Examples of using Dynamic Constructible Closure

IMACS SymposiuM SC-1993

Teresa Gomez-Diaz*

Laboratoire d’arithmétique, calcul formel et optimisation (URA D1586)

Université de Limoges (FRANCE)

Abstract: We present here some examples of using the “Dynamic Constructible Closure” pro-

gram, which performs automatic case distinction in computations involving parameters over a

base field K. This program is an application of “Dynamic Evaluation” principle, which general-

izes traditional evaluation and was first used to deal with algebraic numbers.

Keywords: dynamic evaluation, parameters, computer algebra, polynomial systems, auto-

matic theorem proving

Introduction

The aim of this document is to present some
examples of using the “Dynamic Constructible
Closure” program that we have implemented
in the computer algebra system Axiom [JS].
This program does automatic case distinction
in computations involving parameters over a
base field K.

This paper only concentrates in the study of
some examples (computed by hand in [Du90])
and does not describe the algorithm itself. A
complete description of the algorithm will be
given in a forthcoming paper [Go].

The program of Dynamic Constructible Clo-
sure raised as an application of the “Dynamic
FEvaluation” principle: it generalizes tradi-
tional evaluation and was first used to deal
with algebraic numbers [DDD]. This princi-
ple can be interpreted in sketch theory [DR].
Dynamic evaluation has been used to imple-
ment the Dynamic Algebraic Closure of a Field
[DDD, DD] or the Prime Field of Arbitrary
Characteristic [Du89).

For example, if you ask for the rank of the ma-

trix:
a 1
1 1

*This work is partially supported by CICyT
PB/0379/C02/01 and POSSO Esprit/Bra 6846

according to all possible values of the complex
parameter @, our program answers automati-
cally:

[ value is 2 in case a = 0,
value is 1 in case a = 1,
value is 2 in case a /= 0, a /=1 1]

(where /= means #). To get this result, we call
essentially:

e the Dynamic Constructible Closure
program that provides a field with as
many parameters as you like.

e the allCases function, it is some “infer-
ence engine” which ensures that you get
the complete answer.

e a standard rank function (implemented
without any “parameter” notion).

This simple example already shows the impor-
tance of equality tests.

It is the first time that such a method to deal
with parameters is implemented in a general
way.

This paper is organised as follows: in next sec-
tion we sketch some main points of the Dy-
namic Constructible Closure program. In the
second section, we study polynomial system
solving using this program and we apply this to



compute singular points of plane curves. In the
third section we study un example of automatic
theorem proving in elementary geometry.

1 About dynamic
constructible closure

1.1 Equality test

The main point is that parameters can take
different values, so that it is in general impos-
sible to answer true or false to an equality
test over parameters. When both answers are
possible, it 1s essential to distinguish the val-
ues of the parameters corresponding to true
from the values corresponding to false. This
1s called a “splitting”.

1.2 Constraints

The possible values for parameters are ex-
pressed as “constraints”. Next theorem shows
the constraints manipulated in the program.

Theorem 1 Let a be a parameter and K a
base field. Constraints over a always are of
one of these kinds:

e anyElement: there is not constraint over
a (this means that a can take any value)

e exception: there ts a constraint of type
Pi(a) #0,...,Py(a) # 0 with Py, ..., Py
monic untvariate polynomials of positive
degree with coefficients in K and coprime
(this means that a can take any value that
is not a zero of polynomials Py, ..., Py)

e algebraic: there is a constraint of type
P(a) = 0 with P monic univariate poly-
nomial of positive degree with coefficients
in K (this means that a can take as value
any zero of P).

In addition, when the characteristic of K 1s 0,
we can suppose that polynomials P, Py, ..., Py
above are squarefree.

1.3 Dynamic constructible
closure

Let K be a base field. The con§tructible closure
of K can be defined as a field K which contains

all the finitely generated extensions of K and
such that is minimal for this property.

More constructively, K (noted CL bellow) is a
field that contains K:

CL:= DynamicConstructibleClosure(K)

and is provided with a “generator of con-
stants”:

newElement: Symbol -> CL
More precisely, each call to this generator:
a:= newElement(’a)

provides a new parameter a of K whith a sym-
bol a for its representation. In addition, K has
two operators:

areEqual: (CL,CL) -> Boolean
areDifferent: (CL,CL) -> Boolean

Their job is to impose or to forbid values for
the parameters provided by newElement. In
other words, they tmpose constraints over the
parameters. The boolean result of these oper-
ators says whether a new constraint is (or not)
compatible with the old ones.

