
On the Implementation of Dynamic EvaluationP. A. BroadberyThe Numerical Algorithms Group, LtdWilkinson House, Jordan Hill Road, Oxford, OX2 8DR, UKpeterb@nag.co.ukT. G�omez-D��az �Laboratoire d'arithm�etique, calcul formel et optimisation (URA 1586)123, Av. Albert Thomas. University of Limoges, Francetgomez@marie.polytechnique.frS. M. WattIBM T.J. Watson Research CenterP.O. Box 218, Yorktown Heights, NY 10598 USAsmwatt@watson.ibm.comAbstractDynamic evaluation is a technique for producing multipleresults according to a decision tree which evolves with pro-gram execution. Sometimes it is desired to produce resultsfor all possible branches in the decision tree, while on otheroccasions it may be su�cient to compute a single resultwhich satis�es certain properties. This technique �nds usein computer algebra where computing the correct result de-pends on recognising and properly handling special casesof parameters. In previous work, programs using dynamicevaluation have explored all branches of decision trees byrepeating the computations prior to decision points.This paper presents two new implementations of dynamicevaluation which avoid recomputing intermediate results.The �rst approach uses Scheme \continuations" to recordstate for resuming program execution. The second imple-mentation uses the Unix \fork" operation to form new pro-cesses to explore alternative branches in parallel.These implementations are based on modi�cations toLisp- and C-based run-time systems for the Axiom Version2 extension language (previously known as A]). This allowsthe same high-level source code to be compared using the\re-evaluation," the \continuation," and the \fork" imple-mentations.�Partially supported by IBM Research contract N. 40140052 andPoSSo Esprit/Bra 6846
1 INTRODUCTIONConsider the following example:rank � 1 11 a �When examining this example it is clear that the entriesare of two di�erent kinds: some are numbers and one is aparameter. The value of this expression is:1 if a = 12 if a 6= 1and this can be obtained easily by hand. When computingthe rank of the matrix, the question a = 1 appears. Ob-viously, if one does not know whether a is equal to 1, bothresults are possible, and if one computes using both possi-bilities, one gets the right answer.This, however, is not what one gets using a computeralgebra system; there, the usual answer is simply \2". Com-puter algebra systems will normally provide only one result,possibly querying the user or selecting the \more general"branch during the course of the computation. This can leadto problems when the conditions under which the branchis valid are not recorded. For example, related questionscan arise during the course of a computation, and there isno guarantee that the results of querying the user or auto-matically selecting branches will be consistent. Even whenthe choices are consistent, the conditions for validity are notpresented as part of the answer in available algebra systems.A proposal has existed for some time in the Maple com-munity to return this list of conditions via a variable, the\proviso" [CJ], and an experimental version of Maple's "so-lve" command has been created to test these ideas [La].The second di�culty is to obtain a complete solution cov-ering all cases of a general mathematical problem. There doexist packages for particular algorithms which return resultscovering di�erent cases (as for example [Si]). The next stepis to understand how to use such packages together, compos-ing the results of sub-problems. This is not straight-forward,

