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Introduction

In [GD94], T.Gomez-Diaz gives a very simple example in order to introduce dynamic
evaluation [DDDD85,DD89]: to solve the equation with one unknown (x): a x + b = 0 where
a, b are parameters. This equation has two different solutions sets S depending on the values
of the parameters a, b:

• if a = 0 and b = 0 then S ={ any x};

• if a ≠ 0 and any b then S={ -b/a}.

Dynamic evaluation is the computational process that allows to get automatically both sets of
solutions. In the previous example it is obviously supposed that the parameters a and b take
values in a field. Note that the formulation of the problem and its solution do not depend of
the field considered. This also gives an idea about the genericity of the problem we are taking
into account. One of the first applications of dynamic evaluation was computations with
algebraic numbers, that is the dynamic algebraic closure program [DDD85,DD89,Duv95a].
Its principle is simple. An algebraic number is considered as a parameter c submitted to an
algebraic condition:

P(c) = 0

where P is an univariate polynomial. One can consider here several parameters that can, for
example, be used to produce polynomials to introduce new algebraic parameters. As
polynomials in the algebraic conditions aren�t irreducible, computations involving these
algebraic elements lead quickly to the concept of split, as in the above example.
This work has been continued in [GD94] and it leads to the dynamic constructible closure
programs implanted in Axiom [JS92] by T.Gomez-Diaz (1992-1996). These programs extend
D.Duval programs for the dynamic algebraic closure in Axiom (1988-1992). These programs
offer the possibility to make calculus with parameters in a very large way. Indeed, a parameter
d can be not only submitted to algebraic constraints but also to inequalities:

Q1(d) ≠ 0,�, Qr(d) ≠ 0

where Q1,�,Qr are univariate polynomials.
The range of applications of the dynamic constructible closure programs is very large. One
can mention the computation of Jordan forms with parameters [GD97], automatic
demonstration of theorems in elementary geometry [GD93,GD95b], solving constructible
systems [GD93,Del99a], i.e. polynomial systems with inequalities (≠ 0)�

The D7 programs are in fact based on an old version of the dynamic constructible
closure realized in 1994 by T.Gomez-Diaz in Aldor. This version was produced in order to
study the capabilities of the compiler to improve the part of the programs dealing with the
splits [Watt et al.]. There is one main difference with the 1994�s version. The author adds the
square free property of D.Lazard triangular sets [Laz91]. This strategy (developed and
justified in [Del99a,Del99b]) gives dramatic improvements on the number of splittings and
time complexity. We would like to recall to the D7 user about the experimental state of the
whole set of dynamic evaluation programs. There are several versions (written in Axiom,
Aldor) that correspond to the study of different aspects (splits, dealing with denominators,
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subresultants, the squarefree condition�) unless they provide very little differences from the
user�s point of view. In particular, the Aldor version mainly corresponds to the state of Aldor
back in 1994, which make us dreaming about the real possibilities of an up-to-date, efficient
implementation.

This paper presents a brief introduction to D7 with several examples. We think indeed
that learning by example is the best way to understand these programs. Many comments come
directly from the previous work of D.Duval and T.Gomez-Diaz (especially
[Duv90,GD93,GD94,GD95a]). These are good references for the reader interested also to the
Axiom version of the dynamic constructible closure programs. For an introduction to dynamic
evaluation in terms of sketches, one can see [DR94]. Finally, we refer to [Del99] for an
algebraic approach.

At last, the author would like to thank T.Gomez-Diaz for her endless encouragements
and for her critical lecture of the paper. The author would like to thank D.Duval for all her
advices. The author is also grateful to C.Dicrescenzo. Without her, there will be no package
D7. Finally the author would like to thank Cathode team in Grenoble for their reception.
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1. A bit of vocabulary

The dynamic constructible closure is an Aldor constructor which provides parameters.
More precisely, given a ground field K, one builds the dynamic constructible closure of K in
the following way:

CL:= DynamicConstructibleClosure(K)

