
Examples of using Dynamic Constructible ClosureIMACS Symposium SC{1993Teresa G�omez-D��az�Laboratoire d'arithm�etique, calcul formel et optimisation (URA D1586)Universit�e de Limoges (FRANCE)Abstract: We present here some examples of using the \Dynamic Constructible Closure" pro-gram, which performs automatic case distinction in computations involving parameters over abase �eld K. This program is an application of \Dynamic Evaluation" principle, which general-izes traditional evaluation and was �rst used to deal with algebraic numbers.Keywords: dynamic evaluation, parameters, computer algebra, polynomial systems, auto-matic theorem provingIntroductionThe aim of this document is to present someexamples of using the \Dynamic ConstructibleClosure" program that we have implementedin the computer algebra system Axiom [JS].This program does automatic case distinctionin computations involving parameters over abase �eld K.This paper only concentrates in the study ofsome examples (computed by hand in [Du90])and does not describe the algorithm itself. Acomplete description of the algorithm will begiven in a forthcoming paper [Go].The program of Dynamic Constructible Clo-sure raised as an application of the \DynamicEvaluation" principle: it generalizes tradi-tional evaluation and was �rst used to dealwith algebraic numbers [DDD]. This princi-ple can be interpreted in sketch theory [DR].Dynamic evaluation has been used to imple-ment the Dynamic Algebraic Closure of a Field[DDD, DD] or the Prime Field of ArbitraryCharacteristic [Du89].For example, if you ask for the rank of the ma-trix: � a 11 1 ��This work is partially supported by CICyTPB/0379/C02/01 and POSSO Esprit/Bra 6846

according to all possible values of the complexparameter a, our program answers automati-cally:[value is 2 in case a = 0,value is 1 in case a = 1,value is 2 in case a /= 0, a /= 1](where /= means 6=). To get this result, we callessentially:� the Dynamic Constructible Closureprogram that provides a �eld with asmany parameters as you like.� the allCases function, it is some \infer-ence engine" which ensures that you getthe complete answer.� a standard rank function (implementedwithout any \parameter" notion).This simple example already shows the impor-tance of equality tests.It is the �rst time that such a method to dealwith parameters is implemented in a generalway.This paper is organised as follows: in next sec-tion we sketch some main points of the Dy-namic Constructible Closure program. In thesecond section, we study polynomial systemsolving using this program and we apply this to

2compute singular points of plane curves. In thethird section we study un example of automatictheorem proving in elementary geometry.1 About dynamicconstructible closure1.1 Equality testThe main point is that parameters can takedi�erent values, so that it is in general impos-sible to answer true or false to an equalitytest over parameters. When both answers arepossible, it is essential to distinguish the val-ues of the parameters corresponding to truefrom the values corresponding to false. Thisis called a \splitting".1.2 ConstraintsThe possible values for parameters are ex-pressed as \constraints". Next theorem showsthe constraints manipulated in the program.Theorem 1 Let a be a parameter and K abase �eld. Constraints over a always are ofone of these kinds:� anyElement: there is not constraint overa (this means that a can take any value)� exception: there is a constraint of typeP1(a) 6= 0; : : : ; Pk(a) 6= 0 with P1; : : : ; Pkmonic univariate polynomials of positivedegree with coe�cients in K and coprime(this means that a can take any value thatis not a zero of polynomials P1; : : : ; Pk)� algebraic: there is a constraint of typeP (a) = 0 with P monic univariate poly-nomial of positive degree with coe�cientsin K (this means that a can take as valueany zero of P).In addition, when the characteristic of K is 0,we can suppose that polynomials P; P1; : : : ; Pkabove are squarefree.1.3 Dynamic constructibleclosureLetK be a base �eld. The constructible closureofK can be de�ned as a �eld K̂ which contains

all the �nitely generated extensions of K andsuch that is minimal for this property.More constructively, K̂ (noted CL bellow) is a�eld that contains K:CL:= DynamicConstructibleClosure(K)and is provided with a \generator of con-stants":newElement: Symbol -> CLMore precisely, each call to this generator:a:= newElement('a)provides a new parameter a of K̂ whith a sym-bol a for its representation. In addition, K̂ hastwo operators:areEqual: (CL,CL) -> BooleanareDifferent: (CL,CL) -> BooleanTheir job is to impose or to forbid values forthe parameters provided by newElement. Inother words, they impose constraints over theparameters. The boolean result of these oper-ators says whether a new constraint is (or not)compatible with the old ones.1.4 ComputationsA computation in K̂ is a combination of oper-ations +, -, * and inv, from the constants 0, 1and the parameters (added with newElement),together with equality tests = and instructionsareEqual and areDifferent, and usual con-trol structures as \if...then...else..." or\while...repeat...". For example:a:= newElement('a)if areDifferent(a**4,1) thenb:= a**2 + aif b = 2 then return 0else return 1/(b-2)else return 0With result:[value is 0 in case a = - 2,1value is --------------- in case(a - 1) (a + 2)3 2a + a + a + 1/= 0, a/= 1, a/= -2]

