IPOL: un journal en ligne pour la recherche reproductible

Pascal Monasse <pascal.monasse@enpc.fr>
LIGM, École des Ponts, Univ. Gustave Eiffel, Marne-la-Vallée, France

Sous la co-tutelle de : CNRS ÉCOLE DES PONTS PARISTECH UNIVERSITÉ GUSTAVE EIFFEL

Les Plans de Gestion des Logiciels de la Recherche, UGE, 23-24 mai 2024

Some definitions

Repeatability and replicability

Capacity to perform the same experiment as many times as needed.

- → Repeatability: Same team, same experimental setup
- $\rightarrow \textbf{Replicability} \hbox{: Different team, same experimental setup}$

Example: is distilled water electrically conductive? Is salt water conductive? We can perform the experiment many times and get results (https://www.dailymotion.com/video/x2lcg6a).

Some definitions

Repeatability and replicability

Capacity to perform the same experiment as many times as needed.

- → Repeatability: Same team, same experimental setup
- → Replicability: Different team, same experimental setup

Example: is distilled water electrically conductive? Is salt water conductive? We can perform the experiment many times and get results (https://www.dailymotion.com/video/x2lcg6a).

Reproducibility

Capacity to obtain the same results when repeating an experiment by following a detailed procedure

→ Different team, different experimental setup

In computational sciences (deterministic code, digital data): results obtained by following a detailed and correct pseudo-code description must coincide if the same input data is provided.

Repeatability Examples

Repeatable

Obtaining the classification results with a neural network. We can repeat the experiment as many times as we want. We just need the weights of the network and the input data.

Repeatability Examples

Repeatable

Obtaining the classification results with a neural network. We can repeat the experiment as many times as we want. We just need the weights of the network and the input data.

Detection of the merger of two black holes from gravitational waves. We can't repeat the experiment as needed.

Reproducibility Examples

Reproducible:

Given:

- a detailed pseudo-code (or the source code itself),
- any associated learning or initialization data,
- the input data,

we should obtain exactly the same results each time we run the algorithm.

⇒ Exactly the same denoised image, classification results, etc.

Reproducibility Examples

Reproducible:

Given:

- a detailed pseudo-code (or the source code itself),
- any associated learning or initialization data,
- the input data.

we should obtain exactly the same results each time we run the algorithm.

⇒ Exactly the same denoised image, classification results, etc.

Not reproducible

In a paper that shows

- a pseudo-code without all the details, or its initialization,
- the source code is not available,
- neither the learning data,

other researchers can't compare with the proposed method.

 \Rightarrow We can't be sure about anything on the method, nor test it with our own data.

Implementation of Reproducible Research

- Non-exact sciences (biology, medicine, ...): difficult (but desirable). Hard to have exactly the same conditions along experiments.
- Computational sciences: no excuse!

Why are we not all doing reproducible research?

Implementation of Reproducible Research

- Non-exact sciences (biology, medicine, ...): difficult (but desirable). Hard to have exactly the same conditions along experiments.
- Computational sciences: no excuse!

Why are we not all doing reproducible research?

Several reasons in general:

- Some researchers don't want to make public working code
 - doesn't correspond to any version of the pseudo-codes,
 - low software quality,
 - quality software takes more time to produce: testing, documentation, objective quality metrics.
- Results of the method do not generalize
- ...(For the discussion later!)

Implementation of Reproducible Research

- Non-exact sciences (biology, medicine, ...): difficult (but desirable). Hard
 to have exactly the same conditions along experiments.
- Computational sciences: no excuse!

Why are we not all doing reproducible research?

Several reasons in general:

- Some researchers don't want to make public working code
 - doesn't correspond to any version of the pseudo-codes,
 - low software quality,
 - quality software takes more time to produce: testing, documentation, objective quality metrics.
- Results of the method do not generalize
- ... (For the discussion later!)

Not really considered for career advance

- Classic metrics: "number of high impact-factor classic publications"
- Software is considered as a 2nd class citizen

Reproducible Research Platforms

Different types of platforms

- Online execution platforms.
- Dissemination platforms.
- Peer-reviewed journals.
- Galaxy https://galaxyproject.org
- IPython https://ipython.org
- Jupyter http://jupyter.org
- RunMyCode http://www.runmycode.org
- Code Ocean https://codeocean.com
- DAE http://dae.cse.lehigh.edu/DAE
- IPOL https://www.ipol.im
- Research Compendia Research Compendia.org
- MLOSS https://mloss.org/software
- DataHub https://datahub.io/
- PaperWithCode https://paperswithcode.com

- ReScience Journal http://rescience. github.io
- JOSS Journal https: //joss.theoj.org
- Insight J Journal https:// insight-journal.org