Note that K can be any field. This provides a function to introduce parameters:

parameter: Symbol  !!!! CL

It is the new version of the previous function called newElement in [GD94]. In addition,
there are two functions to impose or to forbid values for the parameters, i.e. imposing
constraints over the parameters:

mustBeEqual: (CL,CL) !!!! Boolean
mustBeDifferent: (CL,CL) !!!! Boolean

It is the new version of the two previous functions called areEqual and areDifferent in
[GD94]. The Boolean result of these operators says whether a new constraint is compatible
with the previous ones.
The construction of CL is recursive. If there is no call to the parameter function, CL is K.
Otherwise, let n be the number of calls of parameter and let a1,�,an be the generated
parameters. Now the elements of CL that we can access are constructed with the constants
from K and a1,�,an by using field operations (see later). So CL is K(a1,�,an). By recursion
we can consider that we know how to build the field K(a1,�,an-1) and so the question is
reduced to compute in K(a) where K  is a field and �a� a parameter introduced with the
function parameter.
At every step of a calculus in K(a), the parameter a is submitted to a constraint (or law).
Constraints provide any parameter with a description of the set of the possible values; they
can be of three possible kinds:

• anyElement: there is no constraint on a (this means that a can take any value);
• algebraic: there is a constraint of type P(a) = 0 with P a monic univariate polynomial

of positive degree with coefficients in K (this means that a can take as value any zero
of P);

• exception: there is a constraint of type P1(a) ≠ 0 and � and Pr(a) ≠ 0 with P1 ,�, Pr

monic univariate polynomials of positive degree with coefficients in K and pairwise
coprime (this means that a can take any value different from any zero of any of the
polynomials P1 ,�, Pr ).

In addition, when the characteristic of the ground field K is zero, we can suppose that the
polynomials P, P1 ,�, Pr   above are squarefree1.

First note that a parameter a with an algebraic constraint, say P(a)=0, place computations in
an algebraic extension of the field K. This is the situation considered by the dynamic algebraic

                                                  
1 As mentioned in introduction, the reader must note that we have implemented in D7 the squarefree condition of
D.Lazard triangular sets. See [Del99a,Del99b] for more details.
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false true

a  ≠ 0 a = 0

n1 nr

Q(a)

closure programs of D.Duval [DD89,Duv95a]. In this case elements of K(a) are represented
by polynomials Q(a) = cna

n+�+c0, ci ∈ K, and so there is no problem to perform arithmetic
operations. Division needs equality test, which is explained later.
Now if a is of exception type, say P1(a) ≠ 0 and � and Pr(a) ≠ 0, the elements of K(a) are
represented by functions like:

where Q is an univariate polynomial with coefficients in K and n1,�,nr are non-negative
integers. Again, there is no problem into performing arithmetic operations and divisions by
polynomials which aren�t in the multiplicative set generated by P1,...,Pr lead to equality test.
Finally if a is of the �anyElement� type, the elements of K(a) are represented by polynomials Q(a)
with Q(X) in K[X].2

So the main point now is that parameters can take different values, so that it is in general
impossible to answer true or false to an equality test over parameters. When both  answers are
possible, it is essential to distinguish the values of the parameters corresponding to the true
answer from the values corresponding to the false one. This is called a split. For example,
given a parameter a (i.e. an element of CL) submitted to an anyElement law, suppose that we
want to ask if a is equal to 0:

a = 0 ?

By definition of an anyElement law, the parameter a can take any value so that this question
leads to two possible answers:

a = 0 ?

In fact, this little picture above gives rise to the concept of splitting tree introduced by
D.Duval in [Duv90], see a complete definition in [BGDW95,GD94]. This is a key tool to see
how dynamic evaluation acts. Every computation is associated to a splitting tree from
dynamic evaluation point of view (see the references above for more details and examples). In
few words, it is a binary tree where a node has two edges if and only if it is related to an
equality test for which the two answers true and false are possible (as in the example above),
i.e. if we have a split (this is called a splitting point in [GD95a]). The exploration of the tree is
done from the root (node) to the leaves and from the left to the right. This last is very
important because, at a splitting point, the left-edge is always associated with the answer false
and the right-edge with the answer true.
                                                  
2 One can see [Del99a] for another approach of this problem (the representation of the elements of CL) in terms
of commutative algebra.