1.4 Computations

A computation in K is a combination of oper-
ations +, -, * and inv, from the constants 0, 1
and the parameters (added with newElement),
together with equality tests = and instructions
areEqual and areDifferent, and usual con-
trol structures as “if...then...else...” or
“while...repeat...”. For example:

a:= newElement(’a)

if areDifferent(a**4,1) then
b:= ax*2 + a
if b = 2 then return O
else return 1/(b-2)

else return O

With result:

[ value is O in case a = - 2,
1
value is - ———————————-—- in case
(a-1) (a+2)
3 2
a +a +a+1/=0, a/=1, a/= -2 1]



Obviously, we do not get the case a* — 1 = 0.

2 Solving polynomial
systems

A system of polynomial equations with coef-
ficients in K can be “solved” (in the sense of
triangularized, similary to [La]) by computa-
tions in the constructible closure of K. Con-
sider each indeterminate as a parameter intro-
duced by newElement (which means that inde-
terminates must be ordered) and each equation
as a constraint introduced by areEqual (which
means that equations must be ordered).

For example, the system of “cyclic 4-roots”

[BF]:

a+b+c+d=0
ab+bc+cd+da=0
abe + bed + eda + dab =0
abed = 1

is expressed in the closure as:

:= newElement(’a)
newElement(’Db)
:= newElement(’c)
:= newElement (’d)

o 0 o p
1}

areEqual (a+b+c+d,0) and

areEqual (a*b+b*c+c*d+d*a,0) and
areEqual (a*b*c+b*c*d+c*d*a+d*a*b,0)
and areEqual (a*b*c*d, 1)

While equations are introduced, the system au-
tomatically updates the constraints on param-
eters in order to keep them in the required
form. In this way we get a union of trian-
gular systems Sy, ..., Sy, but these systems
are not polynomial in the usual sense. Indeed,
if a1, aq,...,a, denote the parameters (intro-
duced in this order), each system S; has the
form:

expr(ay)

expa(az)

expn(an)
where exp;(a;) is a description of a constraint
for a; over K(ay,az,...,a;-1):

e any a; for the anyElement constraint,

o Pii(a;) # 0,..., P, (a;)) # 0 for an

exception constraint,

e P(a;) =0 for an algebraic constraint,

with Piyl(ai), ey Piykl(ai), P(al) n
K(ai,...,a;—1)[a;], monic, of positive de-
gree in a;, and squarefree if K has char-
acteristic 0. In addition, the polynomials
P;1(a;), ..., Pig,(a;) are coprime. The non-
trivial denominators which appear in coeffi-
cients of these polynomials involve only the pa-
rameters a; of exception type (with j < i).
We get the solutions of the given system by col-
lecting the solutions of the systems Sy, ..., Sp.
There is no redundancy: there is no solution
common to two of the systems S, ..., S, We
remark that the exception constraints appear
during computations since no areDifferent is
used in the formulation of the problem.

In this simple example the solution is:

[ value is false in case d = - b and
¢ =0 and any b and a = O,

value is true in case d = - b and
2 1
c=-aandb - -—=0and a /=0 ]
2
a

This means that there is no solution if ¢ =
0, and for each non-zero value of a there are
exactly two solutions:

1
(a, b=4+—, c=—a, d=-b)
a

This method can be compared to a “complex”
version of cylindrical algebraic decomposition
[ACC], or to the characteristic sets method of
Ritt-Wu [Ch, BCK]. But it is fairly different
from the Grobner basis method [Bu].

Singular points of a curve

To compute the singular points of a curve is
an application of solving polynomial systems.
Given a plane curve defined by a polynomial
P(z,y) € K[z, y] with derivatives Pa(x,y) =
OP(z,y) dP _ 9P(zy) let t

. and Py(x,y) = —%y > let us compute
in the constructible closure:

newElement (’x)
newElement (’y)

X:
y:

areEqual(P(x,y),0) and
areEqual(Px(x,y),0) and



areEqual(Py(x,y),0)

We can go further and consider a family of
curves which depends on one or more parame-
ters and compute the singular points of these
curves according to values of parameters, as in
the next example. We consider the family of
curves

Pa,b,z,y) = Y — z(x —a)(x —bla+1))

which depends on parameters a and . The
program in the closure is:

:= newElement(’a)
:= newElement (’b)
newElement (’x)
:= newElement(’y)

T o i
1]

P(a,b,x,y):= y**2-x*(x-a)*(x-b*(at+l))

Px(a,b,x,y):= —3*x**2+((2*a+2)*b+2*a)
*x+(—a**k2-a)*b

Py(a,b,x,y):= 2%y

areEqual(Py(a,b,x,y),0) and
areEqual(Px(a,b,x,y),0) and
areEqual(P(a,b,x,y),0)