3Obviously, we do not get the case a4 � 1 = 0.2 Solving polynomialsystemsA system of polynomial equations with coef-�cients in K can be \solved" (in the sense oftriangularized, similary to [La]) by computa-tions in the constructible closure of K. Con-sider each indeterminate as a parameter intro-duced by newElement (which means that inde-terminates must be ordered) and each equationas a constraint introduced by areEqual (whichmeans that equations must be ordered).For example, the system of \cyclic 4-roots"[BF]: 8>><>>: a+ b+ c+ d = 0ab+ bc+ cd+ da = 0abc+ bcd+ cda+ dab = 0abcd = 1is expressed in the closure as:a:= newElement('a)b:= newElement('b)c:= newElement('c)d:= newElement('d)areEqual(a+b+c+d,0) andareEqual(a*b+b*c+c*d+d*a,0) andareEqual(a*b*c+b*c*d+c*d*a+d*a*b,0)and areEqual(a*b*c*d, 1)While equations are introduced, the system au-tomatically updates the constraints on param-eters in order to keep them in the requiredform. In this way we get a union of trian-gular systems S1, : : : , Sm, but these systemsare not polynomial in the usual sense. Indeed,if a1; a2; : : : ; an denote the parameters (intro-duced in this order), each system Sj has theform: 8>><>>: exp1(a1)exp2(a2): : :expn(an)where expi(ai) is a description of a constraintfor ai over K(a1; a2; : : : ; ai�1):� any ai for the anyElement constraint,� Pi;1(ai) 6= 0; : : : ; Pi;ki(ai) 6= 0 for anexception constraint,

� P (ai) = 0 for an algebraic constraint,with Pi;1(ai); : : : ; Pi;ki(ai); P (ai) inK(a1; : : : ; ai�1)[ai], monic, of positive de-gree in ai, and squarefree if K has char-acteristic 0. In addition, the polynomialsPi;1(ai); : : : ; Pi;ki(ai) are coprime. The non-trivial denominators which appear in coe�-cients of these polynomials involve only the pa-rameters aj of exception type (with j < i).We get the solutions of the given system by col-lecting the solutions of the systems S1, : : : , Sm.There is no redundancy: there is no solutioncommon to two of the systems S1, : : : , Sm. Weremark that the exception constraints appearduring computations since no areDifferent isused in the formulation of the problem.In this simple example the solution is:[value is false in case d = - b andc = 0 and any b and a = 0,value is true in case d = - b and2 1c = - a and b - -- = 0 and a /= 0]2aThis means that there is no solution if a =0, and for each non-zero value of a there areexactly two solutions:(a ; b = �1a ; c = �a ; d = �b)This method can be compared to a \complex"version of cylindrical algebraic decomposition[ACC], or to the characteristic sets method ofRitt-Wu [Ch, BCK]. But it is fairly di�erentfrom the Gr�obner basis method [Bu].Singular points of a curveTo compute the singular points of a curve isan application of solving polynomial systems.Given a plane curve de�ned by a polynomialP (x; y) 2 K[x; y] with derivatives Px(x; y) =@P (x;y)@x and Py(x; y) = @P (x;y)@y , let us computein the constructible closure:x:= newElement('x)y:= newElement('y)areEqual(P(x,y),0) andareEqual(Px(x,y),0) and

