −1([−∞, f2])⊂ . . .⊂ f −1([−∞, fn ]) (7.5)

is a filtration of K , which we denote byK f . Conversely, any filtration K1 ⊂ K2 ⊂ . . .⊂
Kn = K has the formK f for f defined over K by f (σ) = i ⇔σ ∈ Ki \Ki−1.

We set fn+1 =+∞. The persistence diagram D ( f ) of f is the multiset of points in
the extended plane (R∪{−∞,+∞})2 given by

D ( f ) = {( fi , f j )}[i , j [∈I (K f ) ∪ ∆
∞,

where∆∞ is the multiset of points on the diagonal {x = y }, each counted with count-
ably infinite multiplicity. We say that the filtration K : K1 ⊂ K2 ⊂ . . . ⊂ Km = K is
compatible with f : K →R ifK f is a sub-filtration ofK . In other words,K is com-
patible with f if f is constant over each Ki \Ki−1 and if fK : [1, m ]→R, i 7→ f (Ki \Ki−1)
is non-decreasing. In this case we define the persistence diagram of f relatively to
K as the multiset:

D ( f ,K ) = {
�

fK (i ), fK ( j )
�

}[i , j [∈I (K ) ∪ ∆∞

where we have put fK (m +1) = +∞. In particular, D ( f ) =D ( f ,K f ).

Lemma 7.4.1. D ( f ) =D ( f ,K ) for any filtrationK compatible with f .

PROOF. Let f1 < f2 < . . .< fn be the sequence of values of f over K . We set

κ : [1, n ]→ [1, m ], i 7→max{ j | fK ( j ) = fi }.

Hence, f −1([−∞, fi ]) = Kκ(i ) and the persistence module induced by the homology of
K f is the restriction toκof the persistence module induced byK (see Section 7.1.2). By
Lemma 7.1.7 we have I (K f ) =

�

[µ(i ),µ( j )[
	

[i , j [∈I (K ) and µ(i )<µ( j )
, withµ as in Lemma 7.1.7.

It follows that

D ( f ) =D ( f ,K f ) = {
�

fµ(i ), fµ( j )
�

| [i , j [∈ I (K ) and µ(i )<µ( j )} ∪ ∆∞

We easily check from the definitions of κ and µ that fµ(i ) = fK (i ). Hence,

D ( f ) = {
�

fK (i ), fK ( j )
�

| [i , j [∈ I (K ) and µ(i )<µ( j )} ∪ ∆∞

Now, if µ(i ) ≥ µ( j ) for some interval [i , j [∈ I (K ) then fK (i ) = fK ( j ) and the corre-
sponding point ( fK (i ), fK (i )) is “absorbed” by the diagonal∆∞. We finally conclude
D ( f ) =∆∞ ∪{

�

fK (i ), fK ( j )
�

}[i , j [∈I (K ) =D ( f ,K ).
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7.4.1 Stability of Persistence Diagrams

The stability of the persistence diagram D ( f )with respect to f is the main result of
Persistence theory. We first introduce the bottleneck distance dB between persistence
diagrams. Note that thanks to the diagonal∆∞ any two diagrams D , D ′ are in bijection.
We set

dB (D , D ′) = inf
φ

sup
p∈D
‖p −φ(p )‖∞

whereφ : D →D ′ runs over the bijections between D and D ′ and ‖p−q‖∞ =max{|xp−
xq |, |yp − yq |} (by convention, |+∞−x |= 0 if x =+∞ and |+∞−x |=+∞ otherwise).
See Figure 7.6. Note that dB is not a distance properly speaking: it can take infinite

φ

Figure 7.6: The bottleneck distance is computed by minimizing over all bijectionsφ
the largest distance in each pairing.

values but otherwise satisfies the triangular inequality.
As usual, for any functions f , g : K →R, we denote their L∞ distance by

‖ f − g ‖∞ = sup
σ∈K
| f (σ)− g (σ)|

Theorem 7.4.2 (Stability –, [CSEH07, CSEM06]). dB (D ( f ), D (g ))≤ ‖ f − g ‖∞

PROOF. Put ft = f + t (g − f ). note that if f , g are non-decreasing over K , so is ft .
For every two simplicesσ,τ ∈ K , there exists u ∈ [0, 1] such that the sign of ft (σ)− ft (τ)
is constant for t ∈ [0, u ] and the same is true for t ∈ [u ,1]. There is thus a finite
partition 0= t0 < t1 < . . .< tr = 1 of2 [0,1] so that the relative order of the ft -values of
the simplices is independent of t over each interval [ti , ti+1]. It follows that for each
i ∈ [0, r −1]we can exhibit a simple filtrationKi compatible with every function ft for
t ∈ [ti , ti+1]. By Lemma 7.4.1, we have

D ( ft ) =D ( ft ,Ki ) =∆
∞ ∪{

�

ft (σa ), ft (σb

�

}[a ,b [∈I (Ki )

whereσa is the a th simplex ofKi . Considering the obvious correspondence between
D ( fti

) and D ( fti+1
) that restricts to the identity over ∆∞ and sends

�

fti
(σa ), fti

(σb )
�

to
�

fti+1
(σa ), fti+1

(σb )
�

, we infer dB (D ( fti
), D ( fti+1

)) ≤ (ti+1 − ti )‖ f − g ‖∞. Applying the
triangular inequality we finally conclude

dB (D ( f ), D (g ))≤
∑

i

(ti+1− ti )‖ f − g ‖∞ = ‖ f − g ‖∞

2r ≤
�m

2

�

+1 where m is the number of simplices of K
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The Stability theorem was refined in a more general context by Chazal et al. and
Bubenik and Scott [CCSG+09, CDSGO12, BS14]. A first generalization is to consider
“continuous” persistence module indexed over R. This is a family of vector spaces
(Vx )x∈R and a family of linear maps (vx ,y : Vx → Vy )x≤y satisfying vx ,x = I dVx

and
vx ,z = vx ,y ◦ vy ,z for all x ≤ y ≤ z . We denote it by V. Given two persistence modules
V andW over R and a real number d , a degree d morphism ϕ :V→W is a family of
linear maps (ϕx : Vx →Wx+d )x∈R such that the following diagram:

Vx
//

ϕx

!!

Vy
ϕy

!!
Wx+ε

//Wy+ε

commutes for all x ∈ R. An ε-interleaving is a pair of morphisms ϕ : V→W and
ψ :W→V, each of degree ε, such that the following diagrams:

Vx
//

ϕx

��

Vx+2ε

Wx+ε

ψx+ε

BB
Vx+ε

ϕx+ε ��
Wx

//

ψx
BB

Wx+2ε

commute. The interleaving distance between V,W is

di (V,W) = inf{ε | ∃ε-interleaving between V,W}

When isV is pointwise finite dimensional, i.e., when each space Vx if finite dimensional,
it can be shown that the decomposition Theorem 7.1.2 remains valid [CB15]. This
time each indecomposable module I(ι)may apply to any type of interval ι (half-open,
closed, semi-infinite,...) and satisfies I(ι)x = F for x ∈ ι and I(ι)x = 0 otherwise, with
identity or zero maps wherever it applies. The persistence diagram is then defined
as the multiset of points (u , v )where u , v runs over the endpoints of the persistence
intervals.

Theorem 7.4.3 (Isometry –, [CCSG+09, CDSGO12]). Let V andW be pointwise finite
dimensional persistence modules over R such that rank vx ,y and rank wx ,y is finite for
every x < y . Then,

dB (D (V), D (W)) = di (V,W)

The stability theorem can be deduced from the isometry theorem as follows.
Let X be a topological space and f : X → R. Put X f

t := f −1(−∞, t ]. The filtration
X f := (X f

t )t ∈R induces a persistence module H (X f ) by applying the homology func-
tor. Now, ‖ f − g ‖∞ ≤ ε implies X f

t ⊂ X g
t+ε ⊂ X f

t+2ε. It follows that H (X f ), H (Xg ) are
ε-interleaved, whence by the isometry Theorem di (H (X f ), H (Xg )) ≤ ε. In turn, this
implies dB (D ( f ), D (g )) = di (H∗(X f ), H∗(Xg ))≤ ‖ f − g ‖∞.

Exercise 7.4.4. Check that a persistence module over an ordered set (X ,≤), e.g. X =R,
is the same as a functor from the category (X ,≤) to the category of F-vector spaces.
Here, the objects of (X ,≤) are the elements of X and each pair (x , y ) of objects has
exactly one morphism if x ≤ y (and none otherwise).
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In the next two courses, we switch our attention from 2-dimensional space (sur-
faces) to 3-dimensional space, focusing on knots, and incidentally dealing a bit with
3-manifolds. This increase in dimension has a dramatic effect from the point of view of
computational topology: while most topological problems on surfaces can be solved
efficiently, their generalizations in dimension 3 are much harder to understand. As
an illustration, while recognizing closed surfaces can be done in linear time by just
computing the Euler characteristic and orientability, all the algorithms known to de-
tect whether two 3-dimensional spaces are homeomorphic [Jac05, Kup15a] are very
inefficient (requiring more than towers of exponentials) and complicated, relying on
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Figure 8.1: Example of knots: the trivial knot, the left and right trefoil knots, and the
figure-eight knot. These are not polygonal but can obviously be made so.

Perelman’s recent proof [Per02, Per03] of Thurston’s Geometrization Conjecture. Nev-
ertheless, despite being hard, most problems in 3 dimensions are decidable, and thus
form an interesting middle ground before higher dimensions where indecidability
results start to kick in.

8.1 Knots

A knot is a closed curve in R3, or more formally an embedding S1→R3. In contrast
with the two-dimensional case, allowing arbitrary topological knots might lead to
pathological objects known as wild knots which, while interesting in their own right,
are not very relevant from an algorithmic perspective. So we restrict our attention to
tame knots, which are polygonal1 embeddings S1→R3. We will omit the word tame
throughout these notes. Two knots are considered equivalent if they can be deformed
continuously one onto the other one without introducing self-crossings in the process.
More formally, the notion of equivalence considered here is through ambient isotopy,
that is a continuous family of homeomorphisms ht : R3 × [0,1]→ R3. Two knots K1

and K2 are (ambient) isotopic if there exists an ambient isotopy ht such that h0 = I dR3

and h1(K1) = K2. Figure 8.1 shows some examples of knots.

Remark 1: By the Alexander trick (see for example [BZ85, Proposition 1.9]), any
orientation-preserving homeomorphism of the 3-ball B3→B3 is actually an ambient
isotopy, so homeomorphisms could simply be used to define equivalence, but the
notion of ambient isotopies is more intuitive.

Remark 2: On the other hand, our notion of ambient isotopy is a bit unnatural
because it breaks the polygonal structure of tame knots. The underlying idea is that we
restrict our attention to tame knots to avoid pathologies, but once this restriction has
been made, it is much more convenient to allow any kind of continuous deformation.
Yet if one insists on only allowing polygonal deformations, one can restrict the allowed
isotopies to elementary moves or∆-moves which are illustrated in Figure 8.2. It turns
out that knots are equivalent under ambient isotopies if and only if they are equivalent
under elementary moves, see [BZ85, Proposition 1.10].

Remark 3: Another tempting definition of equivalence could be to use isotopies,
i.e., to say that two knots K1 and K2 are isotopic if there is a continuous family of
embeddings it : S1→ S3 such that i0 = K1 and i1 = K2. However, with such a definition

1Considering smooth knots leads to the same theory.
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D

Figure 8.2: An elementary move on a knot: a segment is subdivided and can be moved
along a triangle if the disk D does not intersect the rest of the knot.

Figure 8.3: Equivalence of all knots using just isotopy.

all the knots would be equivalent, as illustrated in Figure 8.3, since it allows to pull the
knotted portion progressively tighter until it disappears.

A trivial knot (or unknot) is a knot isotopic to the trivial embedding of the circle
S1→R3. Since we restrict our attention to polygonal knots, the following problem is a
well-defined algorithmic problem, which will be the focus of these two lectures.

UNKNOT RECOGNITION

Input: A knot K described as a concatenation of n segments.
Output: Is K a trivial knot?

As we will see, this is a tricky problem, the current state of the art is that it lies
in NP ∩ co-NP (see [HLP99, Lac16]), yet no polynomial time algorithm is known for
this problem. But before delving into this, let us first observe that it is not even easy
to prove that there exist non-trivial knots. In order to prove this, we introduce knot
diagrams.