since the course of an algorithm will likely vary dependingon the conditions placed on the di�erent cases. One does notwish to obscure the intent of every function in an algebrasystem with back-tracking logic. Even if one were willing toaccept this, it would be necessary to modify all of the codein the entire system.Dynamic evaluation addresses this problem and gives amethod of proceeding when there are many possibilities forthe answer [DR]. It has been implemented on the com-puter algebra system Axiom Version 1 [JS] and has beenapplied �rst in computations involving algebraic numbers[DDD, DD, Du], which are considered as a special kind ofparameter. Dynamic evaluation is intrinsically parallel, butin earlier implementations the parallelism is only simulated,and some parts of the computation are performed manytimes. This redundant computation was unavoidable in theAxiom system, as it provides no mechanism for restarting acomputation at a point in the middle of a program.A possible way of avoiding redundant computation is touse continuations [R4R]. Continuations provide a mecha-nism for marking a point in a computation (in the middle ofan equality in our example) and to return to this point asmany times as desired. This allows the back-tracking prim-itive that dynamic evaluation needs. The question now ishow to use continuations from within a computer algebrasystem. This has been made possible by the new Axiomcompiler, called A].In this paper we describe dynamic evaluation and itsutilisation in some computations involving parameters. Wedescribe how continuations may be used to avoid redundantcomputation in the dynamic evaluation of a program, andhow continuations may be used from within the Axiom Ver-sion 2 system. Section 2 describes the form of the domainsover which dynamic evaluation can be made. This sectionthen goes on to describe the splitting trees which can beused to represent a particular computation over these do-mains. This section then gives a more extended exampleof such a tree. Section 3 describes the implementations ofdynamic evaluation, and describes the interface to A].2 DYNAMIC EVALUATION ANDCOMPUTING WITH PARAMETERSDynamic evaluation is a process of calculation that allowsthe execution of a program even where several answers arepossible for some questions appearing in the program. It isdescribed rigorously using sketch theory [DR].Dynamic evaluation was �rst applied to computationswith algebraic numbers, implemented as the dynamic alge-braic closure of a �eld, �rst written in Reduce (known asthe D5 system), and later in Axiom [DDD, DD, Du]. Inthis program the parameters are algebraic numbers, repre-sented by symbols under algebraic constraints. This domainhandles questions of equality over itself, using an algorithmbased on the gcd.The Axiom version of the dynamic algebraic closure iscomposed of several categories, domains and packages [Du]1.In particular there is the control package with the functionallCases. This function manages the progress of a dynamicevaluation. It is done in a general way that is independentof the particular application under consideration. This waspossible because dynamic evaluation is a general principle,and also thanks to the polymorphism of Axiom.1this version is referred to later as the old implementation of dy-namic evaluation

Other applications of dynamic evaluation implementedin Axiom are, for example, the dynamic algebraic real closure[DGV] and the dynamic constructible closure [Go]. Theyuse (without modi�cation) the same control package. In thedynamic algebraic real closure parameters are also algebraicnumbers, but additionally allow sign tests (>). The sign testimplies the use of algorithms from real closed �elds whichmakes the implementation more di�cult (in fact, this workis still in progress).The dynamic constructible closure of a �eld allows onlythe equality test, but here one deals with parameters in amore general sense than the algebraic one. In this domainone can get the full answer for the example in the introduc-tion. As in the algebraic case, the gcd is the tool used inanswering equality tests. We explore this domain further inthe next section.2.1 The Dynamic constructible closureDynamic constructible closure is an Axiom constructor (i.e.a domain-producing function) that provides parameters. Itneeds a ground �eld K, which can be any �eld and producesa new Field with additional operations. If K is a sub�eld ofcomplex numbers, the domain deals with complex parame-ters, that is parameters that take a complex number as theirvalue.In Axiom, one builds the dynamic constructible closureof a �eld K in the following way:CL:= DynamicConstructibleClosure(K)The result is a Field which also provides a function to intro-duce parameters:newElement: Symbol -> CLIn addition, there are two functions to impose or forbid val-ues for the introduced parameters, i.e. imposing constraintsover the parameters:areEqual: (CL,CL) -> BooleanareDifferent: (CL,CL) -> BooleanThe boolean result of these operators says whether a newconstraint is compatible with the previous ones. Constraintsover parameters express the possible values for a parameter.At the moment of their introduction, they are reduced intoa standard form in a recursive way, which reduces its pre-sentation to the case of a parameter a over the ground �eldK. The constraints on a are in one of the following forms:� anyElement: there is no constraint on a (this meansthat a can take any value)� algebraic: there is a constraint of type P (a) = 0 withP a monic univariate polynomial of positive degreewith coe�cients in K (this means that a can take asvalue any zero of P).� exception: there is a constraint of typeP1(a) 6= 0 and : : : and Pk(a) 6= 0with P1; : : : ; Pk monic univariate polynomials of posi-tive degree with coe�cients in K and pairwise coprime(this means that a can take any value di�erent fromany zero of any of the polynomials P1; : : : ; Pk)

�?a:= newElement('a)?any aareDifferent(a,1)?a 6= 1true
�?a:= newElement('a)?any aa = 1���	a 6= 1 @@@Ra = 1false true