The description of singular points is:

L

0 and x=0 and any b and a=-1,
0 and x=0 and b=0 and a=0,
0 and x=0 and b/=0 and a=0,
2 a
y=0 and x=(a+1)b and b - ——-——- b=0
(at1)

%‘ﬁ%

and a/=-1, a/=0 ]

Note that when @ = 0, the cases b = 0 and
b # 0 are considered separately. It has a geo-
metric sense: the behaviour of the curve at the
singular point is not the same. If @ = 0 and
b # 0, the point (0,0) is an ordinary double
point, and if ¢ = 0 and & = 0, the point (0,0)
s a cusp.

3 Automatic proving in
elementary geometry

In this kind of problems, exception con-
straints are a good tool to avoid degenerate
cases, for example we can impose that two
points are distinct or that three points are not
on a line. Then our method is similar to the

Ritt-Wu method [Ch, BCK] but more power-
full because it is possible to avoid degenerate
cases.

For example, consider the next theorem: Given
a triangle ABC', right-angled in C| the circle T
through the midpoints #, F' and G of the sides
CA, AB and BC (T is the Euler’s circle of
triangle ABC'), and the foot H of the altitude
from C'. Then I' passes through H.

We now state this problem as a computation in
the constructible closure of Q. Let M denote
the center of I'. We choose a coordinate system
adapted to the problem and we give a name to
coordinates of every point in this coordinate
system. For example:

C:(an)a A:(alao)a B:(O,az),
E= (a3’0)’ F= (a4aa5)a G = (Oaa6)a
M = (07,08), H = (ag,alo).

So we need 10 parameters in the constructible
closure: aj,as,...,a;g. To avoid degenerate
triangles we impose:

a1¢0,a2750

The choice of the coordinate system already
reflects that the triangle is right-angled. Next
we write that £, F' and (G are the midpoints of
CA, AB and BC respectively:

1 1 1 1

a3 = 01, G4 = Z~d], G5 = 702, Gg = <042
2 2 277 2

The center M of the circle T' is given by the
conditions FEM = FM and EM = GM, hence:

(a7 —a3)” + a3 = (a7 — as)” + (a8 — as)”

(a7 — az)® + ag = a? + (ag — as)”

The point H 1s the intersection of two perpen-
dicular lines AB and C'H. The equation of AB
is:



(recall that a; and ag are non-zero) hence:

1
—ag + —ajg =1, —ajag + asajo =0
ay a2

Finally, the conclusion of the theorem is KM =
HM, that 1s

2

(a7 — az)? + a2 = (a7 — ag)? + (ag — ajo)?

The corresponding program is:

al:= newElement(’al)
a2:= newElement(’a2)
a3:= newElement(’a3)
a4:= newElement(’a4)
ab:= newElement(’a5b)
a6:= newElement(’a8)
a7:= newElement(’a7)
a8:= newElement(’a8)
a9:= newElement(’a9)
a10:= newElement(’al0)

e0:=(a7-a3)**2
el:=e0+a8**2-(a7-ad)**2-(a8-ab)**2
e2:=e0+aB8**2-aT**2—(a8-aB) **2
e3:=-al*a9 + a2*all
e4:=e0+a8**2—(a7-a9)**2-(a8-al10) **2

if areDifferent(al,0) and
areDifferent(a2,0) and
areEqual(a3,(1/2)*al) and
areEqual(a4,(1/2)*al) and
areEqual(ab, (1/2)*a2) and
areEqual(a6,(1/2)*a2) and
areEqual(el1,0) and
areEqual(e2,0) and
areEqual((1/al)*a9+(1/a2)*a10-1,0)
and areEqual(e3,0)

then return (e4 = 0)

else return "failed"

and the result:

[ value is "failed" in case

1
al10=- ----a2 a9+a2 and any a9 and
(a1)
1 1 1
a8= -a2 and a7= -al and a6= -a2 and
4 4 2
1 1 1

ab= -a2 and a4= -al and a3= -al and
2 2 2

2 2
a2 +al = 0 and al/= 0,

value is true in case

2 2
al a2 al a2
al0= -———————— and a9= -——-——-———- and
2 2 2 2
(a2 +a1l ) (a2 +a1l )
1 1 1
a8= -a2 and a7= -al and a6= -a2 and
4 4 2
1 1 1
ab= -a2 and a4= -al and a3= -al and
2 2 2
2 2

a2/= 0, a2 +al /= 0 and al/= 0 ]