8.2 Knot diagrams

A convenient way to deal with knots is to represent them using knot diagrams, that
is, a 2-dimensional orthogonal projection p : R3 → R2 to project K on R2. We call
such a projection regular if there are no triple (or worse) points and no vertex of K is
a double point. A knot diagram is obtained from a regular projection by specifying
at each crossing which strand is above the other one. By perturbing slightly either a
knot or the desired projection if needed, it is easy to associate a knot diagram with any
knot. Basically, this is what we did in Figure 8.1 without even bothering to mention
it. From the point of view of graph theory, a knot diagram is a 4-regular planar graph
where each vertex bears a marking, indicating which strand is above the other one.

The Reidemeister moves are the local moves relating knot diagrams represented
in Figure 8.4. Two knot diagrams are considered equivalent if they can be related with
isotopies of R2 and Reidemeister moves.
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Figure 8.4: The three Reidemeister moves.

Figure 8.5: Tricoloring the Reidemeister moves.

Theorem 8.2.1 (Reidemeister [Rei27]). Two knots are equivalent if and only if all their
diagrams are equivalent.

PROOF. We first prove that any two regular projections of the same knot are con-
nected by Reidemeister moves. Each projection can be identified with a point on the
sphere S2, and the non-regular projections are correspond to curves on this sphere.
By connecting p1 and p2 by a path in general position with respect to these lines, it
is enough to show that crossing a line of non-regular projections can be done with
Reidemeister moves. The three possible situations of the knot around these lines
correspond to the three Reidemeister moves. Now, since two equivalent knots can be
related using elementary moves (see Remark 2 above), it is enough to show that the
projection of an elementary move can be realized with Reidemeister moves, which is
easily verified.

We can leverage on this combinatorial approach to knot equivalence to provide an
easy proof that the trefoil knot is non-trivial.

Proposition 8.2.2. There exists a non-trivial knot.

PROOF. A knot diagram is said to be tricolorable if each strand can be colored using
one of three colors, with the following rule:

1. At least two colors must be used.

2. At a crossing, the three incident strands2 are either all of the same color or all of
different colors.

We claim that the tricolorability of a knot does not depend on the knot diagram.
By Theorem 8.2.1, it suffices to prove that Reidemeister moves preserve tricolorability,
which is illustrated in Figure 8.5.

Now, observing that the trivial knot is not tricolorable (since it can only be colored
with one color), while the trefoil knot is (see Figure 8.6), this proves that the trefoil
knot is non-trivial.
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Figure 8.6: Tricoloring the trefoil knot.

Figure 8.7: Goeritz’s unknot.

Note that this does not detect all the non-trivial knots, since the figure-eight knot
can not be colored with three colors either (left as an exercise), and it is not trivial (see
Exercise 8.3.3). Also note that for algorithmic purposes, this approach, being based on
coloring, is very inefficient.

On the other hand, Theorem 8.2.1 suggests a very candid approach to solve UNKNOT

RECOGNITION: simply try combinations of Reidemeister moves until one reaches the
trivial diagram, i.e., an embedding S1→R2. Optimistically, one might hope it is never
necessary to make a knot more complicated to untangle it, i.e., maybe the Reidemeister
move II increasing the number of crossings is not needed to reach the unknot. This
would bound the number of combinations to try and give an exponential algorithm.
However, there exist hard unknots, that is, knot diagrams of the unknot that require
to be made more complicated before reaching the unknot. Figure 8.7 shows one of
those, and there are infinite families of these.

That approach is not doomed to fail however, and there exist bounds on the number
of Reidemeister moves needed to simplify a trivial knot. In a recent breakthrough,
Lackenby obtained the following polynomial bound.

Theorem 8.2.3 (Lackenby [Lac15]). Let D be a diagram of the trivial knot with c cross-
ings. Then there exists a series of (236c )11 Reidemeister moves transforming it into the
trivial diagram.

This provides an exponential time algorithm to solve UNKNOT RECOGNITION, and
also proves that it is in NP: the certificate is the sequence of Reidemeister moves to be
applied to reach the trivial diagram. As the constant and exponent might suggest, this

2Here, the arc going “above” is considered as a single strand, while the arc going “below” is cut into
two strands.
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Figure 8.8: Links are not determined by their complements.

theorem is very intricate and we will not prove it in this course. However, we will see
another algorithm showing that the problem is in NP, based on normal surface theory,
which is one of the main technical tools in the proof of Theorem 8.2.3. So after this
course, you will be better equipped to understand the proof.

8.3 The knot complement

A central way to study knots is to study the topological properties of their complements.
For this purpose, it is convenient to compactifyR3, i.e., to add a point and identify the
result to S3 using the stereographic projection. Knots in R3 and S3 behave identically,
so we will work in this section with the latter framework. For a knot K in S3, drill a
tubular neighborhood N around K and denote the resulting space by M = S3\N . This
is an example of a 3-manifold with boundary, i.e., a topological space where every
point is locally homeomorphic to R3 or the half-space R3

|x≥0.
The study of knot complements as a tool to understand a knot is justified by the

following theorem, which at the same time sounds very obvious and is extremely hard
to prove.

Theorem 8.3.1 (Gordon-Luecke [GL89]). Knots are determined by their complements,
i.e., if two knots have complements that are homeomorphic with an orientation-preserving
homeomorphism, then they are isotopic.

To emphasize the strength of this theorem, let us just warn the reader that links,
which are embeddings of disjoint copies of S1 into R3, are not determined by their
complements: Figure 8.8 shows two links which are not ambient isotopic, yet their
complements are homeomorphic.

So now that instead of this somewhat strange notion of ambient isotopy, we reduced
the problem to determining the homeomorphism class of a space, we can try to apply
the tools that we have seen in the previous lectures to solve it. As we shall see, this will
not be very fruitful with respects to solving UNKNOT RECOGNITION.
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Figure 8.9: The Wirtinger presentation. In the last two pictures, depending on the
orientation of the strands, we will have xk xi = xi+1 xk or xi xk = xk xi+1

8.3.1 Homotopy

One can define the homotopy group π1 of the topological space M = S3 \N in the
same way as the topological fundamental group that we introduced for surfaces. We
first choose a basepoint x , consider the set of loops based at x and say that two loops
are equivalent if they are homotopic (in M , that is, if they can be deformed into each
other without crossing K ). The set of loops obtained this way forms the group π1(M ),
where the identity element is the trivial loop at x and the law is the concatenation.

It turns out that there is a fairly easy way to obtain a presentation of the groupπ1(M )
via the Wirtinger presentation. Start with a knot diagram D of K . As for tricolorability,
we consider a strand in the diagram to be and arc in the diagram between two points
where it goes “below” another arc. Number the strands of D by α1, . . . ,αn according
to the order in which they appear in D , and orient them according to an arbitrary
orientation. Now, let us pick a basepoint x somewhere above the knot (for example
in the eye of the reader), and define a set of loops x1, . . . , xn by starting at x and going
looping around αi by passing under it in a right left direction, and going back to x .

Now, at each crossing involving the strands αi ,αi+1 and αk , the loops xi , xi+1 and
xk will verify some relation, which can be simply read depending on the orientation of
the crossings, see Figure 8.9. In the first case, we will have xk xi = xi+1 xk , while in the
second case we will have xi xk = xk xi+1, we denote by ri the corresponding relation that
holds. It turns out that these relations encapsulate all the possible relations between
the generators xi .

Theorem 8.3.2. The fundamental group π1(S3 \N ) admits the presentation

< x1, . . . , xn | r1, . . . rn .>

PROOF. The formal way to prove this theorem is to decompose S3 into cells defined
by the knot K and apply the van Kampen theorem, see Hatcher [Hat02, Section 1.2].
In order to keep things simple, we provide a somewhat vague proof that should be
enough to convince the novice reader that the theorem is correct, and to convince the
expert reader (who probably already knows all this) that applying the van Kampen
theorem really yields this result.

Grow a family of vertical half-planes Z = Z1, . . . Zn under each strand of the knot
diagram, as in Figure 8.10. Some of these planes will touch (under a crossing of D ).
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Figure 8.10: Half-planes under the strands

Any loop based at x not crossing any of the Zi can be homotoped to the trivial loop,
while any loop crossing the half-planes Zi1

, . . . , Zik
is homotopic to the concatenation

of the loops xi1
, . . . , xik

, maybe some of which are inverted depending on the orien-
tations of the crossings. Thus the xi generate the set of equivalence classes of loops.
Furthermore, locally, a homotopy changing these generators either crosses a Zi in two
places, corresponding to a subword xi x−1

i , or it crosses a double intersection line of
three half-planes Zi , Zi+1 and Zk , leading to modifying the word by one of the relations.

So, fundamental groups of (complements of) knots are easy to compute, but this
is hard to exploit in order to distinguish knots. First, it is not true that non-equivalent
knots have non-isomorphic groups. Nevertheless, it is true for the unknot (it is the
only knot corresponding to group Z), and one can add additional structure to knot
groups (using peripheral systems, see [BZ85, Section 3.C]) so that they distinguish all
the knots. However, and more importantly, we also hit the same difficulty that we met
when studying surfaces: while studying the group structure of π1(M ) leads to a very
rich algebraic structure and theory, it is hard to use it to extract algorithms, since most
computational problems on groups presentations are undecidable in general. The
following exercise shows that even the simplest cases require some work.

Exercise 8.3.3. Compute a presentation of the fundamental group of the complement
of the figure-eight knot, and deduce from it that it is not trivial. Hint: Try mapping
into a non-abelian finite group.

Some positive algorithmic results can be achieved by using the special structure
of these groups (as was the case for surfaces). For example, the idea of finding a
non-abelian representation which underlies the exercise above can be extended to
work with any non-trivial knot, ultimately providing a polynomial-sized certificate of
a knot being not the unknot (or equivalently that UNKNOT RECOGNITION is in co-NP),
provided the Generalized Riemann Hypothesis is true [Kup14]. But this line of work
falls largely outside of the scope of this class. We refer to the survey [AFW15a] for more
information on this topic. Let us just mention one doomed idea in the next subsection.
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8.3.2 Homology

If you did the exercises in the lecture notes on surfaces, you might recall Exercise
4.8 where you were asked to prove that fundamental groups of non-homeomorphic
surfaces are not isomorphic. Viewed from another angle, this could be seen as a way
to tell that two surfaces are not homeomorphic, similarly as what we are trying to do
here, one dimension higher. One simple way to carry this out is to abelianize these
groups (see the notes on minimum weight bases) and observe that the resulting abelian
groups have different ranks. As we saw in the course on minimum weight bases, the
abelianization of the fundamental group is the same thing as the first homology group
H1(M ). Since these groups are abelian, they are much more tractable algorithmically,
and maybe they are strong enough to distinguish knot complements, and thus knots.
This is not the case.

Proposition 8.3.4. For any knot K , we have H1(S3 \N ) =πa b
1 (S

3 \N ) =Z.

PROOF. The equality of the first homology group and the abelianization of the
fundamental group is a general topological result known as the Hurewicz Theorem, we
refer to Hatcher [Hat02, Section 4.2] for the proof. Then, starting from the Wirtinger
presentation, we simply observe that all the relations are of the form xk xi x−1

k x−1
i+1 or

xi xk x−1
i+1 x−1

k , which after abelianization yield xi x−1
i+1. Therefore, when abelianizing, all

the generators merge into a single one and we obtain the group Z.

So the first homology group of the knot complement will not help us much in
distinguishing knots.

8.3.3 Triangulations

Similarly as the way surfaces could be described by gluing together disks, one can
cut 3-manifolds into balls and describe how these are glued together. To keep things
simple (but they will still be complicated enough), we restrict our attention to the
3-dimensional analogue of triangulations using tetrahedra, which are also called
triangulations instead of tetrahedrizations. A triangulation T is the topological space
obtained from a disjoint set of t tetrahedra T = (T1, . . . , Tt ) by (combinatorially) gluing
some pairs of two-dimensional faces of these tetrahedra; a gluing between two faces
is specified by a bijection from the vertex set of the first face to the vertex set of the
second face. As a result of these gluing, edges and vertices of tetrahedra are also
identified; it is also allowed to glue two zero-, one-, or two-dimensional faces of the
same tetrahedron.