�?a:= newElement('a)?any aareEqual(a,1)?a = 1trueFigure 1: Three basic trees.In addition, when the characteristic of the ground �eld iszero, we can suppose that polynomials P;P1; : : : ; Pk aboveare square-free.The main point now is that parameters can take di�erentvalues, so that it is in general impossible to answer trueor false to an equality test over parameters. When bothanswers are possible, it is essential to distinguish the valuesof the parameters corresponding to true from the valuescorresponding to false. This is called a splitting, and it isdetected using gcd computations.One can use this program to solve polynomial systems orin mechanical geometry theorem proving. Also, one can getJordan canonical form for matrices with parameters in itsentries (see [Go]).To illustrate the use of this program, we show the code(slightly simpli�ed) corresponding to our example in the in-troduction:RN:= Fraction IntegerCL:= DynamicConstructibleClosure(RN)M := Matrix(CL)dynamicRank():NonNegativeInteger ==a:CL:= newElement('a)m:M:= [[1,1],[1,a]]rank mallCases(dynamicRank)In the �rst line we say that our ground �eld is the ratio-nal numbers, in the second we build its constructible closure,CL. CL is a �eld in Axiom sense, so it makes sense to buildmatrices over it. Next we write a function with the com-putation to be done. It starts with the introduction of thenecessary parameters and after building the matrix, callsrank over it. Finally we call this function with allCases inorder to get the full answer:[value is 1 in case a = 1,value is 2 in case a /= 1]Time: 0.12 secWe remark that rank is a function from Axiom. Thisfunction has no knowledge of dynamic evaluation, and isused without modi�cation.

2.2 Splitting treesDynamic evaluation associates a splitting tree with a compu-tation. It is built by the allCases function as computationproceeds.We explain here splitting trees related to computationsin the dynamic constructible closure domain. They can bede�ned in the following way:1. The root node represents the beginning of the compu-tation.2. The edges represent current information about param-eters, that is constraints over parameters in their stan-dard form.3. The nodes represent the points in the computationwhere the constraints can change | this can hap-pen with the introduction of a new parameter (withnewElement), and in the use of areEqual, areDiffe-rent or the equality test (=).The third point is the essential one, we will extend it moreprecisely, �rst for the case of only one parameter over theground �eld, then for the case of many parameters, whererecursion appears.Case of one parameter. Let a be a parameter over the �eldK, and x and y two elements in the �eld K(a). At everynode of the splitting tree, except the root node, there is oneof the following possibilities:� areEqual(x,y). There is only one edge coming downfrom this node, it corresponds to:{ true if areEqual(x,y) implies a constraint on awhich is compatible with the old ones,{ or false otherwise. In this case, current con-straints on a do not change.� areDifferent(x,y). There is only one edge comingdown from this node, it corresponds to:{ true if areDifferent(x,y) implies a constrainton a which is compatible with the old ones,{ or false otherwise. In this case, current con-straints on a do not change.� x = y. In this case we have several possibilities:

�?a:= newElement('a)?b:= newElement('b)?c:= newElement('c)?a*b*c = 0any a; any b any cc = 0����	false @@@@Rtrue 0 = 0?true 0 = 0?true
any aany a; any bany a; any b; any cany a; any ba 6= 0; b 6= 0 a 6= 0; b = 0 a = 0; any ba 6= 0; b 6= 0c 6= 0 a 6= 0; b 6= 0c = 0 a 6= 0; b = 0any c a = 0; any bany cFigure 2: Splitting tree with box.{ the answer is true for all the possible values of a.This node has only one edge coming down, andcurrent constraints on a do not change.{ the answer is false for all the possible values ofa. This node has only an edge coming down, andcurrent constraints on a do not change.{ both answers, true and false, are possible.There are two edges coming down from this node,one for each answer. This is called a splittingpoint.Figure 1 shows three basic trees for the case of one parame-ter. The second tree in this �gure corresponds to the exam-ple of the matrix rank computation.Case of many parameters. Let a1; : : : ; an be the parame-ters introduced. The main point is that the program worksrecursively over parameters and then the use of =, areEqualor areDifferent over expressions of level k (k � n) canproduce equality tests (and then splitting points) in lowerlevels.Initially we show the last level only, with possible internalsplittings in lower levels represented by a box. From this box,there is at least one edge coming down, but possibly manyedges. During this process only constraints related to lowerlevels could change.In order to show it we will study the following example:a:CL:= newElement('a)b:CL:= newElement('b)c:CL:= newElement('c)(a*b*c = 0)$CL