P1
  (a)� Pr  (a)
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It is important to understand the difference between the equality test = and the two functions
mustBeEqual, mustBeDifferent3. Let a,b be two parameters. Then:

• mustBeEqual(a,b) means that the computation can be continued only in case a = b.
In the other case, the computation stops without returning any output;

• mustBeDifferent(a,b) means that the computation can be continued only in case a ≠
b. In the other case, the computation stops without returning any output;

Thus, one can consider that mustBeEqual(a,b) (resp. mustBeDifferent(a,b)) provides the
same split that the test a=b but we only focus on the branch associated with the true answer
(resp. with the false answer) [Duv90].
Otherwise, these three functions use only gcd computations, implemented with subresultants
[Duv90,Dell99a].

In fact, there exists another equality, non dynamic this time. It is the function rawEqual?. It
is the new version of the previous function called roughEqual in [GD94]. Suppose that we
have introduced a parameter (a). CL is then equal to K(a). Every element of K(a) can be
represented by a fraction in K(X), where X is an indeterminate. Then the goal of the function
rawEqual? is to detect, without any splitting, if two different fractions represent the same
element. For example if the constraint over a  is a2+1=0 then the element a+1 can be
represented by f(X)=X+1 as well as by g(X)=(X3+X2)/X2. Then in this case rawEqual?(f,g)
returns true. Note that if two elements are �rawEqual� they are equal, but the converse can be
false [GD95a]. Finally we refer again to [Del99a] for an approach in terms of commutative
algebra of this function.

2. How can we write our own examples ?

The general diagram of an example file is the following:

++ First Part ++
K = =>  ++ ground field;
CL = =>  DynamicConstructibleClosure(K);
CC = =>  ConstructibleClause(K,Type);
CP = => ConstructibleControlPackage(K,Type);

++ Second Part ++
f():Type ==

++ operations to be performed in CL
++ in particular:
++ introduction of the parameters

++ Third part ++
finalResult(func: () -> Type): == {

tim:= cpuTime();
ll:List CC:= allCases(func)$CP;
tim:= cpuTime � tim;
for ele in ll repeat print << ele << newline;
print << �Time: � << tim << �(mls) � << newlline;

                                                  
3 It will be the goal of the example 3.1.1.
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}

++ Last part ++
finalResult(f);
refresh()$CL;

In the first part, we introduce the ground field K and we build the dynamic constructible
closure CL of K. The package Aldor denoted by CP provides one of the key functions of
dynamic evaluation programs called allCases. This function allows dynamic evaluation
programs to give the complete answer of a calculus. In other words, it manages the splitting
tree corresponding to a computation (see [Section 3.1.2, GD95a]).
A result of a calculus with D7 is a finite list of clauses. More precisely, a clause is an element
of the domain ConstructibleClause (CC) and is made of:

• a value v;
• a tower4 T.

This means, with our notations above, that the function f takes as value v when the values
given to the parameters satisfy the constraints in the tower T. Thus, in the example called
consis.as (p.14), the result of the computation is:

[value is true in case y^2 + (-1/8) = 0 and x = (1/2)]

In this case, it means that the function consSystem of this example (f with our notations)
takes the value true if the values of the parameters x and y verify the system:

In most of the examples, the first part is the following:

I = => Integer;
RI = => Ratio Integer;
SI = => SingleInteger;
CL = => DynamicConstructibleClosure(RI);
CC = => ConstructibleClause(RI,Boolean);
CP = => ConstructibleControlPackage(RI,Boolean);

import from I,SI,RI,CL,CC,CP;

In the second part, the function f (which returns a result of type Type) defines the calculus to
be performed in the dynamic constructible closure. It is important to remark that you can only
use a function without argument. Furthermore, one must be careful with the way you
introduce the parameters. For example, if you write:

a:= parameter(�a�);
b:= parameter(�b�);

                                                  
4 Briefly, a tower is a list of laws where each law is of one of the three types mentioned before. See
[GD94,Del99] for more details.

y2 -1/8 = 0
x -1/2 = 0
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then it implies that a < b. On the opposite, writing:

b:= parameter(�b�);
a:= parameter(�a�);

means that b < a.
In the third part, the function finalResult returns (with allCases) the complete answer of the
computation of a �general� function func of type Type without argument. Finally, the fourth
part calculates the complete answer of the computation of f. The last line refreshes the laws
operating to the parameters: all of them are then submitted to anyElement laws. From a more
computational point of view, this cleans some internal variables after any dynamic
computation, which can be important if more computations are performed with the same
parameters.

Finally, we refer the D7 user to the file Readme for useful informations (installation of D7,
environment variables,�) created by C.Dicrescenzo and to the file about-D7 which contains
the list of the Aldor files for dynamic evaluation.