Since in a 3-manifold with boundary, the neighborhood of every point has to be
an open ball or a half ball, the following conditions are necessary for a triangulation T
to be a 3-manifold (possibly with boundary):

1. Each vertex has a neighborhood homeomorphic toR3 or to the closed half-space;

2. After the gluings, no edge is identified to itself in the reverse orientation.
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Figure 8.11: Putting an octahedron at every crossing.

Conversely, it is known [Moi52] that any 3-manifold M is the underlying space of
such a triangulation (this is the 3-dimensional case of the Kerékjártó-Radó theorem
that we saw for surfaces).

It is not very hard, yet somewhat tedious to build a triangulation of a knot comple-
ment starting from the knot.

Proposition 8.3.5. Given a polygonal knot K made of n segments, we can compute a
triangulation of S3 \N in O (n ) time.

PROOF. Starting with a polygonal knot, project it into a knot diagram, and trian-
gulate the resulting planar graph. Then at each crossing, use the octahedron gadget
of Figure 8.11. Now, outside the octahedra, there is a big 3-dimensional polyhedron,
and after subdividing it into tetrahedra, we obtain a triangulation of S3 where K lies
on the edges of the tetrahedra. Drilling tubes around the corresponding edges and
retriangulating the space gives a triangulation of S3 \N .

For surfaces, it was somewhat easy to recognize which surface one would obtain
by identifying the disks by just visualizing the corresponding identifications in 3 di-
mensions. Since our imagination is much more lacking with 4-dimensional space, the
corresponding approach to recognize 3-manifolds via their triangulations is much
harder, as the following mind-bending exercise dealing with a single tetrahedron (!)
with a single vertex (!!) that can actually be embedded in R3 (!!!) showcases.

Exercise 8.3.6. Take a single tetrahedron and label its vertices by 0, 1, 2 and 3. Identify
the 012 face with the 130 face by sending the vertices 0, 1 and 2 respectively to 1, 3 and
0.

1. Prove that the resulting space is a 3-manifold with boundary.

2. Which familiar one is it?

8.4 An algorithm for unknot recognition

Now that we have seen many approaches that do not provide algorithms, our goal in
this section is to present an algorithm for UNKNOT RECOGNITION, due to Hass, Lagarias
and Pippenger [HLP99] (following ideas of Haken [Hak61]) which shows that UNKNOT
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RECOGNITION is in NP. More broadly, this algorithm is an illustration of the power
of normal surface theory, which is an ubiquitous tool in the study of computational
problems in low dimensions.

8.4.1 Normal surface theory

A normal surface in T is a properly embedded surface in T that meets each tetrahe-
dron in a possibly empty collection of triangles (cutting off a vertex) and quadrilaterals
(separating a pair of vertices), which are called normal disks. In each tetrahedron,
there are 4 possible types of triangles and 3 possible types of quadrilaterals, pictured
in Figure 8.12. The intersection of a normal surface with a face of the triangulation
gives rise to a normal arc. There are 3 possible types of normal arcs within each face:
the type of a normal arc is defined according to which vertex of the face it separates
from the other two.

Figure 8.12: The seven types of normal disks within a given tetrahedron: Four triangles
and three quadrilaterals.

With each normal surface S , one can associate a vector, denoted by [S ], in (Z+)7t ,
where t is the number of tetrahedra in T , by listing the number of triangles and
quadrilaterals of each type in each tetrahedron. This vector provides a very compact
and elegant description of that surface.

The vector [S ] corresponding to a normal surface S , called its normal coordinates,
satisfies two types of conditions:

• The first type of conditions is the matching equations. Consider a normal arc
type in a given non-boundary face f of T . This normal arc type corresponds
to exactly one triangle normal coordinate, vt ,1, and one quadrilateral normal
coordinate, vq ,1, in a tetrahedron incident with f . Similarly, let vt ,2 and vq ,2 be
the triangle and quadrilateral normal coordinates corresponding to that arc
type in the opposite tetrahedron. The matching equation for that arc type is
vt ,1 + vq ,1 = vt ,2 + vq ,2. Intuitively, this means that for at a face between two
tetrahedra, there are as many objects going in as objects going out. There are no
matching equations for faces on the boundary of the triangulation.

• The second type of conditions, the quadrilateral conditions, stipulates that,
within any tetrahedron, at most one of the three quadrilateral coordinates must
be non-zero. Indeed, two quadrilaterals of different types within the same tetra-
hedron must cross, and therefore this condition is needed to ensure that the
surface does not self-intersect.
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Conversely, if T is a triangulation of size t and v is a vector in (Z+)7t , then v corre-
sponds to a normal surface if and only if the matching equations and the quadrilateral
conditions are fulfilled. The reconstruction process can be depicted as follows:

• In each tetrahedron, by the quadrilateral conditions, there is at most one type of
quadrilateral. One places as many parallel copies of this quadrilateral as needed
in the tetrahedron, and then place the parallel triangles next to every vertex of
the tetrahedron. It is straightforward to do so without having any intersection
between triangles and quadrilaterals.

• One glues the faces on the triangulation together, and in the process, one needs
to glue normal arcs, i.e., triangles or quadrilaterals on the one side to triangles
and quadrilaterals on the other side. By the matching equations, the numbers
fit, and the gluing is imposed by the order in which the normal disks are placed
in the tetrahedra.

A normal isotopy is an ambient isotopy of M that fixes globally each vertex, edge
and face of T . Therefore, a normal surface is represented up to a normal isotopy by a
vector in (Z+)7t satisfying the matching equations and the quadrilateral conditions.
Moreover, given a triangulation and normal coordinates, checking that the matching
equations or the quadrilateral conditions hold can trivially be done in linear time.

From this construction, one sees moreover that every vector of normal coordinates
corresponds to a unique normal surface, up to a normal isotopy. Therefore, we will
often abuse the notation and call both S and [S ] a normal surface.

Finally, if one is given normal coordinates, how can one recognize which surface it
corresponds to? For usual surfaces it is enough to compute the Euler characteristic and
check for orientability, but there is an issue of compression here: a vector of complexity
n can correspond to a normal surface with 2n normal disks, and thus computing the
Euler characteristic “by hand” would take an exponential time. But one can do better:

Lemma 8.4.1. There exists a linear form e onZ7t
+ such that if [S ] is the coordinate vector

of a normal surface S, e ([S ]) =χ(S )where χ is the Euler characteristic.

PROOF. A normal coordinate describes the number of normal triangles or quadri-
laterals of some type in a tetrahedron. One can estimate how much such a triangle or
quadrilateral contributes to the Euler characteristic of the entire surface. Let us pick a
triangular normal disk t adjacent to edges e1, e2 and e3 of T , and let us denote by vi

the valence of edge ei , i.e., the number of tetrahedra around it. Then the contribution
of t to the Euler characteristic of S is 1/v1+ 1/v2+ 1/v3− 3/2− e∂ /2+ 1, where e∂ is
the number of edges of t on the boundary of the manifold. Indeed, the vertices of
t (on the edges e1, e2 and e3) contribute 1 but are “shared” between all the normal
disks adjacent to them. Similarly, the edges contribute −1 but are shared between two
normal disks (except for the boundary ones), and the face contribution is exactly once.
For a quadrilateral, we get 1/v1+1/v2+1/v3+1/v4−4/2−e∂ /2+1. Summing all of these
contributions provides a linear form e which matches with the Euler characteristic.
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8.4.2 Trivial knot and spanning disks

The apparatus of normal surface theory is designed to study the surfaces embedded
in a 3-manifold. In the case of knot complements, this is very relevant to unknot
recognition because of the following easy lemma.

Lemma 8.4.2. A knot K is trivial if and only if it is the boundary of an embedded disk.

PROOF. One direction is immediate: if K is trivial, then it is ambient isotopic to
the usual embedding of S1, which obviously bounds a disk. An ambient isotopy is a
homeomorphism, thus it preserves this disk, so the knot K also bounds a disk.

The other direction is not much harder: if a knot K bounds a disk, then there is
an ambient isotopy that contracts K progressively along this disk until it lies in an
arbitrarily small neighborhood of a point, where it will be ambient isotopic to a usual
embedding of S1.

The starting idea of the algorithm for UNKNOT RECOGNITION is to simply find this
disk if it exists. But the triangulation we will work with S3 \N (K ) instead of just S3 with
K in its 1-skeleton. This is very much needed in order to apply normal surface theory:
indeed, we will want to find this disk as a normal surface, and normal surfaces are by
construction transverse to the 1-skeleton of the triangulation. Therefore, one needs to
drill a small tube around K in order to use normal surfaces, we denote this small tube
by TK . The corresponding lemma that we will need is the following one.

Lemma 8.4.3 ([HLP99, Lemma 4.1]). A knot K is trivial if and only if there exists a disk
D in S3 \N (K ) such that the boundary of D is non-trivial in ∂ TK .

PROOF. The proof works similarly: If K is trivial, there is an ambient isotopy car-
rying it to the standard embedding of S1 intoR3. This ambient isotopy preserves the
trivializing disk and the homotopy class of its boundary on ∂ Tk , which is therefore
non-trivial.

The other direction requires some more work. A meridian of a knot is a simple
closed curve on TK bounding a disk in TK . A longitude of a knot is a simple closed curve
on TK crossing the meridian exactly once, and inducing a null-homologous curve in
S3 \N (K ). The existence of these curves follows, for example from the computation of
H1(S3 \N (K )) in Section 8.3.2.

If K is non-trivial, let us assume by contradiction that there exists a disk D having
boundary γ non-trivial on ∂ TK . The homology of γ on ∂ TK is a1[m ] + a2[`] with
a1, a2 6= (0,0)where [m ] and [`] denote the homology classes induced on ∂ TK by the
meridian and the longitude, respectively. Via the inclusion map ∂ Tk ,→ S3 \N (K ), γ
has a homology class in H1(S3\N (K )), which is a1 by definition of the meridian and the
longitude. Since γ bounds a disk, we thus have a1 = 0, and thus a2 =±1 by simplicity
of γ. Therefore K cobounds an annulus with γ within TK . Gluing this annulus with
the disk D , we obtain a disk bounded by K and we can apply the previous lemma.

Let us call a disk satisfying the above properties a spanning disk. The key theorem
behind the NP algorithm is the following one.



8.4. An algorithm for unknot recognition 119

Theorem 8.4.4. Let K be a trivial knot and T be a triangulation of S3 \N (K ) obtained
by the process of Section 8.3.3. Then there exists a spanning disk of K that is normal
with respect to T and of which normal coordinates are bounded by 2O (t ).

Assuming Theorem 8.4.4 for now, we can (almost) provide the advertised algorithm.
Naively, this should be very simple: now that we have established that there exists a
spanning disk that is normal and has coordinates of bounded size, one can simply use
this spanning disk (or rather its normal coordinates) as a certificate. The size of the
coordinates might be exponential, but exponential numbers can be encoded using
only a polynomial number of bits (this trivial observation is what makes everything
work!), thus the certificate has polynomial size. But there is a hidden issue lurking here:
one also needs to verify in polynomial time that the certificate is indeed a spanning
disk. This should be easy in principle, but as we have already mentioned, the certificate
is very compressed due to this integer encoding, and it turns out to be non-trivial.

Corollary 8.4.5. UNKNOT RECOGNITION is in NP.

PROOF. Starting with a knot K , described by a diagram with n crossings, one first
builds a triangulation of its complement following Section 8.3.3. This triangulation
has O (n ) tetrahedra. The certificate is then the normal spanning disk promised by
Theorem 8.4.4. It is a vector in O (n ) dimensions and the size of the coordinates is
bounded by 2O (n ), which can be encoded with a number of bits polynomial in n .

Once one is given the certificate, one can verify that is it indeed a spanning disk in
the following way:

1. One first verifies that this is indeed a normal surface S , by checking that the
matching and quadrilateral constraints are satisfied.

2. One checks whether S is connected.

3. One checks whether S is a disk.

4. One checks whether the boundary of S is non-contractible.

If all the answers are positive, then we have a spanning disk and K is unknotted.
Step 1 can be easily done in polynomial time since the matching equations are linear,
and the quadrilateral constraints are easy to verify by looking at each coordinates. Let
us assume that Step 2 has been done for now. In order to do step 3, it is enough to
compute the Euler characteristic of S , which can be done in polynomial time using
the linear form of Lemma 8.4.1. For step 4, from the normal coordinates of S one can
obtain normal coordinates3 of ∂ S . Since the fundamental group of the torus is Z2,
testing whether ∂ S is contractible can be done in polynomial time from these normal
coordinates.