This corresponds to the splitting tree in �gure 2. In theroot node computation starts, in the second one there is theintroduction of the �rst parameter a. From this node there isan edge coming down with the current information over thisparameter that is any a. In the next node there is the intro-duction of the second parameter, and after the introductionof the parameter c we �nd the equality test a*b*c = 0. Inorder to answer this question the system works recursivelyover the parameters and some splitting points appear forparameters a and b. This splitting tree hides these splits ina box in which the current constraint on c (any c) does notchange. From this box there are three edges coming down,with the current information about parameters a and b aftersplit. For each edge we �nd a node with the question a*b*c= 0 specialized with respect to these new constraints. In twonodes there is 0 = 0, which we can answer now without ad-ditional split over c. In the other node we �nd the questionc = 0 that needs a split over c in order to be answer.Finally the complete answer is:[value is true in case any c and any b and a = 0,value is true in case any c and b = 0 and a /= 0,value is true in case c = 0 and b /= 0 and a /= 0,value is false in case c /= 0 and b /= 0 and a /= 0]Time: 1.46 secLet us now open the box (see �gure 3). In order to answerthe question a*b*c = 0 the system needs to answer a*b = 0and for that a = 0. One split appears at the level of a, thatis inside the inner box. There are two edges coming downfrom this box, for each of them there is a reduction step tospecialize the question a*b = 0 to the new constraints on

?a*b*c = 0?a*b = 0?a = 0�� HHfalse trueb = 0 0 = 0�� HHfalse true truec = 0 0 = 0 0 = 0
any cany a; any b any bany aa 6= 0 a = 0a 6= 0b 6= 0 a 6= 0b = 0 a = 0any bFigure 3: Splitting tree with open box.a. In one of the branches this question can be answeredwithout more splits, in the other it is needed another splitover b.Note that boxes are used to show the change of level inthe computation, where recursion acts. Also there are someboolean values that appear, they only clarify the meaningof the branch (they can be seen as a ag for the branch).3 IMPLEMENTING DYNAMIC EVALUATION3.1 StrategiesThe splitting trees show what kind of parallel problems thatdynamic evaluation generates: from a given splitting point,each case is independent of the others, and consequentlymay be evaluated by a separate thread of execution.Most common parallel libraries (including RPC, Linda,and PVM) assume that a parallel task can be described bya function, plus some arguments, and the parallel executionsimply obtains a processor, branches to the function andwhen the function returns, marks itself as �nished in someway. Unfortunately, dynamic evaluation is not suited tothese kinds of model, as the parallel work is the remainderof the computation (ie. a continuation) rather than a wellde�ned subpart of it.In the previous implementation of dynamic evalua-tion, one starts the computation (for example the functiondynamicRank)with a call to the function allCases. This ini-tiates the computation. The process may then reach a pointwhere a split is needed (the question a = 1 in the rank algo-rithm). At this point it picks one branch (a 6= 1) saving theother possibility onto a list ([a = 1]). Execution continuesuntil the process is complete (and we have the result 2 forthe case a 6= 1). The next stage takes the �rst condition on