Reproducible Research Platforms

Different types of platforms

- Online execution platforms.
- Dissemination platforms.
- Peer-reviewed journals.
- Galaxy https://galaxyproject.org
- IPython https://ipython.org
- Jupyter http://jupyter.org
- RunMyCode http://www.runmycode.org
- Code Ocean https://codeocean.com
- DAE http://dae.cse.lehigh.edu/DAE
- IPOL https://www.ipol.im
- Research Compendia Research Compendia.org
- MLOSS https://mloss.org/software
- DataHub https://datahub.io/
- PaperWithCode https://paperswithcode.com

- ReScience Journal http://rescience. github.io
- JOSS Journal https: //joss.theoj.org
- Insight J Journal https:// insight-journal.org

Reproducible Research Platforms

Different types of platforms

- Online execution platforms.
- Dissemination platforms.
- Peer-reviewed journals.
- Galaxy https://galaxyproject.org
- IPython https://ipython.org
- Jupyter http://jupyter.org
- RunMyCode http://www.runmycode.org
- Code Ocean https://codeocean.com
- DAE http://dae.cse.lehigh.edu/DAE
- IPOL https://www.ipol.im
- Research Compendia Research Compendia.org
- MLOSS https://mloss.org/software
- DataHub https://datahub.io/
- PaperWithCode https://paperswithcode.com

- ReScience Journal http://rescience. github.io
- JOSS Journal https: //joss.theoj.org
- Insight J Journal https:// insight-journal.org

The IPOL Journal

- Started in 2009 under the initiative of Nicolas Limare and Jean-Michel Morel (ENS Paris Saclay).
- A journal initially targeting image processing (Image Processing On Line)
- Some other data types were added: video, audio, 3D data...
- Even some articles on SARS-CoV-2 evolution!
 "A Daily Measure of the SARS-CoV-2 Effective Reproduction Number for all Countries" http://www.ipol.im/pub/art/2020/304/
- Today it it a general journal on reproducible algorithms
 - → Information Processing On Line

Peer-reviewed

- Both the article (PDF) and the source code.
- Reproducibility: the reviewers check carefully that the source code matches the pseudo-code.

Peer-reviewed

- Both the article (PDF) and the source code.
- Reproducibility: the reviewers check carefully that the source code matches the pseudo-code.

Each publication:

- A text describing the method in detail, including pseudo-codes.
- The source code, under an open-source software license.
- An online demo which allows users to test the method with their own data.
- An archive of experiments.

Peer-reviewed

- Both the article (PDF) and the source code.
- Reproducibility: the reviewers check carefully that the source code matches the pseudo-code.

Each publication:

- A text describing the method in detail, including pseudo-codes.
- The source code, under an open-source software license.
- An online demo which allows users to test the method with their own data.
- An archive of experiments.
- No need to be an original work. We're interested in the math details, reproducibility, and understanding.
- ISSN, DOI, indexed by SCOPUS. Not yet an "Impact Factor".

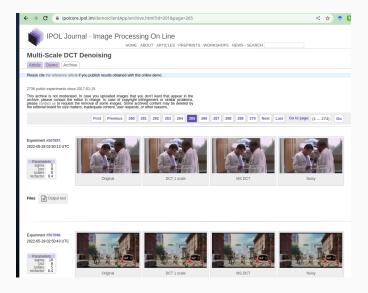
Peer-reviewed

- Both the article (PDF) and the source code.
- Reproducibility: the reviewers check carefully that the source code matches the pseudo-code.

Each publication:

- A text describing the method in detail, including pseudo-codes.
- The source code, under an open-source software license.
- An online demo which allows users to test the method with their own data.
- An archive of experiments.
- No need to be an original work. We're interested in the math details, reproducibility, and understanding.
- ISSN, DOI, indexed by SCOPUS. Not yet an "Impact Factor".

Let's have a look! ⇒ http://www.ipol.im/pub/art/2017/201/



IPOL

article

IPOL demo

IPOL archive

Benefits of RR

If a method is worth it, the impact is large

- Users worldwide can test the algorithm with their own data.
- Increase in the number of citations: other researchers can now compare to you.

Benefits of RR

If a method is worth it, the impact is large

- Users worldwide can test the algorithm with their own data.
- Increase in the number of citations: other researchers can now compare to you.

Scientific acceleration:

⇒ other researchers can reuse text, source code, data

Benefits of RR

If a method is worth it, the impact is large

- Users worldwide can test the algorithm with their own data.
- Increase in the number of citations: other researchers can now compare to you.

