Research Software and Research Data: dissemination, evaluation and reusability in the Open Science context

Teresa Gomez-Diaz, teresa.gomez-diaz@univ-eiffel.fr **Université Gustave Eiffel-LIGM-CNRS, Est of Paris**

https://siteigm.univ-mlv.fr/

Our contribution: how to improve REUSABILITY conditions

The extended use of CDUR evaluation protocols for Research Data and Research Software will enhance the quality of the disseminated research outputs and will improve their reusability conditions. **CDUR** is one of the enablers to achieve **Open Science** objectives.

The Open Science Context

Open Science is the political and legal framework where research outputs are shared and disseminated in order to be rendered visible, accessible and reusable (Gomez-Diaz & Recio, 2020-21). Other definitions for Open Science available at (Méndez, 2021, UNESCO, 2021, Vicente-Saez et al., 2018).

Three steps: RS and RD definitions, dissemination procedures, CDUR evaluation protocols I - Definitions II - Dissemination Procedures

Research software (RS) is a well identified set of code that has been written by a (again, well identified) research team. It is software that has been built and used to produce a result published or disseminated in some article or scientific contribution. Can include: documentation, specifications, use examples... (Gomez-Diaz & Recio, 2019).

Research Data (RD) is a well identified set of data that has been produced (collected, processed, analyzed, shared and disseminated) by a (again, well identified) research team. The data has been collected, processed and analyzed to produce a result published or disseminated in some article or scientific contribution. Can include: documentation, use examples, provenance information, instrument information... and references to the software needed for the RD manipulation. (Gomez-Diaz & Recio I & II, 2022).

References

- Gomez-Diaz T. (2014). Free software, Open source software, licenses. A short presentation including a procedure for research software and data dissemination, Zenodo
- Gomez-Diaz T. & Recio T. (2019). On the evaluation of research software: the CDUR procedure, F1000Research
- Gomez-Diaz T. & Recio T. (2020-21). Towards an Open Science definition as a political and legal framework: on the
- Gomez-Diaz T. & Recio T. (2022). Research Software vs. Research Data I: Towards a Research Data definition in the Open Science context, F1000Research
- Gomez-Diaz T. & Recio T. (2022). Research Software vs. Research Data II: Protocols for Research Data dissemination and evaluation in the Open Science context, F1000Research
- Méndez E. (2021). Open Science por defecto. La nueva normalidad para la investigación. ARBOR Ciencia, Pensamiento y Cultura.
- UNESCO (2021). UNESCO Recommendation on Open Science, SC-PCB-SPP/2021/OS/UROS.
- Vicente-Saez R., & Martinez-Fuentes C. (2018). Open Science now: A systematic literature review for an integrated definition, J. Business Research, V. 88.

This work is partially funded by the CNRS-IEA PREOSI project (2021-22).

Tomas Recio, trecio@nebrija.es Universidad Antonio de Nebrija, Madrid

- Choose a name, avoid trademarks and proprietary names; associate date, version...
- (*) Research team. Establish list of authors, contributors, participants to produce the RS or RD. Consider legal issues related to copyright, and other RD legal issues.
- (*) Establish the list of included software & data components, their licences.
- Choose a license, have an agreement (signed) with rightholders and authors. Beware of licence compatibility and inheritance issues.
- Choose a website, forge, or deposit for dissemination, indicate licences and how to cite the work. Use PIDs if possible.
- (*) Research work. Establish the list of the main functionalities to facilitate REUSE.
- Inform your laboratories and head institutions (if not done in the license step).
- Set and indicate clearly a contact address.
- Distribute the software or data component. Inform the target community.

(*) To review for each new RS version. (Gomez-Diaz , 2014, Gomez-Diaz & Recio II, 2022).

sharing and dissemination of research outputs. Version 2, POLIS N. 19, pp. 5-25, 2020. Version 3, 28/02/2021, Zenodo.

https://www.nebrija.com/

17th edition of the International Digital Curation Conference (IDCC22) 13-16 June 2022

III - CDUR Evaluation Protocols

The **CDUR** protocol includes four steps:

(C) Citation, measure if the RS or RD is well identified as a research output: good citation form, but also metadata, best citation practices... **Legal point:** *authors, contributors, affiliations, copyright...*

(D) Dissemination, best dissemination practices, in agreement with the scientific policy of the evaluation context **Policy point:** *Open Science*. Legal point: *licenses*

(U) Use, "software" or "data" aspects of RS or RD: correct results, facilitate reuse, best software or data practices, can include documentation, use cases, test, install... **Reproducibility point:** *validation of scientific results,* **REUSABILITY**

(R) Research, "research aspects": quality of the scientific work, proposed and coded algorithms & data structures, related publications, collaborations... **Research point:** *measures research impact*

Flexibility of application: each decision maker or evaluation committee sets its own **CDUR** protocol adapted to the evaluation context and goals. (Gomez-Diaz & Recio, 2019, Gomez-Diaz & Recio II, 2022).

Evaluation sets the dissemination conditions. The **USE** step measures **reusability** conditions.

2022