the list (a = 1) and re-evaluates the function (dynamicRank)using those conditions, possibly generating more list entries.When this list has been exhausted, a complete set of solu-tions has been found. This mechanism walks every possiblepath in the splitting tree, from the root node down to eachleaf. This mechanism therefore evaluates the �rst part (upto a splitting point) of the function redundantly (in fact, if nanswers are produced, the execution up to the �rst splittingpoint will have been repeated n times).There are two possible solutions to this problem:� to save the initial part preceding the split, to chooseone branch, and re-instantiate the initial part in orderto get the other branch when the �rst one is complete.� to start two independent threads of computation at asplitting point,The �rst of these may be implemented as a continua-tion save and restart, and the second by using a primitivesimilar to fork. Note that for the program to be useful, anyindependent threads must be re-synchronised and the resultscombined. This makes the two roughly equivalent, and givesus a way of describing fork as a continuation saving device.Naturally, for any mechanism to be judged useful, theexpense involved in either taking a continuation or forkinga process should be less than the expense of re-evaluatingthe program up to the point at which the split occurs.3.2 A tool: continuationsThe language Scheme [R4R] provides continuations as �rstclass objects. Continuations are useful for implementing awide variety of advanced control constructs, including non-local exits, backtracking, and coroutines.

Whenever an expression is evaluated there is a continu-ation which is waiting for the result of the expression. Thecontinuation represents an entire (default) future for thecomputation and may be represented as a snapshot of thecurrent state of the program. A language which providescontinuations as �rst-class objects allows a continuation tobe saved, and later re-invoked. This re-invocation puts thecomputation back to the point where the continuation wassaved, and additionally passes a result back to the continu-ation, in place of the result of the original expression.For dynamic evaluation, the points we would mark areequalities in splitting points. In this case there are two pos-sible ways to continue the computation, one for each branchof the tree. We therefore save the continuation of the equal-ity test in a global table, returning false as the result of theequality test. After execution of this side of the splittingtree has completed, we can invoke this continuation with atrue argument to force execution along the other path ofthe splitting tree. This serialises the computation as a se-quence of disjoint paths in the splitting tree | there is noredundant execution of code when continuations are used.The Scheme primitive which provides this snap-shot is call-with-current-continuation, abbreviated tocall/cc. This is a Scheme primitive which passes an objectrepresenting the continuation of the call/cc expression tothe argument of the call/cc. The argument should be afunction that takes one parameter. The following illustratesthe use of call/cc:(define *the-cont* nil) ;; continuation holder(define *the-val* nil) ;; value for continuation;; Equality. If either argument is a symbol, we save;; the current continuation, and return false. If;; neither is a symbol, we call = as usual. In Scheme;; false is #f, true is #t.(define (my-equal a b)(if (or (symbol? a) (symbol? b))(call/cc(lambda (cont);; save the continuation,(set! *the-cont* cont);; and a value for it(set! *the-val* #t)#f))(= a b)));; if x is zero, then return good, bad otherwise.(define (test x)(if (my-equal x 0) "good" "bad"))> (test 3) ;; simple case, 3 <> 0value is: "bad"> (test 'x) ;; saves a continuationvalue is: "bad" ;; and returns as if false;; restart the computation from my-equal with the;; value it saved (#t in this case)> (*the-cont* *the-val*)value is: "good" ;; we get this resultThe above example shows the basic idea behind contin-uations, as used in dynamic evaluation | an equality testcan (by de�nition) only return true or false, but we use acontinuation in order to be able to back-track to the pointof the test, so that we can follow both possible execution