3More formally, ∂ S is a curve on a torus, and the coordinates we obtain describe this curve with
respect to the triangulation of the torus inherited from T . The underlying theory of normal curves is
similar (but much simpler) than for normal surfaces.
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However, Step 2 is hard. The naive algorithm, which would just follow a starting
normal disk and count the resulting connected components could require exponential
time, since the size of the normal coordinates could be exponential. A polynomial
algorithm to check connectivity of normal surfaces was designed by Agol, Hass and
Thurston [AHT06] and can be used here, but we will not delve into this.

The rest of this section is devoted to the proof of Theorem 8.4.4. We first show how
to normalize a spanning disk, and then how to prove the existence of one with suitably
bounded coordinates.

8.4.3 Normalization of spanning disks

A key observation, initially due to Haken [Hak61], is that there exists a spanning disk
that is a normal surface:

Lemma 8.4.6. Let K be a trivial knot and T be a triangulation of S3 \N (K ) obtained
by the process of Section 8.3.3. Then there exists a spaning disk that is normal with
respect to T .

PROOF. The proof proceeds by starting with a spanning disk D (which exists by
Lemma 8.4.3) and normalizing it. We can first, by using a small perturbation, put
D in general position with respect to the triangulation T : i.e., all the intersections
between D and T can be assumed to be transverse. Now, we look at what can go
wrong, i.e., which pieces in D are not normal with respect to T . Let us write c (D ) =
(wt1(D ), wt2(D )), where wt1 and wt2 respectively denote the number of connected
components of the intersection of D with the edges of T and the faces of T , and order
the pairs c (D )with the lexicographic order. There are many different occurences of
non-normality which we deal with distinct moves, but each time the complexity c (D )
will only go down. Since this complexity is finite to begin with, after a finite number of
steps, the process will finish and we will have a normal surface.

1. If D intersects an inner face F of T in an arc that hits twice the same interior
edge e of T , one can push D locally to reduce its number of intersections with
e , see Figure 8.13.
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Figure 8.13: If there are excess intersections with an interior face and an interior edge,
one can push the disk to reduce its intersections with the edges of T . The first picture
shows what the move induces on the face F and the second one is the corresponding
3-dimensional move.

2. If D intersects a boundary face F of T in an arc that hits twice the same boundary
edge e of T , one can push D similarly, reducing its number of intersections with
e , see Figure 8.14. The boundary of D is moved by this operation, but only by a
homotopy, hence the resulting disk is also a spanning disk.

∂M
∂M

Figure 8.14: If there are excess intersections with a boundary face, one can push the
disk to reduce its intersections with the edges of T

3. If D intersects a face F in a cycle disjoint from its edges (forming locally a
tube), one can “cut” (or compress) this tube, which will reduce the number of
intersections of D with F . Such a compression cuts the disk into a sphere and a
disk, and one can continue the normalizing process with the disk, which will
have smaller complexity, see Figure 8.15.
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Figure 8.15: If the disk forms a tube crossing a face of T , one can cut this tube and
keep one of the components to reduce the number of intersections with the faces of
T .

4. If D intersects a tetrahedron t in a tube (i.e., locally, D intersects ∂ t in two
components), then one can compress this tube as well. For the same reasons, by
picking the remaining disk, the complexity will have decreased, see Figure 8.16.

Figure 8.16: If the disk forms a tube inside a tetrahedron, one can cut this tube and
keep one of the components to reduce the number of intersections with the edges of
T .

5. If D intersects an inner face F of T in an arc a that hits twice the same bound-
ary edge e of T , one can “cut” (or boundary compress) along the disk that is
bounded by a and e . This has the effect of cutting the disk D into two subdisks,
one of which must be spanning. Taking this one reduces the complexity, see
Figure 8.17.

∂M

F

∂M

F

Figure 8.17: If there are excess intersections with an interior face and a boundary
edge, one can push the cut the disk and keep one of the components to reduce its
intersections with the edges of T .

6. Finally, D might be locally too complicated inside a tetrahedron t , i.e., D ∩ t can
have more than 4 arcs. In this case one can show that there are at least 8 arcs,
and some edge is hit at least twice. Then, if that edge is not on the boundary
of the triangulation, one can reduce the complexity by pushing D towards that
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edge, see Figure 8.18. Otherwise, one can do a boundary compression as in the
previous step.

Figure 8.18: If there is a piece inside a tetrahedron with more than 4 arcs, one can push
it to simplify it.

Note: For all these moves, there might be other pieces of the disk in the way of the
indicated move. This is resolved by always applying first the moves corresponding
to an innermost disk, i.e., first normalizing the non-normal behavior closest the the
boundary of the tetrahedron.

Once none of these non-normal cases happen, the disk D intersects the triangula-
tion T in a normal way, hence we have found a normal spanning disk.

We have thus established that it suffices to find a normal spanning disk to certify
that a knot is trivial. Since normal surfaces can be described by a vector in Z7t

+ , this
would give an algorithm if one could bound the size of these coordinates. Such a
bound will be established by exploiting the additive structure on normal surfaces
provided by these vectors.

8.4.4 Haken sum, fundamental and vertex normal surfaces

The set of vectors ofR7t
+ verifying the matching equations is called the Haken coneC .

The normal surfaces are the integral points in this cone that also satisfy the quadrilat-
eral constraints. It they have no conflicting quadrilaterals, two normal surfaces can
be added by adding their vectors, and the result will still be a normal surface since
the matching equations are linear. This operation is called the Haken sum of normal
surfaces. Note that by Lemma 8.4.1, if S is the Haken sum of two normal surfaces S1

and S2, χ(S ) =χ(S1) +χ(S2).
A normal surface [S ] is called fundamental if it can not be written as a sum [S ] =

[S1] + [S2]with [S1] and [S2] two non-empty normal surfaces. A fundamental normal
surface [S ] is a vertex normal surface if c [S ] = c1[S1] + c2[S2] for positive integers c , c1

and c2 implies that [S1] and [S2] are multiples of [S ]. Fundamental and vertex normal
surfaces are the building blocks for normal surfaces, and crucially, one can bound
their complexity:

Lemma 8.4.7. • Let [S ] be a vertex normal surface in a triangulation T with t
tetrahedra. Then the normal coordinates of S have size bounded by 2O (t ).
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• Let [S ] be a fundamental normal surface in a triangulation T with t tetrahedra.
Then the normal coordinates of S have size bounded by 2O (t ).

PROOF. • Let us intersect the coneC with the hyperplane H =
∑

i xi = 1. This
forms a polyhedronP and the vertex normal surfaces will be obtained as the
first integral multiples of some of the vertices ofP . Now, the vertices ofP are
obtained as a solution of 7t equations, which either come from the matching
equations, from the hyperplane H or from a hyperplane of the form xi = 0.
Thus, such a vertex v verifies M v = (0, . . . , 0, 1)T for some matrix M with entries
in {−1,0,1}. By Cramer’s rule, the coordinates vi are obtained by the quotient
det Mi/det M , where Mi is the matrix M where the i th column has been replaced
by (0, . . . 0, 1)T . One can bound these determinants using Hadamard’s inequality
(det M )2 ≤

∏

i ||ri ||2 where ri are the rows of M . We obtain |det Mi | = 2O (t ) and
|det M |= 2O (t ), and thus vi = 2O (t ). Then, the size of the coordinates of the vertex
normal surfaces is bounded by vi |det M |= 2O (t ) as well.

• Let [S ] be a fundamental normal surface, then multiples of [S ] can be decom-
posed on the vertex normal surfaces: c [S ] =

∑

ci [Si ], or equivalently [S ] =
∑

ci/c [Si ]. Note that ci/c ≤ 1, otherwise one would have [S ] = ([S ]− [Si ]) + [Si ]
which would be a non-trivial integral decomposition of S , a contradiction. Thus
any coordinate of [S ] is at most the sum of the coordinates of the vertex normal
surfaces [Si ], of which there are at most 2O (t ) (one can for example bound the
number of matrices M involved in the previous item). This concludes the proof.

A common principle in normal surface theory is that “interesting” surfaces in a 3-
manifold can be found among the fundamental normal surfaces, and even sometimes
among the vertex normal surfaces of the triangulation. This turns out to be true for
spanning disks.

Proposition 8.4.8. Let K be a trivial knot and T be a triangulation of S3 \N (K )
obtained by the process of Section 8.3.3. Then there exists a spanning disk that is a
fundamental normal surface with respect to T .

Combining Lemma 8.4.7 and Proposition 8.4.8 directly proves Theorem 8.4.4, and
thus the NP algorithm (modulo the connectivity issue already mentioned).

Remark: The main issue in the NP algorithm is to check connectivity in polynomial
time. One way to circumvent it could be to verify that the certificate describes a
fundamental normal surface, since fundamental normal surfaces are connected. But
there is no easy way to do that either. On the other hand, one can certify that a normal
surface is a vertex normal surface, by exhibiting the family of 7t equations it satisfies
(see the proof of Lemma 8.4.7). And it is also true, but harder to prove, that there exists
a spanning disk that is a vertex normal surface: we refer to Jaco and Tollefson [JT95] for
a proof. Thus, if one admits this, it gives an alternative way to provide a NP certificate.

There remains to prove Proposition 8.4.8.
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PROOF OF PROPOSITION 8.4.8. The main idea of the proof is to use the Euler char-
acteristic as an accounting device. Indeed, since the Euler characteristic is linear on
the normal coordinates, one can use it to discard the vast majority of the bad cases,
and the last ones will be handled by hand. More precisely, let D be a normal spanning
disk. We can assume that its boundary crosses at most once every triangle of ∂M
and that it is of minimal complexity subject to this. If it is not fundamental, it can be
written as a sum [D ] = [S1] + [S2] where the [Si ] are non-trivial normal surfaces, and
thus χ(S1)+χ(S2) = 1. Among all the decompositions into S1 and S2, let us pick the one
that minimizes the number of connected components of S1 ∩S2.

We first claim that that S1 and S2 are connected. Indeed, if S1 is not connected and
consists of two disjoint connected components A and B , since D is connected, S2

intersects both A and B . But then [D ] = [S2+A] + [B ] and this decomposition has less
intersections than S1 and S2, contradicting our assumption.

Then, since the Euler characteristic of a connected surface is at most 2, there are
only a few cases to deal with. The favorable one is when S1 is a disk and S2 is a torus,
then S1 has the same boundary as D , and thus is a spanning disk of smaller complexity,
a contradiction. There remains to discard the bad cases (note that since we are inR3,
unpunctured projective planes and Klein bottles can be ruled out straight away) :

1. S1 is a punctured torus or Klein bottle and S2 is a sphere.

2. S1 is a Möbius band or an annulus and S2 is a disk.

In order to do so, we must pause a bit and figure out what a Haken sum means
geometrically: if S1 and S2 are two intersecting normal surfaces, their Haken sum is
obtained by taking the normal disks of S1 and S2 and “reconnecting” them differently.
This amounts geometrically to looking at the intersection curves between S1 and S2,
cutting along them and doing a switch, as pictured in Figure 8.19. There are two
possibilities for a switch, and the one carried out depends on the situation of the
intersecting normal disks inside a tetrahedron : both switches gives surfaces, but
only one gives a normal surface. But if one performs the “bad” switch, one can still
normalize the resulting surface to obtain a normal surface.

Figure 8.19: The two switches at an intersection curve.

For the first case, let α be a curve of intersection between S1 and S2. We first claim
that α is not separating in the punctured torus S1. Indeed, otherwise, in the case where
S1 is a punctured torus, by cutting S1 along α and performing the switch that patches a
disk of S2 bounded by α on this cut, and normalizing if necessary, one would obtain
either a spanning disk of less complexity, or a decomposition of D into two normal
surfaces which intersect less than S1 and S2, contradicting our assumptions. If S1 is
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a punctured Klein bottle, there is a third case if α cuts the Klein bottle into a Möbius
band and a Möbius band with an additional boundary, but pasting the Möbius band
on the disk of S2 yields an immersion of the projective plane inR3 without triple points,
which is impossible [Ban74].