4areEqual(Py(x,y),0)We can go further and consider a family ofcurves which depends on one or more parame-ters and compute the singular points of thesecurves according to values of parameters, as inthe next example. We consider the family ofcurvesP (a; b; x; y) = y2 � x(x� a)(x� b(a + 1))which depends on parameters a and b. Theprogram in the closure is:a:= newElement('a)b:= newElement('b)x:= newElement('x)y:= newElement('y)P(a,b,x,y):= y**2-x*(x-a)*(x-b*(a+1))Px(a,b,x,y):= -3*x**2+((2*a+2)*b+2*a)*x+(-a**2-a)*bPy(a,b,x,y):= 2*yareEqual(Py(a,b,x,y),0) andareEqual(Px(a,b,x,y),0) andareEqual(P(a,b,x,y),0)The description of singular points is:[y=0 and x=0 and any b and a=-1,y=0 and x=0 and b=0 and a=0,y=0 and x=0 and b/=0 and a=0,2 ay=0 and x=(a+1)b and b - ----- b=0(a+1)and a/=-1, a/=0]Note that when a = 0, the cases b = 0 andb 6= 0 are considered separately. It has a geo-metric sense: the behaviour of the curve at thesingular point is not the same. If a = 0 andb 6= 0, the point (0; 0) is an ordinary doublepoint, and if a = 0 and b = 0, the point (0; 0)is a cusp.3 Automatic proving inelementary geometryIn this kind of problems, exception con-straints are a good tool to avoid degeneratecases, for example we can impose that twopoints are distinct or that three points are noton a line. Then our method is similar to the

Ritt-Wu method [Ch, BCK] but more power-full because it is possible to avoid degeneratecases.For example, consider the next theorem: Givena triangle ABC, right-angled in C, the circle �through the midpoints E, F and G of the sidesCA, AB and BC (� is the Euler's circle oftriangle ABC), and the foot H of the altitudefrom C. Then � passes through H.
+

AE
C

G

B

M

F

HWe now state this problem as a computation inthe constructible closure of Q. Let M denotethe center of �. We choose a coordinate systemadapted to the problem and we give a name tocoordinates of every point in this coordinatesystem. For example:C = (0; 0); A = (a1; 0); B = (0; a2);E = (a3; 0); F = (a4; a5); G = (0; a6);M = (a7; a8); H = (a9; a10):So we need 10 parameters in the constructibleclosure: a1; a2; : : : ; a10. To avoid degeneratetriangles we impose:a1 6= 0 ; a2 6= 0The choice of the coordinate system alreadyreects that the triangle is right-angled. Nextwe write that E, F and G are the midpoints ofCA, AB and BC respectively:a3 = 12a1 ; a4 = 12a1 ; a5 = 12a2 ; a6 = 12a2The center M of the circle � is given by theconditionsEM = FM and EM = GM , hence:(a7 � a3)2 + a28 = (a7 � a4)2 + (a8 � a5)2(a7 � a3)2 + a28 = a27 + (a8 � a6)2The point H is the intersection of two perpen-dicular lines AB and CH. The equation of ABis: 1a1x+ 1a2 y = 1

5(recall that a1 and a2 are non-zero) hence:1a1a9 + 1a2 a10 = 1 ; �a1a9 + a2a10 = 0Finally, the conclusion of the theorem isEM =HM , that is(a7 � a3)2 + a28 = (a7 � a9)2 + (a8 � a10)2The corresponding program is:a1:= newElement('a1)a2:= newElement('a2)a3:= newElement('a3)a4:= newElement('a4)a5:= newElement('a5)a6:= newElement('a6)a7:= newElement('a7)a8:= newElement('a8)a9:= newElement('a9)a10:= newElement('a10)e0:=(a7-a3)**2e1:=e0+a8**2-(a7-a4)**2-(a8-a5)**2e2:=e0+a8**2-a7**2-(a8-a6)**2e3:=-a1*a9 + a2*a10e4:=e0+a8**2-(a7-a9)**2-(a8-a10)**2if areDifferent(a1,0) andareDifferent(a2,0) andareEqual(a3,(1/2)*a1) andareEqual(a4,(1/2)*a1) andareEqual(a5,(1/2)*a2) andareEqual(a6,(1/2)*a2) andareEqual(e1,0) andareEqual(e2,0) andareEqual((1/a1)*a9+(1/a2)*a10-1,0)and areEqual(e3,0)then return (e4 = 0)else return "failed"and the result:[value is "failed" in case1a10=- ----a2 a9+a2 and any a9 and(a1)1 1 1a8= -a2 and a7= -a1 and a6= -a2 and4 4 21 1 1a5= -a2 and a4= -a1 and a3= -a1 and2 2 2