paths. However, we must identify cases which are provablytrue or provably false, which in the case of a constructibleclosure of a �eld is a signi�cant task.Note that a continuation saves dynamic information, butnot global variables | clearly some state has to be left alonewhen restoring a continuation, because without that a pro-gram would have no way of discovering whether it was con-tinuing from a re-invoked continuation, or from normal ex-ecution.For the purposes of dynamic evaluation, it is possible tosimulate continuations in C using the fork function. This isavailable under UNIX-style operating systems | in this casea continuation is really a whole separate process which isallowed to compute up to the end of the allCases function,and then return its result to its caller.3.3 Making continuations available within AxiomA] [W1] is a part of version 2 of the Axiom symbolic algebrapackage. The language provides a large number of relativelynovel constructs, including �rst-class types, functions anditerators plus backward compatibility with the previous Ax-iom library language [JS]. As well as producing code for theAxiom system, it may also generate stand-alone programsin either Lisp or C. The dialect of Lisp that the compilerproduces is heavily abstracted using macros, and has beendesigned in such a way that the macros may be modi�ed fora Scheme system.In order for A] to produce both C and Lisp code, it �rstproduces an intermediate representation called foam (formore details of the compiler's design, see [W2]). foam isa very small language which can be mapped to a particu-lar target language. Both C and Lisp host languages havebeen implemented, but in practice the majority of impera-tive computer languages contain a foam-like subset. Thismakes the compiler retargetable to other host languages,which may provide other control mechanisms.A] also includes a foreign function interface which cancall functions from the hosting language, and allows one tobuild abstractions over the imported functions. For exam-ple, the call/cc function and the continuations it producesmay be turned into a type by importing call/cc into thecompiler namespace, and wrapping a type around it. Thuswe declare a type with the following signature:Continuation(T: Type): with {callWithCC: (% -> T) -> T;apply: (%, T) -> Exit;}This states that Continuation is a function, which whenapplied to a type (called T), returns a new type which hastwo operations: apply and callWithCC. The apply opera-tion invokes a continuation. The type Exit indicates thatthe call never returns | in this case execution continuesat the point of the corresponding callWithCC call. Callingthis function apply indicates that using a continuation ina function position will call this function | this is in or-der to mimic the Scheme syntax. In order to implementcallWithCC, we have to write a small piece of Scheme whichcan call back the function passed to it. The function is anAxiom-level function, not a Scheme function, so we have tocall it via a macro (CCall) from the foam package.(define (schemeCallWithCC clos)(call/cc (lambda (c)(CCall clos c))))

We then incorporate this code into the de�nition ofContinuation as follows (continuing from the declarationabove):Continuation(T: Type): with {callWithCC: (% -> T) -> T;apply: (%, T) -> Exit;}== add {import { schemeCallWithCC: (% -> T) -> T }from Foreign Lisp;callWithCC(fn: % -> T): T ==schemeCallWithCC fn;...}The import statement asserts that the function sche-meCallWithCC exists, has a particular type, and should becalled as a Lisp function. Note that from the compiler'spoint of view the Scheme language is identical to Lisp.These de�nitions now allow us to use continuations as�rst class objects within A].We also implement a slightly modi�ed version of contin-uations in terms of fork | in this case, we import functionsfrom C, and have to do more wrapping in order to achievethe desired semantics, but the declaration above is identical,and so the code using the Continuation type does not needto be changed.The relative costs of the two implementations are hardto compare | in the Scheme case, the act of taking a con-tinuation is not too high unless there is a large amount ofdynamic data. However, the cost of running any Schemecode is often much greater than that of running the samecode under C. This is partially due to the implementationof loops in Scheme, which had to be hand crafted, and alsobecause Scheme is a dynamically typed language, and there-fore spends much time checking types. C, however runs codevery fast, but a call to fork has to be carefully guarded, asthis may double the amount of memory taken by the pro-gram. This doubling is worst case, as many operating sys-tems only replicate information after a process has writtento a page, which implies that we only need copy the work-ing set of pages in the program. The overhead can alsobe reduced by ensuring that no more than a �xed numberof processes are active at a time | this ensures that theamount of space needed is proportional to the depth of thesplitting tree, rather than the maximum width, at the worstcase.3.4 Using continuations with an algebra libraryAs we have shown above, continuations form a useful ba-sic mechanism for implementing dynamic evaluation. Dy-namic evaluation itself can be applied to many problems,which typically need a large amount of non-trivial algebracode. This code is typically written in a high level language,whose hosting platform is not able to handle the creation ofcontinuations. Conversely, languages that provide contin-uations do not have a rich enough algebra library or typesystem to implement some of the applications. Naturally,these could be added, but this is a signi�cant amount ofwork. The A] compiler is used to bridge this gap.As described above, there is the old implementation ofdynamic evaluation [Du], which has been translated into A]language. (not a major change, as the languages are very