Now, since S1 intersects S2 along at least two non-contractible curves, and we pick
the two outermost such curves, i.e., the pair of non-contractible curves closest to ∂ S1

on S1, see Figure 8.20. When one cuts along these curves and glue disks coming from
S2, one obtains a disk with boundary ∂ S1. Since this cut-and-pasting corresponds to a
(good or bad) switch, after normalizing if needed, we obtain a spanning disk of lower
complexity than D , a contradiction.

Figure 8.20: One can cut the torus S1 along non-contractible cycles and patch it with
disks of S2 to obtain a spanning disk of lower complexity.

In the second case, ∂ S2 and ∂ S1 cross each other, which cannot happen since ∂ D
crosses at most once each triangle of ∂M . Thus case 2 is ruled out, and this concludes
the proof.

8.5 Knotless graphs

To conclude this chapter with a striking open problem, let us discuss a bit about
knotless graphs. A polygonal embedding of a graph G into R3 is knotless if every
simple cycle of G is mapped to a trivial knot by this embedding. A graph G is knotless if
it admits a knotless embedding, and intrinsically knotted otherwise. It is not obvious
that there exist intrinsically knotted graphs at all (remember that is was not obvious
that there existed non-trivial knots either), but one can prove, for example using the
Arf invariant that K7 is intrinsically knotted [CG83].

As we discussed in this chapter, no polynomial-time algorithm for UNKNOT RECOG-
NITION is known. Therefore, recognizing whether a given embedding of graph is
knotless in polynomial time is also out of reach for current techniques. One could
expect recognizing knotless graphs to be even harder since naively, it amounts to
making this test for every possible embedding of G into R3. Therefore the following
proposition might come as a shock.

Proposition 8.5.1. There exists an algorithm to recognize knotless graphs in polynomial
time.
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PROOF. If H is a minor of G and G is knotless, H is knotless as well: if i is a knotless
embedding of G , every simple cycle of H corresponds to a simple cycle of G and is thus
mapped by i to a trivial knot. Thus knotless graphs form a minor-closed family, and it
follows from Robertson-Seymour theory (see for example [Lov05] for an introduction)
that they can be recognized in polynomial time.

The proof of this proposition is shockingly unsatisfying: not only is the algorithm,
as most algorithms coming from Robertson-Seymour theory, extremely inefficient, but
we actually do not know what it is: what the theory proves is that minor-closed families
are characterized by a finite family of forbidden minors, and testing for forbidden
minors can be done in polynomial time – but we do not know what these are. It is
an open problem to find an explicit polynomial-time algorithm to recognize knotless
graphs.
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The purpose of this lecture is to make explicit the limits of computational topology
by showing that some simple and natural questions in topology are undecidable. In
order to make the statement precise we need to define the notion of decidability and
to specify the description of topological spaces we are interested in. Concerning topo-
logical spaces we should consider spaces having a combinatorial description such
as finite simplicial complexes1. Note that many interesting spaces have such a de-
scription: compact topological manifolds of dimensions 2 or 3, compact differentiable
manifolds, etc. See [Man14] for a survey. Concerning decidability there are essentially
two notions. One refers to the independence of a statement with respect to a logical
system. In other words, the statement is undecidable if neither its affirmation nor

1Recall that a simplicial complex is a collection of simplices glued in a nice fashion. It is the total
space of an abstract simplicial complex over a set V , which is a family of subsets of V closed under the
operation of taking non-empty subsets.
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its negation can be proved from the axioms of the system using its logical rules. The
existence of such undecidable statements relates to the first Gödel’s incompleteness
theorem. The other notion of decidability refers to a family of problems with YES/NO
answers, such as testing a property over a family of objects, and expresses the exis-
tence of an algorithm to output the answer of any problem in the family. Note that
any finite family of problems for which the answers is provable is always decidable
in this acception. Indeed, an algorithm to solve the problems just needs to store the
correct answer of each problem. Paradoxically, this is valid even if we do not know yet
the correct answers since the decidability only claims the existence of an algorithm
and not the algorithm itself.

Both notions of decidability may be relevant to computational topology. As an
illustration, consider the contractibility problem of deciding if a closed path can be
continuously deformed into a point in a simplicial complex. We will prove that there
is no algorithm to decide this problem given the path and the simplicial complex as
input. As a stronger statement there exists a simplicial complex for which there is no
algorithm that decides the contractibility of the closed paths in this simplicial complex.
At last, there exists a closed path in some simplicial complex for which it cannot be
logically decided if the path is contractible or not.

Most often, undecidability results in topology are shown by first transforming a
decision problem into a question concerning combinatorial group theory. In turn,
problems about groups are transformed into problems about Turing machines. Ul-
timately, the proofs of undecidability rely on a reduction to the halting problem for
Turing machines. We recommend the survey by Poonen [Poo14] for many undecidable
problems in mathematics.

9.1 The Halting Problem

9.1.1 Turing Machines

A Turing machine is a mathematical model for the notion of computation. It was
introduced by Alan Turing in 1936. According to Church-Turing thesis this is a universal
model for the mechanization of computation. It was proved equivalent to other notion
of computation such as recursive functions and λ-calculus.

Formally, a Turing machine is a triple (A ,Q,T ), where A is a finite alphabet
including a special blank character,Q is a finite set of states, andT ⊂A×Q×A×Q×
{R , L} is a transition table specifying how the machine operates on configurations.
Those are words of the form uq v ∈A ∗×Q×A ∗. Such a configuration represents the
machine in state q together with a linear tape marked with the word u v and whose
read/write head is on the first letter in v (the empty word is interpreted as a blank).
Transition a q b p D ∈T applies to any configuration uq v such that a is the first letter
in v . It transforms uq v replacing a with b , the state q by p , and moves the head one
step to the left or right according to whether D equals L or R , respectively.

From the computability perspective there is no loss of generality to consider deter-
ministic machines for which a q b p D ∈ T and a q b ′p ′D ′ ∈ T implies b ′ = b , p ′ = p
and D ′ =D : reading a letter in some state leads to only one new possible configuration.
The machine is halting in a given configuration when no transition applies.



9.1. The Halting Problem 130

Standard coding of Turing machines

A Turing Machine M is in standard form if its alphabet is a finite subset of
Σ = {blank,1,1′,1′′,1′′′, . . .} and its set of states is a finite subset of {q , q ′, q ′′, q ′′′, . . .}.
One can encode the transition table of M on the six letter alphabet {blank, 1, q ,′ , R , L}
by concatenating its transitions (of the form 1′q ′1′′q ′′D ), where the prime symbol is
considered as a letter. Finally, replacing q ,′ , R , L by the respective letters 1′, 1′′, 1′′′, 1′′′′,
we obtain a coding of the transition table over the finite alphabet {blank, 1, 1′, 1′′, 1′′′, 1′′′′}.
This coding is the standard code of M and is denoted by dM e.

9.1.2 Undecidability of the Halting Problem

A set of words W ⊂ A ∗ is decidable, or recursive, if there exists a turing machine
M = (A ,Q,T ) with three states qi , qa , qr ∈ Q, respectively called initial, accepting
and rejecting, such that for every w ∈A ∗ the machine M starting from configuration
qi w reaches a halting configuration in state qa if w ∈W and in state qr otherwise.
In particular M always reaches a halting configuration. Note that W is decidable
if and only if both W and its complementA ∗ \W are semi-decidable. Recall that
W is semi-decidable if there exists a Turing machine halting in an accepting state if
and only if it is given as input a word of W . Although this definition does not require
any behavior for words not in W , it is equivalent to assume that the machine never
stops given such words. Unfortunately, the same definition was given many names
such as semi-recursive, recursively enumerable, computably enumerable, listable
or Turing recognizable. The plurality of names comes from the fact that it is equivalent
to require the existence of a Turing machine that enumerates W , i.e., outputs all its
words one after the other. A decision problem is a set of questions with YES/NO
answers. By extension this problem is decidable, or algorithmically solvable, if the
questions can be encoded as words over a finite alphabet and if the subset of words
corresponding to questions with positive answers is decidable.

Consider the self-halting problem of deciding if a Turing machine M given as
input its own standard code, i.e. starting with the configuration qi dM e, will eventually
reach a halting configuration in the accepting state.

Theorem 9.1.1. The self-halting problem is semi-decidable but not decidable.

PROOF. That the self-halting problem is semi-decidable is quite clear. Given the
standard code of a Turing machine, it is enough to simulate the corresponding machine
on this same input. The notion of universal Turing machine (see below) provides such a
simulation. By way of contradiction, suppose that the self-halting problem is decidable.
Hence, there exists a Turing machine, say S , that recognizes the complementary
language. In other words, S halts in the accepting case if the input does not correspond
to the standard code of a Turing machine that halts in the accepting state on its own
input, and runs forever otherwise. Let us run S with the initial configuration qi dS e. If S
halts in the accepting state, this means that S does not halt in the accepting state on
its own input, a contradiction. So S must run forever, meaning that S does halt in the
accepting state on its own input, and we have again reached a contradiction.
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The general halting problem is to decide, given a machine M and a starting con-
figuration I if M reaches a halting configuration. Since the self-halting problem is a
particular case of the halting problem, we obtain:

Corollary 9.1.2. The halting problem is unsolvable.

Universal Turing Machine

A Turing machine T is said universal if for any Turing machine M and any initial
configuration C , starting from configuration qi dM eC the machine T simulates the
computation of M from C and halts in its accepting state if and only if this computation
eventually stops. Though fastidious, one can write a program in his favourite language,
say in C++, to simulate a universal Turing machine. This proves a fortiori its existence.
The idea is to traverse the initial configuration C to “read” its state and the current
symbol (the one that should lie under the reading head of M ). Then, T needs to
traverse dM e in order to find the transition that applies. This transition transforms
C into a configuration C ′ and we obtain the configuration qi dM eC ′ on T . We can
proceed this way until some configuration qi dM eC ′′ is reached, where C ′′ is a halting
configuration for M . In this case, T should stop in its accepting state. Otherwise, T
runs forever.

Theorem 9.1.3. The halting problem for the universal machine T is unsolvable.

In other words, there is no Turing machine that can decide for any configuration if
T eventually stops starting from this configuration. Indeed, such a Turing machine
would solve the general halting problem by considering configurations of the form
qi dM eC .

9.2 Decision Problems in Group Theory

Max Dehn (1911) was among the first to work out the connection between topology and
combinatorial group theory. He made explicit that answering to certain topological
questions about spaces could be used to solve some general problems about group
presentations. Recall that a combinatorial presentation 〈S |R 〉 of a group G is defined
by a set S of generators and a set R of words over2 S , called relations, so that G is the
quotient of the free group F (S ) over S by the normal closure of R in F (S ). Hence, the
elements of G are classes of words over S where two words are in the same class if one
can be transformed into the other by a sequence of insertions or removals of

1. factors s s−1 with s ∈ S ,

2. or words in R or their inverses.

We shall only consider finitely presented groups for which S and R are both finite. Most
computational results nonetheless apply to recursively presented groups whose set of
relations are recursively enumerable.

2By a word over S we always mean a finite sequence of elements in S ∪S−1, where the elements of
S−1 should be thought of as the inverses of the elements in S .
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Tietze Tranformations

Clearly, a group has (infinitely) many presentations. One can indeed replace a pre-
sentation 〈S |R 〉 by applying the following Tietze transformations or their inverses to
obtain presentations of the same group.

T1: Add a relation which is a consequence of R .

T2: Add a new generator s with a new relation s w , where w is any word over S .

It is quite remarkable that presentations of the same group are always related by
such transformations.

Theorem 9.2.1. Two finite presentations represent the same group if and only if one
can be obtained from the other by a finite sequence of Tietze transformations and their
inverses.

