Autour des logiciels de l'équipe signal

Caroline CHAUX

Equipe signal et communication

Laboratoire d'Informatique Gaspard Monge - UMR CNRS 8049, Université Paris-Est, France

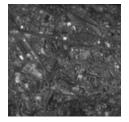
Journée logiciels, 6 mars 2012

Plan de la présentation

- Contexte général
 - Problèmes inverses.
 - ► Approches variationnelles
 - Algorithmes itératifs
- ▶ Les logiciels
 - ► Restauration d'images
 - Quantification
 - ► Estimation de cartes de disparités

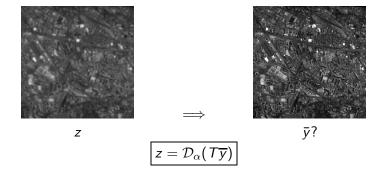
Caroline CHAUX - Autour des logiciels de l'équipe signal					3/18
	●00	0000000	000	00	0
	Les problemes inverses	Logiciels de restauration	Logiciel de quantification	Logiciel d'estimation de disparite	Conclusion

Contexte général


▶ On observe une image $z \in \mathbb{R}^M$ "dégradée" par

Caroline CHAUX - Autour des logiciels de l'équipe signal

3/18


Contexte général

- ▶ On observe une image $z \in \mathbb{R}^M$ "dégradée" par
 - ▶ un opérateur linéaire T (e.g. un flou)
 - ▶ un bruit, non nécessairement additif (e.g. gaussien, Poisson, ...)

Contexte général

- ▶ On observe une image $z \in \mathbb{R}^M$ "dégradée" par
 - ▶ un opérateur linéaire T (e.g. un flou)
 - ▶ un bruit, non nécessairement additif (e.g. gaussien, Poisson, ...)
- ▶ Objectif: estimer l'image originale inconnue $\bar{y} \in \mathbb{R}^N$

Approches variationnelles

Trouver
$$\min_{x \in \mathbb{R}^K} \sum_{j=1}^J f_j(x)$$

où $(f_j)_{1 \leq j \leq J}$: fonctions appartenant à la classe $\Gamma_0(\mathbb{R}^K)$ (classe des fonctions convexes, s.c.i. et propres de \mathbb{R}^K à valeur dans $]-\infty,+\infty]$). Le critère considéré peut être non lisse.

Les problèmes inverses

Approches variationnelles

Trouver
$$\min_{x \in \mathbb{R}^K} \sum_{j=1}^J f_j(x)$$

où $(f_j)_{1\leq j\leq J}$: fonctions appartenant à la classe $\Gamma_0(\mathbb{R}^K)$ (classe des fonctions convexes, s.c.i. et propres de \mathbb{R}^K à valeur dans $]-\infty,+\infty]$).

Le critère considéré peut être non lisse.

► *f_j* peut être liée au bruit (e.g. un terme quadratique quand le bruit est gaussien)

Les problèmes inverses

Approches variationnelles

Trouver
$$\min_{x \in \mathbb{R}^K} \sum_{j=1}^J f_j(x)$$

où $(f_i)_{1 \le i \le J}$: fonctions appartenant à la classe $\Gamma_0(\mathbb{R}^K)$ (classe des fonctions convexes, s.c.i. et propres de \mathbb{R}^K à valeur dans $]-\infty,+\infty]$).

Le critère considéré peut être non lisse.

- $ightharpoonup f_i$ peut être liée au bruit (e.g. un terme quadratique quand le bruit est gaussien)
- ▶ f_i peut représenter un a priori sur la solution cible (e.g. un a priori sur la distribution des coefficients d'ondelettes)

Approches variationnelles

Trouver
$$\min_{x \in \mathbb{R}^K} \sum_{j=1}^J f_j(x)$$

où $(f_i)_{1 \le i \le J}$: fonctions appartenant à la classe $\Gamma_0(\mathbb{R}^K)$ (classe des fonctions convexes, s.c.i. et propres de \mathbb{R}^K à valeur dans $]-\infty,+\infty]$).

Le critère considéré peut être non lisse.

- $ightharpoonup f_i$ peut être liée au bruit (e.g. un terme quadratique quand le bruit est gaussien)
- $ightharpoonup f_i$ peut représenter un a priori sur la solution cible (e.g. un a priori sur la distribution des coefficients d'ondelettes)
- ► f; peut représenter une contrainte (e.g. une contrainte de support)

Un contexte plus général

000

Problème

Trouver
$$\hat{u} \in \operatorname{Argmin}_{u \in \mathcal{H}} \sum_{j=1}^{J} f_j(L_j u)$$
 (1)

- \triangleright \mathcal{H} et $(\mathcal{G}_i)_{1 \le i \le J}$ sont des espaces de Hilbert
- ▶ Pour tout $j \in \{1, ..., J\}$, $f_i : \mathcal{G}_i \mapsto]-\infty, +\infty]$ est convexe, s.c.i. et propre
- ▶ Pour tout $j \in \{1, ..., J\}$, $L_i : \mathcal{H} \to \mathcal{G}_i$ est un opérateur linéaire borné.