similar). The principal user of this package, the dynamicconstructible closure domain, has also been translated.These programs are strongly structured into categories,domains and packages, and so it has been very easy to adaptthem to the use of the new tools. In particular there are onlytwo major changes:� the function allCases in the control package,� the equality in the dynamic constructible closure do-main (and that only for the case where a split appears).These two parts have been rewritten to use the continuationmodel of evaluation.The old implementation of dynamic evaluation uses mu-table variables in the dynamic constructible closure con-structor in order to store the current case and the list ofnext cases. These variables are changed at a split point andallCases has access to these variables so as to control exe-cution.The mutable variable for the list of next cases disappearswith the introduction of continuations, as the continuatione�ectively holds the necessary case information. This list ofcases variable is therefore substituted with a variable thatsaves a list of outstanding continuations.This rewriting allows one to use programs developed us-ing the compiler to make use of dynamic evaluation | forexample a program using the Matrix domain formed over adynamic �eld may be used unchanged in both a Scheme andC based environment.4 CONCLUSIONS AND FURTHER WORKWe have presented here two di�erent solutions for the con-trol problem in dynamic evaluation. In fact this controlproblem appears in a more general context: the use of par-allelism from computer algebra systems.We have seen how A] is able to incorporate tools suchas continuations and fork. This mechanism is very power-ful, and while foreign function interfaces are becoming rel-atively common in other languages, the compiler allows amuch greater degree of control over the de�nition and useof the imported functions.The problem of redundant computation has been avoidedin these implementations of dynamic evaluation, and the useof continuations is a very elegant mechanism for solving thisform of control problem. Naturally, more work is needed inboth the C and Scheme versions to ensure that they retainthis elegance, and execute without excessive overhead. Asstated before, the original code was only lightly modi�ed,but one can imagine some changes to make it better adaptedto the continuations model.The dynamic evaluation code itself can be further im-proved | the gcd algorithm used as the basis of the equalitytest is a generic implementation, and could be made morespeci�c to the data structures used in dynamic evaluation.References[R4R] W. Clinger, J. Rees, eds. | Revised4 Report on theAlgorithmic Language Scheme. ACM LISP Pointers IV,3 (July-September 1991).[CJ] R. Corless, D. Je�rey | Well It Isn't Quite That Sim-ple! ACM Sigsam Bulletin, Number 26 p. 2{6 (1992).

[DDD] J. Della Dora, C. Dicrescenzo, D. Duval | Abouta New Method for Computing in Algebraic NumberFields. Eurocal'85, vol.2, Springer Lecture Notes inComputer Science 204, ed. G. Goos, J. Hartmanis, p.289{290 (1985).[DD] C. Dicrescenzo, D. Duval | Algebraic Extensions andAlgebraic Closure in Scratchpad. Symbolic and Alge-braic Computation, Springer Lecture Notes in Com-puter Science 358, ed. P. Gianni, p. 440{446 (1989).[Du] D. Duval | Evaluation dynamique et clôture alg�e-brique en Axiom. J. of Pure and Applied Algebra, toappear.[DGV] D. Duval, L. Gonz�alez-Vega | Dynamic Evaluationand Real Closure. To appear in Mathematics and Com-puters (transactions of IMACS Conference, June 1993).[DR] D. Duval, J.-C. Reynaud | Sketches and Compu-tation (Part I): Basic De�nitions and Static Evalua-tion and (Part II): Dynamic Evaluation and Applica-tions. Mathematical Structures in Computer Science,4 p. 185-238 and 239-271. Cambridge University Press(1994)[Go] T. G�omez-D��az | Quelques applications de l'�evalua-tion dynamique. Thesis, Universit�e de Limoges (1994).Available from Atelier National de Reproduction desTh�eses, Universit�e de Grenoble 2.[JS] R. D. Jenks, R. S. Sutor | Axiom, The Scienti�c Com-putation System. NAG, Springer-Verlag (1992).[La] J. M. Lang | Private communication.Waterloo MapleSoftware (1995).[Si] W. Y. Sit | An algorithm for solving parametric lin-ear systems. J. Symbolic Computation 13 p. 353{394(1992).[W1] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio,S. C. Morrison, J. M. Steinbach, R. S. Sutor | Axiomlibrary compiler user guide. NAG Ltd, 1994.[W2] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio,S. C. Morrison, J. M. Steinbach, R. S. Sutor | A �rstreport on the A] compiler. Proceedings ISSAC'94, ACMPress, New York 1994, p. 25{31.