PROOF. Let 〈S | R 〉 and 〈S ′ | R ′〉 be two presentations of the same group. In other
words, there is an isomorphism 〈S ′ | R ′〉 ∼= 〈S | R 〉. The image of any generator s ′ ∈ S ′

under this isomorphism can be expressed as a word s ′(S ) over S . Remark that the
relations in R ′ are consequences of R and the relations {s ′ · (s ′(S ))−1}s ′∈S ′ expressing
each generator s ′ in terms of S (why?). For each generator s ∈ S , we define s (S ′)
analogously. We have,

〈S |R 〉 ∼= 〈S ∪S ′ |R ∪{s ′ · (s ′(S ))−1}s ′∈S ′〉 by repeated applications of T2

∼= 〈S ∪S ′ |R ∪R ′ ∪{s ′ · (s ′(S ))−1}s ′∈S ′〉 by repeated applications of T1

∼= 〈S ∪S ′ |R ∪R ′ ∪{s ′ · (s ′(S ))−1}s ′∈S ′ ,{s · (s (S ′))−1}s∈S 〉 by repeated applications of T1

This last presentation is symmetric in prime and unprime symbols and could thus
have been derived from 〈S ′ |R ′〉.

Exercise 9.2.2. By a consequence of R it is meant a word r on S representing an element
of the normal closure of R . Show that r is freely equivalent (i.e., inserting or removing
s s−1 or s−1s factors) to a word of the form

k
∏

j=1

g j r
ε j

j g −1
j ,

where the g j are words over S , r j ∈R , and ε j ∈ {−1, 1}.
Exercise 9.2.3. Show that the Tietze transformations T1 and T2 indeed produce isomor-
phic groups. In other words, show that:

〈S |R 〉 ∼= 〈S |R ∪{r }〉 ∼= 〈S ∪{s } |R ∪{s w }〉,

where r is a consequence of R .
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Dehn’s Problems

Dehn identified three fundamental algorithmic problems [Sti87]. Let G = 〈S |R 〉 be a
finitely presented group.

• The word problem: decide if a word over S represents the identity in G .

• The conjugacy problem: decide if two words over S represent conjugate ele-
ments in G .

• The isomorphism problem: decide if two combinatorial presentations repre-
sent isomorphic groups.

In the late 1940’s Markov and Post independently proved that the word problem
in semi-groups is unsolvable. The main idea is to encode the transition of a Turing
machine as relations in a semi-group. In the end the halting problem becomes equiv-
alent to the word problem in the constructed semi-group. The unsolvability of the
word problem for groups is based on similar ideas but singularly more complex. It
was eventually shown by P. S. Novikov in 1955 and almost at the same time by Boone.
The original article by Novikov was 143 pages long. Thanks to the HNN construction
introduced by Higman, Neeumann and Neumann in 1949, Boone (1959) and Britton
(1963) succeeded to reduce the proof to approximately 10 pages.

Theorem 9.2.4 (Novikov, Boone). There exists a group for which the word problem is
unsolvable. In particular, the word problem for groups (given a group and a word as
input) is unsolvable.

The simplest example of a group with unsolvable word problem has 4 generators
and 12 relations, see Borisov [Bor69]. Since the word problem is a particular case of
the conjugacy problem, we immediately infer that

Corollary 9.2.5. The conjugacy problem for groups is unsolvable.

The generalized word problem is to decide if a word over the generators S of a
presentation P belongs to some subgroup of P specified by a set of generators given
as words over S .

Theorem 9.2.6. The generalized word problem is unsolvable.

Theorem 9.2.7 (Adyan 1957, Rabin 1958). The isomorphism problem for groups is
unsolvable.

A Markov property for groups is one that is satisfied by at least one group with
finite presentation and such that there exists a group H with finite presentation such
that any group including H as a subgroup does not satisfy the property. Being the
trivial group, or being Abelian are Markov properties (why?). Being the fundamental
group of a 3-manifold is also a Markov property because there exist finitely presentable
groups which cannot appear as subgroups of 3–manifold groups.
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Theorem 9.2.8 (Adyan, Rabin). If P is a Markov property, then the problem of deciding
if a finite presentation satisfies P is unsolvable.

While those negative results assert that the basic decision problems in group the-
ory are unsolvable in general, there are positive results for specific classes of groups.
For instance, as we saw in a previous lecture, the word and conjugacy problems are
solvable for surface groups. It results from the classification of surfaces that the isomor-
phism problem is also solvable for surface groups. A much stronger result claims that
those problems are solvable for the class of fundamental groups of closed, orientable
3–manifolds. However, none of those groups are algorithmically recognizable. Indeed,
the trivial group occurs as the fundamental group of a surface group and of a closed,
orientable 3–manifold group. The recognition of such groups would thus allow to
decide whether a given finite presentation describes the trivial group, in contradiction
with Theorem 9.2.7. See also the survey on decision problems for 3–manifolds by
Aschenbrenner, Friedl and Wilton [AFW15b] for more details.

We postpone the proof of the undecidability of the word problem to Section 9.4.
In the next section, we shall deduce the undecidability of topological problems from
the above negative results in group theory.

9.3 Decision Problems in Topology

9.3.1 The Contractibility and Transformation Problems

Given a closed path in a simplicial complex, the contractibility problem is to decide
if the path can be deformed continuously to a point in the complex. Likewise, given
two closed path in a simplicial complex, the transformation problem is to decide if
the paths can be deformed continuously one into the other in the complex. These are
extensions of the corresponding problems we saw in the lecture on the homotopy test
for surfaces.

Proposition 9.3.1. The word and conjugacy problems respectively reduce to the con-
tractibility and transformation problems in 2-complexes.

The proof uses a simple construction that associates a two dimensional complex
C (〈S |R 〉)with every group presentation 〈S |R 〉. The complex is built from a bouquet of
circles, one for each generator in S , and a set of disks, one for each non-trivial3 relation
r ∈ R . If r = s ε1

1 · · · s
εk

k , the boundary circle of the corresponding disk is subdivided
into k subarcs and glued along the bouquet of circles in such a way that the i th
arc is mapped onto the circle corresponding to generator si traversed in the same
(εi = 1) or opposite (εi =−1) direction. By a repeated application of the Seifert–van
Kampen theorem, the fundamental group of the resulting two dimensional complex
is isomorphic to 〈S |R 〉:

π1(C (〈S |R 〉))∼= 〈S |R 〉.
3For each trivial relation ”1” we may also attach a sphere to the vertex of the bouquet. See the

construction of Section 9.3.2.

http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo4.pdf
http://www.gipsa-lab.fr/~francis.lazarus/Enseignement/compuTopo4.pdf
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Note that the bouquet of circles can be seen as a graph with one vertex and with one
loop edge per generator. This graph is the 1-skeleton ofC (〈S |R 〉).

PROOF OF PROPOSITION 9.3.1. Given a word w = s ε1
1 · · · s

εk

k on the generators of a
presentation 〈S |R 〉, we consider the closed path `w of length k whose i th edge is the
loop edge of the 1-skeleton of C (〈S | R 〉) corresponding to si , traversed in the same
(εi = 1) or opposite (εi =−1) direction. The homotopy class of `w inC (〈S |R 〉) is the
class of w in 〈S | R 〉, so that w represents the identity in 〈S | R 〉 if and only if `w is
contractible. Namely, the word problem for w in 〈S |R 〉 reduces to the contractibility
problem for `w inC (〈S |R 〉). Now, given two words u and v and their corresponding
closed paths `u and `w inC (〈S |R 〉)we saw in the lecture on the homotopy test that
`u and `w are (freely) homotopic if and only if their homotopy classes are conjugates
in the fundamental group ofC (〈S | R 〉). It follows that the conjugacy problem for u
and v is equivalent to the transformation problem for `u and `w .

Exercise 9.3.2. A 2-complex can be described as a graph, allowing loop and multiple
edges, and a collection of polygons, allowing monogons and bigons, such that the
boundary of each polygon is attached to a closed path in the graph. Each side of the
boundary should be attached to a single edge, but the closed path need not be simple.

The barycentric subdivision of such a 2-complex is obtained by first inserting
a vertex in the middle of each edge in the graph and in the middle of each side of
the polygons, then triangulating each polygon by inserting a vertex at the center
and joining this vertex to the boundary vertices (including the new ones) with new
edges. Show that three barycentric subdivisions ofC (〈S |R 〉) always suffice to obtain
a simplicial complex.

Corollary 9.3.3. There exists a 2-dimensional complex for which the contractibility
problem is unsolvable. In particular, the contractibility problem is unsolvable for 2-
complexes. The same is true for the transformation problem.

PROOF. This follows directly from Theorem 9.2.4 and the previous Proposition 9.3.1.

In fact, there exists a 2-dimensional complex and a closed path in this complex such
that the contractibility of the path cannot be decided! The proof relies on the theory
of Diophantine equations. In the famous list of 23 problems published in 1900 by
Hilbert, the tenth problem asks for an algorithm to decide if a multivariable polynomial
equation with integer coefficients has a solution in integers. Such equations are said
Diophantine when one is indeed looking for integral solutions. In 1970, Matiyasevich
succeeded to prove that Hilbert tenth problem is unsolvable by showing that any
semi-decidable set of natural numbers is Diophantine, i.e., has the form

{n ∈N | ∃(n1, . . . , nk ) ∈Zk : p (n , n1, . . . , nk ) = 0}

for some polynomial p with integer coefficients in k + 1 variables. Now, the set of
statements in any formal system with recursively enumerable description (axioms and
inference rules) can be numbered so that the theorems form a semi-decidable subset.
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By Gödel first incompleteness theorem, such a system, assuming it can express basic
facts about natural numbers, has a statement that can neither be proved or disprove
in the system (such as stating its own consistency, which cannot be proved by Gödel
second incompleteness theorem). If n is the number of an undecidable statement
and p is the Diophantine equation for the set of theorems, then it cannot be decided
if p (n , ·) has a solution. (See [Jon82, CM14] for explicit constructions.) More precisely,
it cannot be proved that p (n , ·) has no solution (if p (n , ·) had a solution, this solution
would provide its own proof). Hence, considering a Turing machine M that looks for a
solution of p (n , ·), we cannot prove that the machine runs indefinitely given p (n , ·) as
input. In Section 9.4 we shall construct, for every Turing machine and every input, a
group presentation P with a word w in its generators such that the machine eventually
halts after being given the input if and only if w represents the identity in P . This
provides a 2-complexC (P ) and a closed path corresponding to (an encoding of) p (n , ·)
for which we cannot prove that the path is non-contractible.

Remark 9.3.4. The results in this section extend to four dimensional manifolds since
any finitely presented group can be realized as the fundamental group of a 4-manifolds
that can effectively be computed (Dehn 1910).

9.3.2 The Homeomorphism Problem

The homeomorphism problem is to decide if two given combinatorial spaces, say
simplicial complexes, are homeomorphic. Since we know that the isomorphism prob-
lem is unsolvable (Theorem 9.2.7), it is tempting to use the 2-complexC (P ) associated
to a group presentation P to reduce the isomorphism problem to the homeomorphism
problem and conclude that this last one is also unsolvable. Indeed, if the complexes
C (P ) andC (Q ) corresponding to the group presentations P and Q are homeomorphic,
then their fundamental groups, hence P and Q , are isomorphic. However, different
presentations of the same group may lead to non-homeomorphic 2-complexes so that
we cannot conclude that the group are distinct when the corresponding 2-complexes
are not homeomorphic. As a simple example consider the presentations 〈{s } | {s }〉,
〈{s } | {s , s }〉, and 〈{s } | {s ,1}〉 of the trivial group. The corresponding 2-complexes
are respectively homeomorphic to a disk, a sphere, and a sphere attached to a disk
through a point. In order to prove the unsolvability of the homeomorphism problem
one needs a presentation-invariant construction of a complex whose fundamental
group is the given group. This was eventually achieved by Markov, using four dimen-
sional manifolds rather than 2-complexes. Markov’s proof is based on a Seifert and
Threlfall construction (1934) using manifold surgery. Following Stillwell, we shall rely
on a construction of Boone, Haken and Poénaru (1968).

Theorem 9.3.5 (Markov, 1958). The homeomorphism problem is unsolvable for mani-
folds of dimension 4 or larger.

PROOF. Given two presentations P and Q we shall construct 4-manifold complexes
C ′(P ) andC ′(Q ) such that P ∼=Q if and only ifC ′(P ) andC ′(Q ) are homeomorphic.
Since isomorphic presentations are related by Tietze transformations (Theorem 9.2.1)
a solution is to provide a construction whose homeomorphism type is invariant by
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Tietze transformations. The above examples show that this is not the case forC (P ).
It turns out that the extra sphere arising from the trivial relation in the examples
is essentially the only obstruction to an invariant construction. To overcome this
problem Boone et al. introduce three modifications.