2 2a2 +a1 = 0 and a1/= 0,value is true in case2 2a1 a2 a1 a2a10= --------- and a9= --------- and2 2 2 2(a2 +a1) (a2 +a1)1 1 1a8= -a2 and a7= -a1 and a6= -a2 and4 4 21 1 1a5= -a2 and a4= -a1 and a3= -a1 and2 2 22 2a2/= 0, a2 +a1 /= 0 and a1/= 0]In the result, there are two di�erent cases.They appear when the system tries to imposethe constraint areEqual(e3,0). At this mo-ment the program asks the question \a22+a21 =0 ?". There are two possibilities for the answer.� If the answer is true, the system up-dates constraints over a2 and a1, andgets a22 + a21 = 0 and a1 6= 0. Toimpose areEqual(e3,0) becomes to im-pose areEqual(a1*a2**2,0), but it is notcompatiblewith current constraints. ThusareEqual(e3,0) returns false and thesystem returns "failed". This meansthat it is impossible to build the �gure inthis case. However, this cannot happen ifa2 and a1 are real.� If the answer is false, the system up-dates constraints over a2 and a1, and getsa2 6= 0, a22 + a21 6= 0 and a1 6= 0. To im-pose areEqual(e3,0) becomes to imposethe value a1a22a22+a21 for a9, and this is compat-ible with the anyElement constraint overa9. Now the �gure is built. Then the sys-tem asks whether \e4 = 0" and answerstrue, whithout any additional spitting.The theorem is proved.ConclusionWe have presented here the program \DynamicConstructible Closure". Thanks to it:

6Given a computation involving parameters weare able to get every solution according to thevalues of the parameters, by means of dynamicevaluation techniques.Therefore it gives a new general and automaticway to deal with parameters (but closed to a\by hand" manipulation). It can be used in asimple and natural way, as can be seen fromour examples.We have shown several applications of our pro-gram. Other applications are planned; for ex-ample robotics, where some problems were al-ready studied from this point of view, but \byhand", in [GR].Acknowledgements. The original idea ofthis work is due to D. Duval and I gratefullyacknowledge the help she has given me in un-derstanding it and extending it.References[ACC] Arnon D.S., Collins G. E. and McCal-lum S. { Cylindrical algebraic decomposi-tion I: the basic algorith, and II: an adja-cency algorithm for the plane, in: SIAMJ. of Computing 13, (1984).[BCK] Buchberger B., Collins G. E. and Kut-zler B. { Algebraic Methods for GeometryReasoning, in: Ann. Rev. Comput. Sci. 3,(1988).[BF] Bj�orck G. and Fr�oberg R. { A Faster Wayto Count the Solutions of InhomogeneusSystems of Algebraic Equations, with Ap-plications to Cyclic n-roots, in: J. Sym-bolic Computation 12, N.3 (1991).[Bu] Buchberger B. { Gr�obner Bases: an Algo-rithmic Method in Polynomial Ideal The-ory, in: Recent Trends in Multidimen-sional System Theory, Bose (ed.), (Reidel,1985).[Ch] Chou S. C. {Mechanical Geometry Theo-rem Proving (Reidel Publishing Company,1988).[DDD] Della Dora J., Dicrescenzo C. and Du-val D. { About a New Method for Com-puting in Algebraic Number Fields, in:

Eurocal'85, vol.2, Goos, G. and Hartma-nis, J. (eds.), (Springer Lecture Notes inComputer Science 204, 1985) pp. 289-290.[DD] Dicrescenzo C. and Duval D. { Alge-braic extensions and algebraic closure inScratchpad, in: Symbolic and algebraiccomputation, Gianni P. (ed.), (SpringerLecture Notes in Computer Science 358,1989) pp. 440-446.[Du89] Duval D. { Computations in �elds ofarbitrary characteristic, in: Computersand Mathematics, Kaltofen E. and WattS.M. (eds.), (Springer, 1989) pp. 321-326.[Du90] Duval D. { Calculs avec discussionautomatique : Description et applica-tions, in: Publications du D�epartement deMath�ematiques de Limoges, (1990) 20 pp.[DR] Duval D. and Reynaud J. C. { Sketchesand Computation, Rapport de RechercheRR871-I-IMAG-123 LIFIA, (1991) 71 pp.[Go] G�omez-D��az T. { Calculs avec discussionautomatique : Clôture Constructible Dy-namique, in preparation.[GR] Gonz�alez-L�opez M. J. and Recio T. {The ROMIN inverse geometric model andthe dynamical evaluation method, in:Computer Algebra in Industry, Cohen A.M. (ed.), (John Wiley & Sons Ldt., 1993)pp. 117-141.[JS] Jenks R. D. and Sutor R. D. {AXIOM, The Scienti�c Computation Sys-tem, (Springer-Verlag, 1992).[La] Lazard D. { A new method for solvingalgebraic systems of positive dimension,Rapport LITP 87-77, (1989) 17 pp.