→ Utilisation de l'algorithme PPXA+ [Pesquet and Pustelnik, 2012]

Problème convexe

Les problèmes inverses

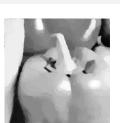
- ▶ Contexte : ANR Masse de données OPTIMED.
- Programmes réalisés par N. Pustelnik http://perso.ens-lyon.fr/nelly.pustelnik/
- ► Langage de programmation : Matlab
- ▶ Licence : CeCillB

$$z = \mathcal{P}_{\alpha}(T\overline{y})$$

οù

- $\triangleright \mathcal{P}_{\alpha}$: bruit de Poisson de paramètre d'échelle α
- ▶ T: opérateur de flou

Résultats


Originale

Degradée, $\alpha = 0.1$

$$(\vartheta=0.1,\kappa=0.01)$$

 $(\vartheta = 0.01, \kappa = 0.04)$

$$(\vartheta=1,\kappa=0.005)$$

Problème non convexe

- ► Contexte :
- ▶ Programmes réalisés par E. Chouzenoux http://www-syscom.univ-mlv.fr/~chouzeno/
- ► Langage de programmation : Matlab
- ▶ Licence : CeCillB

$$z = T\overline{y} + n$$

οù

- n: bruit additif Gaussien
- ► T: opérateur de flou

	Les problèmes inverses	Logiciels de restauration	Logiciel de quantification	Logiciel d'estimation de disparité	Conclusion
Caroline CHAUX - Autour des logiciels de l'équipe signal					9/18

Résultats en débruitage

L	es problèmes inverses	Logiciels de restauration	Logiciel de quantification	Logiciel d'estimation de disparité	Conclusion
(000	000000	000	00	0
(Caroline CHAUX - Autour des logiciels de l'équipe signal				10/18

Résultats en déconvolution

Séparation de composantes

- ► Contexte : ANR Masse de données OPTIMED
- Programmes réalisés par N. Pustelnik http://perso.ens-lyon.fr/nelly.pustelnik/
- ► Langage de programmation : Matlab
- ► Licence : CeCillB

Caroline CHAUX - Autour des logiciels de l'équipe signal

12/18

Résultats : bruit gaussien $\alpha = \sigma^2 = 15$

Image dégradée z

Composante géométrique x₁

Composante de texture $F^{\top}x_2$

Résultats : bruit gaussien $\alpha=\sigma^2=15$

SNR = 18.2 dBSSIM = 0.56

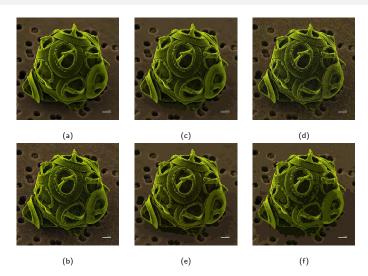
SNR = 22.2 dBSSIM = 0.81.

Quantification

- ► Contexte : ANR Défis DIAMOND
- ► Signature d'un accord de consortium
- ▶ Programmes réalisés par A. Jezierska http://www-syscom.univ-mlv.fr/~jeziersk/
- ► Langage de programmation : C/C++
- ▶ Licence LGPL

Les problèmes inverses	Logiciels de restauration	Logiciel de quantification ○●○	Logiciel d'estimation de disparité	Conclusion O	
Caroline CHAUX - Autour des logiciels de l'équipe signal					

Résultats



(a) originale, (b) bruitée, (c) Lloyd-Max et (d) résultat du logiciel

Caroline CHAUX - Autour des logiciels de l'équipe signal

15/18

Résultats couleur

(a) originale, (b) bruitée, (c,d) K-means (cas non bruité / bruité) (e,f) résultat du logiciel (cas non bruité / bruité)

Estimation de disparité

- ► Contexte : Sous-traitant d'un projet européen ACDC
- ► Programmes réalisés par M. El Gheche http://www-syscom.univ-mlv.fr/~elgheche/
- ► Langage de programmation : Matlab

Caroline CHAUX - Autour des logiciels de l'équipe signal

17/18

Estimation dense de la disparité

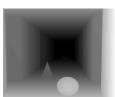


Image gauche

Vérité terrain

MAE= 1.13, Err=14 Méthode par bloc

MAE= 0.54, Err=13

sous-gradient projeté

algo PPXA+

Conclusion

- ► Conception de nombreux logiciels dans des contextes différents (ANR, sous-traitance, contrats privés, ...)
- ► Volonté d'encourager la distribution libre des logiciels lorsque c'est possible

Conclusion

- ► Conception de nombreux logiciels dans des contextes différents (ANR, sous-traitance, contrats privés, ...)
- Volonté d'encourager la distribution libre des logiciels lorsque c'est possible

Merci 1