1. If P has p generators and m relations and Q has q generators and n relations,
first add p +n + 1 trivial relations (1) to P and q +m + 1 trivial relations to Q .
Denote by P ? (p +n +1) and Q ? (q +m +1) the resulting presentations.

2. Replace the 2-complexesC (P ) andC (Q ) by their thickening in R5. First note
that any 2-complex C can be triangulated (see Exercise 9.3.2) and that any
such triangulation has a piecewise linear (PL) embedding in R5. For ε > 0, let
C ε be the set of points at distance at most ε from C in R5. When ε is small
enoughC ε deform retracts4 ontoC , hence has the same fundamental group as
C . Moreover,C ε can be triangulated and such a triangulation can be computed
fromC . We setC ′(P ) to the boundary of the 5-manifoldC ε(P ? (p +n +1)) and
C ′(Q ) to the boundary ofC ε(Q ? (q +m +1)).

3. In order to prove the invariance by Tietze transformations, replace the addition
of a consequence relation (T1) by four transformations T11, T12, T13 and T14:

T11 : replace a relation r by s s−1r or s−1s r for some generator s ,

T12 : replace a relation u v w by a cyclic permutation v w u ,

T13 : replace a relation r by r −1,

T14 : replace r by r r ′ where r, r ′ are the i th and j th relations, i 6= j .

Hence, transformation T1i replaces a relation rather than adding a new one. It
clearly produces isomorphic presentations (prove it!).

Claim 1. Let P = 〈S | R 〉 and P ′ = 〈S | R ∪ {r }〉, where r is a consequence of R . Then
P ? 2 may be converted to P ′ ? 1 using transformations T11, . . . , T14 and T2 and their
inverses.

PROOF. By Exercise 9.2.2, we may write r =
∏k

j=1 g j r
ε j

j g −1
j . By a combination of

T11, . . . , T14 and their inverses, we can transform the second of the two extra relations in
P ?2 into g j r

ε j

j g −1
j . We can then use transformation T14 to accumulate such factors in

the first extra relation, resetting each time the second extra relation to 1 by the reverse
transformations used to get g j r

ε j

j g −1
j . The details are left to the reader.

Claim 2. If P and Q are isomorphic then we can transform P ? (n +m +1) into Q ? (n +
m +1) using a sequence of transformations T11, . . . , T14 and T2 and their inverses.

PROOF. Let P = 〈S | R 〉 and Q = 〈S ′ | R ′〉. Using the notations in the proof of
Theorem 9.2.1 we first transform P ?(p+n+1) into 〈S∪S ′ |R∪{s ′·(s ′(S ))−1}s ′∈S ′〉?(p+n+1)
by repeated applications of T2. We further mimic the proof of Theorem 9.2.1 using

4A retraction is a continuous map from a topological space onto a subspace whose restriction to
the subspace is the identity map. A deformation retraction is a homotopy between the identity map
and a retraction.
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combinations of transformations T11, . . . , T14 in place of T1. We obtain this way the
isomorphic presentation 〈S ∪S ′ |R ∪R ′∪{s ′ · (s ′(S ))−1}s ′∈S ′ ,{s · (s (S ′))−1}s∈S 〉?1 which is
symmetric in prime and unprime symbols and could thus have been derived from
Q ? (q +m +1).

Claim 3. If presentation P2 results from presentation P1 by a transformation T11, . . . , T14

or T2, thenC ε(P2) is homeomorphic toC ε(P1).

PROOF. The claim is trivial for transformations T12 and T13 since the 2-complexes
C (P1) and C (P2) are the same in those cases. Consider now the transformation T11

applied to P1. It replaces one of its relations r by s s−1r (or s−1s r ). Let P0 be P1 minus the
relation r , which is also P2 minus the relation s s−1r . The 2-complexC (P1) is obtained
from C (P0) by attaching a disk D to the closed curve corresponding to r in the 1-
skeleton ofC (P0). Disk D intersects the thickeningC ε(P0) in a simple closed curve `1

which cuts D into a smaller disk D1 outsideC ε(P0). So,C ε(P1) is the union ofC ε(P0)
and the thickening D ε

1 of D1. Likewise,C ε(P2) is the union ofC ε(P0) and the thickening
D ε

2 of a disk D2 that intersectsC ε(P0) in a simple closed curve `2. Now, `1 and `2 differ
by a thin “tongue” close to the path s s−1. Hence, there is a homeomorphism (in fact an
ambient isotopy) ofC ε(P0) sending `2 to `1. We can extend this homeomorphism to
an homeomorphism betweenC ε(P2) =C ε(P0)∪D ε

2 andC ε(P1) =C ε(P0)∪D ε
1 . Similar

constructions hold for the last two transformations T14 and T2. See [Sti93, Sec. 9.4.4]
for the details.

We are now ready to prove thatC ′(P ) andC ′(Q ) are homeomorphic if and only if P
and Q are isomorphic. Recall that the fundamental group of C ε(P ? (p + n + 1)) is
P ? (p +n+1)∼= P . SinceC ε(P ? (p +n+1)) is a 5-manifold, removing its 2-dimensional
coreC (P ? (p +n +1)) does not change its fundamental group. Moreover, sinceC ε(P ?
(p+n+1))\C (P ?(p+n+1))deform retracts onto the boundary ofC ε(P ?(p+n+1)) they
also have the same fundamental group. We conclude that π1(C ′(P )) ∼= P . Likewise,
π1(C ′(Q ))∼=Q . It follows thatC ′(P ) andC ′(Q ) cannot be homeomorphic if P and Q
are not homeomorphic.

Suppose now that P and Q are isomorphic. According to Claim 2, P ? (p +n +1)
can be converted to Q ? (q +m +1) using a sequence of transformations T11, . . . , T14 and
T2 and their inverses. Following Claim 3,C ε(P ? (p +n +1)) andC ε(Q ? (q +m +1)) are
homeomorphic and so are their boundariesC ′(P ) andC ′(Q ).
Exercise 9.3.6. Prove that any finite 2-dimensional simplicial complex has a PL em-
bedding in R5.

Exercise 9.3.7. Provide the details in the proof of the above Claim 1.

Quite surprisingly, while there is no algorithm to decide whether two 2-complexes
have isomorphic fundamental groups, the homeomorphism problem for 2-complexes
is solvable! This results from the existence of a normal form for 2-complexes due
to Whittlesey [Whi58, Whi60]. This normal form easily leads to an equivalence be-
tween the homeomorphism problem for 2-complexes and the graph isomorphism
problem [STP94, DWW00]. The homeomorphism problem is also solvable for closed,
oriented, triangulated 3-manifolds as recently proved by Kuperberg [Kup15b]. The
proof relies on the geometrization theorem conjectured by Thurston and proved
by Perelman. This geometrization theorem provides a canonical decomposition of
3-manifolds into elementary pieces that can be algorithmically recognized.
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9.4 Proof of the Undecidability of the Group Problems

In this Section we give a complete proof of Theorems 9.2.4, 9.2.6 and 9.2.7. We follow
the proof by Stillwell [Sti82, Sti93]5. A first step is two replace Turing machines by the
Z2-machine formalism.

9.4.1 Z2-Machines

We can interpret a Turing machine M = (A ,Q,T ) as a set of transformations over
Z2. To this end we associate with every letter and state of M a distinct digit in base
β between 0 and β −1, where β = |A |+ |Q|. For a word w in (A ∪Q)∗, letB (w ) be
the integer in base β whose digits are associated with the letters and states of w , in
the same order. We encode a configuration uq v of M as a couple (B (uq ),B (v̄ )) of
integers, where v̄ = v1v2 . . . vk = vk . . . v2v1. Every transition of M may be interpreted as
a partial transformation over Z2. Precisely, we associate with every transition a q b p L
the l -transformations:

(β 2U +B (c q ),βV +B (a )) l→ (βU +B (p ),β 2V +B (b c ))

corresponding to the transitionsB−1(U )c q aB−1(V ) 7→B−1(U )p c bB−1(V ). Those
transformations can be written as

(β 2U +Al ,βV +Bl )
l→ (βU +Cl ,β 2V +Dl )

for some appropriate numbers Al , Bl , Cl , Dl . Those four numbers determine the l -
transformation. Note that a single transition gives rise to a number |A |of l -transformations,
one for each c ∈A . Similarly, every transition a q b p R is associated the r -transformations:

(βU +B (q ),β 2V +B (c a ))
r→ (β 2U +B (b p ),βV +B (c ))

which write
(βU +Ar ,β 2V +Br )

r→ (β 2U +Cr ,βV +Dr )

for appropriate Ar , Br , Cr , Dr .
For numbers X , Y , X ′, Y ′, we write (X , Y )

s→ (X ′, Y ′) if (X ′, Y ′) is the result of an
s -transformation, s ∈ {l , r }, applied to (X , Y ). More generally, we write

(X , Y )
∗→ (X ′, Y ′)

if (X ′, Y ′) is obtained from (X , Y ) by applying a finite sequence of transformations.
Hence, M changes from a configuration to another one by a sequence of transitions if
and only if (X , Y )

∗→ (X ′, Y ′) for the corresponding Z2-couples. We finally write

(X , Y )
∗↔ (X ′, Y ′)

if there exist Z2-couples (X , Y ) = (X0, Y0), (X1, Y1), . . . , (Xn , Yn ) = (X ′, Y ′) such that, for

0≤ i < n , either (X i , Yi )
si→ (X i+1, Yi+1) or (X i+1, Yi+1)

si→ (X i , Yi ), where si ∈ {l , r }.
5Another interesting but incomplete presentation is proposed by Andrews [And05].
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We shall prove that the halting problem for Turing machines is Turing reducible to
the generalized word problem. For this, we consider the Z2-machine Z corresponding
to an arbitrary Turing machine. We then construct a group KZ and a 1-1 map p :Z2→
KZ so that the statement

Z , starting from some (u , v ) ∈Z2, eventually stops
is equivalent to p (u , v ) belonging to a certain subgroup of KZ . We start recalling
fundamental constructions in group theory.

9.4.2 Useful Constructs in Combinatorial Group Theory

Free Groups and Free Products

Recall that a free group over a set S is the group F (S ) = 〈S | −〉 of words over S modulo
the insertion of trivial relations s s−1 and s−1s , s ∈ S .

A relation between elements of a group is any product of those elements and their
inverses which is the identity in the group. A relation is reduced if it does not contain
two inverse consecutive factors. A subgroup H of a group G is free if H is isomorphic
to a free group. A subset S ⊂G is a free basis for the subgroup it generates if there is
no non-trivial reduced relations between the elements of S . In this case, the subgroup
generated by S is a free subgroup isomorphic to F (S ).

The free product of two groups with presentations 〈S |R 〉 and 〈S ′ |R ′〉 is the group
〈S |R 〉 ∗ 〈S ′ |R ′〉 := 〈S ∪S ′ |R ∪R ′〉 (here, S ,S ′ must be considered as disjoint sets even
when 〈S |R 〉 ∼= 〈S ′ |R ′〉). The free product only depends on the group factors and not
on the used presentations6. The normal form theorem for free products says that
any non-trivial element of G ∗H may be uniquely written as an alternating product
of non-trivial elements of G and non-trivial elements of H . In particular, G and H
embeds as subgroups of G ∗H .

HNN Extension and Britton’s Lemma

Given a group G = 〈S |R 〉 and an isomorphismϕ : A→ B between two subgroups A and
B of G , Graham Higman, Bernhard Neumann et Hanna Neumann (1949) established
the existence of a group G ∗ϕ containing G as a subgroup and such that ϕ : A → B
becomes an inner automorphism (A and B are conjugate subgroups) in G ∗ϕ. More
precisely,

Definition 9.4.1. The HNN extension of G relatively to ϕ is the group

G ∗ϕ := 〈S ∪{t } |R ∪{ϕ(a ) = t −1a t }a∈A〉

where t is a new generator qualified as stable.

An essential property of HNN extensions is the existence of some kind of normal
forms resulting from the following Britton’s lemma.