In the result, there are two different cases.
They appear when the system tries to impose
the constraint areEqual(e3,0). At this mo-
ment the program asks the question “a2+a? =
0 ?”. There are two possibilities for the answer.

e If the answer i1s true, the system up-
dates constraints over as; and a;, and
gets a3 +a = 0 and a3 # 0. To
impose areEqual(e3,0) becomes to im-
pose areEqual (al*a2**2,0), but it is not
compatible with current constraints. Thus
areEqual(e3,0) returns false and the
system returns "failed'". This means
that it is impossible to build the figure in
this case. However, this cannot happen if
as and a; are real.

e If the answer is false, the system up-
dates constraints over as and ap, and gets
as # 0, a3+ a3 # 0 and a; # 0. To im-

pose areEqual(e3,0) becomes to impose

2
aif; for ag, and this is compat-
2 1
ible with the anyElement constraint over
ag. Now the figure is built. Then the sys-
tem asks whether “e4 = 0” and answers
true, whithout any additional spitting.

The theorem 1s proved.

the value

Conclusion

We have presented here the program “Dynamic
Constructible Closure”. Thanks to it:



Given a computation involving parameters we
are able to get every solution according to the
values of the parameters, by means of dynamic
evaluation techniques.

Therefore it gives a new general and automatic
way to deal with parameters (but closed to a
“by hand” manipulation). It can be used in a
simple and natural way, as can be seen from
our examples.

We have shown several applications of our pro-
gram. Other applications are planned; for ex-
ample robotics, where some problems were al-
ready studied from this point of view, but “by
hand”, in [GR].

Acknowledgements. The original idea of
this work is due to D. Duval and I gratefully
acknowledge the help she has given me in un-
derstanding it and extending it.

References

[ACC] Arnon D.S., Collins G. E. and McCal-
lum S. — Cylindrical algebraic decomposi-
tion I: the basic algorith, and II: an adja-
cency algorithm for the plane, in: STAM
J. of Computing 13, (1984).

[BCK] Buchberger B., Collins G. E. and Kut-
zler B. — Algebraic Methods for Geometry
Reasoning, in: Ann. Rev. Comput. Sci. 3,
(1988).

[BF] Bjorck G. and Froberg R. — A Faster Way
to Count the Solutions of Inhomogeneus
Systems of Algebraic Equations, with Ap-
plications to Cyclic n-roots, in: J. Sym-

bolic Computation 12, N.3 (1991).

[Bu] Buchberger B. — Grobuner Bases: an Algo-
rithmic Method in Polynomial Ideal The-
ory, in: Recent Trends in Multidimen-
stonal System Theory, Bose (ed.), (Reidel,
1985).

[Ch] Chou S. C. - Mechanical Geometry Theo-
rem Proving (Reidel Publishing Company,
1988).

[DDD] Della Dora J., Dicrescenzo C. and Du-
val D. — About a New Method for Com-
puting in Algebraic Number Fields, in:

Furocal’85, vol 2, Goos, G. and Hartma-
nis, J. (eds.), (Springer Lecture Notes in
Computer Science 204, 1985) pp. 289-290.

[DD] Dicrescenzo C. and Duval D. — Alge-
braic extensions and algebraic closure in
Scratchpad, in: Symbolic and algebraic
computation, Gianni P. (ed.), (Springer
Lecture Notes in Computer Science 358,

1989) pp. 440-446.

[Du89] Duval D. — Computations in fields of
arbitrary characteristic, in: Computers
and Mathematics, Kaltofen E. and Watt
S.M. (eds.), (Springer, 1989) pp. 321-326.

[Du90] Duval D. — Calculs avec discussion
automatique : Description et applica-
tions, in: Publications du Département de
Mathématiques de Limoges, (1990) 20 pp.

[DR] Duval D. and Reynaud J. C. — Sketches
and Computation, Rapport de Recherche
RR871-I-IMAG-123 LIFTA, (1991) 71 pp.

[Go] Gémez-Diaz T. — Calculs avec discussion
automatique : Cloture Constructible Dy-
namique, in preparation.

[GR] Gonzélez-Lépez M. J. and Recio T. -
The ROMIN inverse geometric model and
the dynamical evaluation method, in:
Computer Algebra wn Industry, Cohen A.
M. (ed.), (John Wiley & Sons Ldt., 1993)
pp. 117-141.

[JS] Jenks R. D. and Sutor R. D. —
AXIOM, The Scientific Computation Sys-
tem, (Springer-Verlag, 1992).

[La] Lazard D. — A new method for solving
algebraic systems of positive dimension,

Rapport LITP 87-77, (1989) 17 pp.