Scientific acceleration:

⇒ other researchers can reuse text, source code, data

Useful to show a landscape of our scientific activity

Reviewing RR

Main attention points:

- Consider source code as part of the publication, not supplementary material
- Different levels of evaluation:
 - $\bullet \ \ \text{Lowest: black box (same inputs} \to \text{same outputs)}$
 - ...
 - Highest: deep understanding of the method and checking that the source code matches the implementation faithfully.

Reviewing RR

Main attention points:

- Consider source code as part of the publication, not supplementary material
- Different levels of evaluation:
 - Lowest: black box (same inputs → same outputs)
 - ...
 - Highest: deep understanding of the method and checking that the source code matches the implementation faithfully.

Difficulties

- Software is not easy to review.
- Many researchers are not software engineers!
- \Rightarrow A possible solution (IPOL): use **at least two reviewers**, one of them being an expert reading source code.

Reviewing RR

Main attention points:

- Consider source code as part of the publication, not supplementary material
- Different levels of evaluation:
 - Lowest: black box (same inputs → same outputs)
 - ...
 - Highest: deep understanding of the method and checking that the source code matches the implementation faithfully.

Difficulties

- Software is not easy to review.
- Many researchers are not software engineers!
- ⇒ A possible solution (IPOL): use **at least two reviewers**, one of them being an expert reading source code.

Special case of neural networks

Focus on the architecture, training, understanding, and generalization.

IPOL Submission Processing

- Four editors in chief: Luis Alvarez (Univ. Gran Canaria), PM, Jean-Michel Morel (ENS Paris Saclay), Gregory Randall (Univ. Montevideo)
- EiCs decide if the submission looks interesting.
- EiCs name an associate editor for the submission.
- The editor chooses reviewers and a demo editor.
- Reviewers may be asked to check different aspects: article, code, demo.
- After acceptation, an EiC checks the article and plays with the demo, testing with different input data and parameters

Published articles

Currently about 15-20 accepted submissions per year.

IPOL Journal : Image Processing On Line 1

IPOL CITATIONS

IPOL Journal Image Processing Online Adresse e-mail validée de ctim.es - Page d'accueil Image Processing Applied Mathematics

TITRE	CITÉE PAR	ANNÉE
Non-Local Means Denoising A Buades, B Coll, JM Morel IPOL Journal : Image Processing On Line 1	949	2011
LSD: a line segment detector RG Ven Oici, J Jasubowcz, JM Morel, G Randali IPOL Journal Image Processing On Line 2, 35-55	886	2012
An Analysis of the Viola-Jones Face Detection Algorithm YQ Wang IPOL Journal: Image Processing On Line 4, 128-148	497	2014
TV-L1 Optical Flow Estimation J Sanchez, E Meinhardt-Llopis, G Facciolo IPOL Journa's Image Processing On Line. 3, 137-150	475 *	2013
Asift: An algorithm for fully affine invariant comparison G Yu, JM Morel IPOL Journal: Image Processing On Line 1	427 *	2011
An Analysis and Implementation of the BM3D Image Denoising Method M Lebrun IPOL Journal Image Processing On Line 2, 175-213	393	2012
Multiscale Retinex AB Petro, C Sbert, JM Morel IPOL. Journal : Image Processing On Line 4, 71-88	353	2014
Rudin-Osher-Fatemi total variation denoising using split Bregman P Geteuer IPOL Journal: Image Processing On Line 2, 79-95	308	2012
Chan-vese segmentation P Getreuer IPOL Journal: Image Processing On Line 2, 214-224	236	2012
Self-similarity Driven Demosaicking A Buades, B Coll, JM Morel, C Sbert	200 *	2011

	OD I EI III I III	ON PROPR	E PROFIL
Citée p	oar		TOUT AFFICHER
		Toutes	Depuis 2019
Citation indice h		9839 44	6078
Indice If		117	93
illuice I		117	
			1300
			975
ш			650
ш			000
ш		_	325
			2022 2024 0
Coaute	eurs		TOUT AFFICHER
1	Jean Miche		
	Ecole Norm	l Morel nale Supérier	ure de Ca >
	rafael grom		oire de Ca
1	rafael grom	ale Supérie	oire de Ca
1	rafael grom Centre Bon	pone von git billi, ENS Par	bi is-Saclay
	rafael grom Centre Born A. Buades Pascal Get	pone von git billi, ENS Par	ol sis-Saclay >
1 1	rafael grom Centre Bon A. Buades Pascal Geb Google Res C Sbert UIB	ale Supérier pone von gie billi, ENS Par reuer search	ol is-Saciay >
	rafael grom Centre Born A. Buades Pascal Geb Google Res C Sbert UIB Gabriele Fa Professor of Gregory Ra	pone von gle pone von gle billi, ENS Par reuer search scciolo f Mathemati	ire de Ca >is is-saciay > > > > > > > > > > > > >

SUIVRE

Thank you for your attention