6Free products can be defined by a universal property.
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Lemma 9.4.2 (Britton, 1963). If a product g0t ε1 g1t ε2 . . . t εn gn represents the identity
in G ∗ϕ, where g i ∈G and εi ∈ {−1,1}, ∀i ∈ [0, n ], then either n = 0 and g0 =G 1, or for
some i ∈ [1, n −1]we have

• either εi =−1,εi+1 = 1 and g i ∈ A,

• or εi = 1,εi+1 =−1 and g i ∈ B .

Corollary 9.4.3 (Normal form for HNN extentions). Every element of G ∗ϕ has a unique
expression as g0t ε1 g1t ε2 . . . t εn gn , where

• for 0< i < n, g i = 1 implies εi = εi+1,

• εi = 1 implies g i ∈ A,

• εi =−1 implies g i ∈ B .

Here, uniqueness applies to n, the εi , and the right coset representatives of the g i modulo
A and B respectively.

9.4.3 Undecidability of the Generalized Word Problem

Let
K = 〈x , y , z | [x , y ]〉 and p : Z2 −→ K

(u , v ) 7−→ (x u y v )−1z x u y v

Note that K ∼= 〈x , y | [x , y ]〉 ∗ 〈z | −〉 ∼=Z2 ∗Z

Lemma 9.4.4. The image of Z2 under the map p forms a free basis of a free subgroup of
K . In particular, p is one-to-one.

PROOF. Let w = p (u1, v1) j1 ·p (u2, v2) j2 . . . p (un , vn ) jn be a reduced product of p (u , v )
factors, i.e., such that (ui , vi ) 6= (ui+1, vi+1) and ji 6= 0. Substituting the p (ui , vi ) with
their values and using that x and y commute in K , we get

w =K x−u1 y −v1 z j1 x u1−u2 y v1−v2 z j2 . . . x un−1−un y vn−1−vn z jn x un y vn .

From the normal form theorem of free products, if w is the identity in K , then it
contains a factor x ui−ui+1 y vi−vi+1 which is 1 in 〈x , y | [x , y ]〉. However this is in con-
tradiction with the hypothesis that (ui , vi ) 6= (ui+1, vi+1). It follows that the p (ui , vi )
constitute a free basis.

With every l -transformation, we associate a morphism

φl :< x β
2
, y β , p (Al , Bl )>→< x β , y β

2
, p (Cl , Dl )>

between the two subgroups of K respectively generated by x β
2
, y β , p (Al , Bl ) and

x β , y β
2
, p (Cl , Dl ). This morphism is defined by x β

2 7→ x β , y β 7→ y β
2

and p (Al , Bl ) 7→
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p (Cl , Dl ). That this indeed defines a morphism is not obvious, see the next lemma. We
similarly associate with every r -transformation the morphism

φl :< x β , y β
2
, p (Ar , Br )>→< x β

2
, y β , p (Cr , Dr )>

defined by x β 7→ x β
2
, y β

2 7→ y β , p (Ar , Br ) 7→ p (Cr , Dr ).

Lemma 9.4.5. The mapsφl andφr are well-defined isomorphisms.

PROOF. Let ρl be the (inner) automorphism acting by conjugation by x−Al y −Bl .
This morphism sends < x β

2
, y β , p (Al , Bl )> isomorphically onto < x β

2
, y β , z >. Simi-

larly, we have an inner automorphismθl sending< x β , y β
2
, p (Cl , Dl )>onto< x β , y β

2
, z >.

Now, we just need to show that θl ◦φl ◦ρ−1
l exists and is an isomorphism. To see this,

first note that < x β
2
, y β , z > as a subgroup of K is equal to < x β

2
, y β > ∗< z > (show

inclusion in both directions) and similarly< x β , y β
2
, z >=< x β , y β

2
> ∗< z >. Now, the

map x β
2 7→ x β , y β 7→ y β

2
induces an isomorphism < x β

2
, y β >→< x β , y β

2
> between

groups isomorphic to Z2. The “free product” of this isomorphism with the identity
over < z > is an isomorphism and is precisely θl ◦φl ◦ρ−1

l . The same proof holds for
φr , substituting r for l .

We can thus consider the HNN extension K ∗φl
of K byφl . Let tl be the stable generator

of this extension.

Lemma 9.4.6. (u , v )
l→ (u ′, v ′) if and only if t −1

l p (u , v )tl = p (u ′, v ′) in K ∗φl
. Likewise,

(u , v )
r→ (u ′, v ′) if and only if t −1

r p (u , v )tr = p (u ′, v ′) in K ∗φr
.

PROOF. If (u , v )
l→ (u ′, v ′) then for some numbers U , V : u = β 2U + Al , v = βV +

Bl , u ′ = βU +Cl , v ′ = β 2V +Dl . It easily follows that φl (p (u , v )) = p (u ′v ′), whence
t −1

l p (u , v )tl = p (u ′, v ′) in K ∗φl
. Conversely, suppose that t −1

l p (u , v )tl p (u ′, v ′)−1 = 1.
By Britton’s Lemma 9.4.2 applied to K ∗φl

, we have p (u , v ) ∈< x β
2
, y β , p (Al , Bl ) >.

Hence,

p (u , v ) = x β
2 j1 y β j2 p (Al , Bl )

j3 x β
2 j4 . . . p (Al , Bl )

jn (9.1)

for some integers j1, j2, . . . , jn . Using trivial relations and the commutation of x and y ,
the right-hand side of (9.1) may be written as

p (β 2U1+Al ,βV1+Bl )
j3 ·p (β 2U2+Al ,βV2+Bl )

j6 . . . p (β 2Uk +Al ,βVk +Bl )
jn x β

2p y βq

for some U1, V1,U2, V2, . . .Uk , Vk , p , q . Making x , y and z commute (by Abelianizing K )
in this equality, we deduce that p = q = 0. By Lemma 9.4.4, we then conclude that the
right-hand side member of (9.1) reduces to a single factor p (β 2U + Al ,βV +Bl ) for
which u = β 2U +Al and v = βV +Bl . We thus compute in K ∗φr

that t −1
l p (u , v )tl =

φl (p (u , v )) = p (βU +Cl ,β 2V +Dl ). It then follows from the hypothesis p (u ′, v ′) =
t −1

l p (u , v )tl and Lemma 9.4.4 that u ′ = βU +Cl et v ′ = β 2V +Cl . In other words,

(u , v )
l→ (u ′, v ′). The case of an r -transformation may be treated the same way.
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Denote by KZ the group obtained from K by the successive HNN extensions by the
morphismsφl andφr associated with all the l and r -transformations of Z . Clearly,
the resulting group does not depend on the order of successive extensions. Since a
group embeds in all its extensions, the previous lemma remains valid in KZ . Denote
by {tl } and {tr } the stable generators of all the HNN extensions corresponding to the
ϕl and ϕr morphisms.

Lemma 9.4.7. (u ′, v ′)
∗↔ (u , v ) if and only if p (u ′, v ′) ∈< p (u , v ),{tr },{tl }>⊂ KZ .

PROOF. By repeated applications of Lemma 9.4.6, if (u ′, v ′)
∗↔ (u , v ) then there ex-

ists w ∈< {tl },{tr }>⊂ KZ such that p (u ′, v ′) =w −1p (u , v )w . In particular, p (u ′, v ′) ∈<
p (u , v ),{tr },{tl } >. Conversely, suppose that p (u ′, v ′) ∈< p (u , v ),{tr },{tl } >. Hence,
p (u ′, v ′)may be written

T0p (u , v ) j1 T1p (u , v ) j2 . . . p (u , v ) jk Tk (9.2)

for some integers j1, j2, . . . , jk and words T0, T1, . . . , Tk in < {tr },{tl }>. Since the value
p (u ′, v ′) of this product is in K , it follows by induction on the number of HNN ex-
tensions from K to KZ and by Britton’s lemma that this product contains a factor
of the form t ±1

s w t ∓1
s , where w is in the domain or codomain of φs . We must have

w = p (u , v ) j for some j ∈ { j1, j2, . . . , jk}, so that

t ±1
s w t ∓1

s = t ±1
s p (u , v ) j t ∓1

s = (t
±1
s p (u , v )t ∓1

s )
j = p (u ′′, v ′′) j

where either (u , v )
s→ (u ′′, v ′′) or (u , v )

s← (u ′′, v ′′) depending on the signs in the ts

exponents. In particular, the fact that p (u , v ) j is in the (co)domain ofφs implies that
the s -transformation (or its inverse) corresponding to ts applies to (u , v ). Substituting
p (u ′′, v ′′) j to t ±1

s p (u , v ) j t ∓1
s in (9.2) we get a new expression in terms of the Ti ’s, p (u , v )

and p (u ′′, v ′′). Iterating the process we eventually obtain

p (u ′, v ′) = p (u1, v1)
j1 p (u2, v2)

j2 . . . p (uk , vk )
jk

where (ui , vi )
∗↔ (u , v ) for each i . Lemma 9.4.4 allows to conclude that the right-hand

side reduces to a single p (ui , vi )with (ui , vi ) = (u ′, v ′), so that (u ′, v ′)
∗↔ (u , v ).

Lemma 9.4.8. Let (u0, v0) ∈ Z2 corresponds to a halting configuration of Z . Then,
(u , v )

∗↔ (u0, v0) if and only if (u , v )
∗→ (u0, v0).

PROOF. On the one hand, we cannot have (u , v )
s← (u0, v0) since (u0, v0) is halting.

On the other hand, (u , v )
s← (u ′, v ′)

s ′→ (u ′′, v ′′) implies (u , v ) = (u ′′, v ′′) since Z is
determinist. We can thus assume that this pattern does not occur in (u , v )

∗↔ (u0, v0).
It follows that (u , v )

∗→ (u0, v0).

PROOF OF THEOREM 9.2.6. let Z be the Z2-machine corresponding to a universal
Turing machine T . Up to a simple modification, we can assume that T has a unique
halting configuration corresponding to some (u0, v0) for Z . It follows from Lem-
mas 9.4.7 and 9.4.8 that T eventually halts starting from a configuration with Z2

code (u , v ) if and only if p (u , v ) belongs to the subgroup < p (u0, v0),{tr },{tl }> of KZ .
This last generalized word problem is thus unsolvable by Corollary 9.1.2.
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PROOF OF THEOREM 9.2.4. Let H =< p (u0, v0),{tr },{tl }>⊂ KZ . Consider the HNN
extension L := KZ ∗I dH

and let k be the stable generator of this extension. By Britton’s
lemma p (u , v )k p (u , v )−1k−1 =L 1 if and only if p (u , v ) ∈ H . Hence, the generalized
word problem reduces to the word problem.

PROOF OF THEOREM 9.2.7. The unsolvability of the isomorphism problem results
from Theorem 9.2.8 since being isomorphic to the trivial group is a Markov property.
For completeness we nonetheless provide an independent proof based on the above
construction. First note that all non-trivial elements of KZ have infinite order. This
is true for K = 〈x , y , z | [x , y ]〉 and its embedding in KZ . Moreover, applying Britton’s
lemma to the powers of the normal form of an element involving a stable generator
shows that such an element has also infinite order.

Let 〈{s1, s2, . . . , sn} |R 〉 be the presentation of KZ naturally obtained by the succes-
sive extensions. In particular, {s1, s2, . . . , sn}= {x , y , z }∪{tl }∪{tr }. For a word w in the
si ’s, we consider the group with presentation

KZ (w ) := 〈{s1, s2, . . . , sn}∪ {ki }1≤i≤n |R ∪{k−1
i w ki = si }1≤i≤n 〉

We claim that w represents the identity in KZ if and only if KZ (w ) is isomorphic to
the free group over n elements. Indeed, if w =KZ

1 then the new relations in KZ (w )
becomes 1 = si , whence KZ (w ) = 〈{ki }1≤i≤n | −〉. Conversely, if w 6= 1 then w , like
the si ’s, has infinite order in KZ . It follows that w 7→ si defines an isomorphism of
cyclic infinite groups. Hence, KZ (w )may be viewed as resulting from a sequence of
HNN extensions with stable generators {ki }1≤i≤n . In particular, KZ embeds in KZ (w ),
implying that the word problem for KZ (w ) is unsolvable. On the other hand, if KZ (w )
was isomorphic to a free group then the word problem for KZ (w )would be solvable, a
contradiction. Hence, KZ (w ) is not isomorphic to a free group, thus proving the claim.
It follows that this instance of the isomorphism problem reduces to an unsolvable
word problem.
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