3. Some examples

This section is devoted to the examples given in the package D7. In each example, the
ground field is the field Q of the rationals. From now on, we denote by CL(Q) the dynamic
constructible closure of Q.
Each example is made of two files: an input file (.as) and its corresponding output file
(.outng). In all this section, we concentrate ourselves on the main computation to operate, i.e.
with our previous notations, we focus on the function f. Thus, we do not mention anymore
that we use the function allCases, for example. Finally, for each example, we explain how the
problem is treated in terms of dynamic evaluation.

3.1. First (easy) examples

3.1.1. File ecgrado1.as
DynReso():Boolean == {

a:CL:= parameter(�a�);
b:CL:= parameter(�b�);
x:CL:= parameter(�x�);
mustBeEqual(a*x+b,0);

}

DynReso():Boolean == {
a:CL:= parameter(�a�);
b:CL:= parameter(�b�);
x:CL:= parameter(�x�);
(a*x+b=0)$CL;

}

This file illustrates the difference between the functions mustBeEqual and the
dynamic equality �=� of D7. For this purpose, we introduce three parameters a,b and x in
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CL(Q) with the function parameter. Note that a < b < x. Then in the first function dynReso
we have:

mustBeEqual(a*x+b,0);

and in the second function dynReso we have on the opposite:

(a*x + b = 0)$CL;

Remark. Note that the symbol $ means in Aldor that the equality �=� above is the one
implemented in the domain CL.

The difference between these two operators (mustBeEqual and �=�) is that:
•  mustBeEqual imposes values for the parameters. In this case, we want x to be the

zero of the polynomial aX+b. Note that x is submitted to an anyElement constraint. So
we can summarize the computation by the following weaker form of splitting tree:

false true

mustBeEqual(x+b/a,0) mustBeEqual(b,0)

truetrue

x = - b/a
any b
a ≠ 0

any x
b = 0
a = 0

a = 0 ?

mustBeEqual(a*x+b,0)

a:= parameter(�a�)

b:= parameter(�b�)

x:= parameter(�x�)
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First note that there is a splitting point in the computation associated to the question (a
= 0 ?). This is because we want to make monic the polynomial aX+b (which
represents the element ax+b). So we have to consider the two cases a=0 and a ≠ 0. In
the last case we carry on the computation under the hypothesis a ≠ 0 and then impose
the constraint x + b/a = 0. The parameters b and x are submitted to anyElement laws.
Therefore the new set of constraints is obviously: {a ≠ 0 , any b and x + b/a = 0}.
On the opposite, in case a = 0, the polynomial aX+b is then reduced to b. So we are
led to impose the constraint b=0. Then the new set of constraints is obviously: {a = 0,
b= 0 and any x} (we have not impose an additional constraint on x).
This explains that the result (see the file ecgrado1.outng) is:5

[value is true in case any x and b = (0/1) and a = (0/1)]
[value is true in case x = ((-1/1)/a))*/b and any b and a /= (0/1)]

This means that we can impose the constraint ax+b=0 on the parameters a,b,x if and
only if they satisfy the following sets of constraints:

{a=0 and b=0 and any x}, {a ≠ 0 and any b and x= -b/a}.

•  The goal of the operator �=� is quite different6. It is not used to impose values on
parameters but rather to ask whether parameters can take specific values or not. Thus,
the operation �(a*x + b = 0)$CL� means that you ask the question: �are there values
of the parameters a,b,x such that the expression ax+b is zero ?�. One can then
construct  the following weaker form of splitting tree associating with the
computation:

                                                  
5 One can see the poor writing of the outputs here and in the results of the next computation.
6 We refer to [Section 4.2, Del99a] for an algebraic approach of this dynamic equality.
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false  true

false  truefalse  true

As in previous example, the goal of the first split is to make monic the polynomial
aX+b. Moreover, there are two splitting points for the questions: x + b/a = 0 ? and b =
0 ?. This is because we consider this time the values of the parameters a,b,x for which
the answer of each question is true and the values of the parameters a,b,x for which the
answer is false. We do not focus only on the true answer as previously when we were
using the function mustBeEqual.
That�s why the result of this computation is (see file ecgrado1.outng):

[value is true in case any x and b = (0/1) and a = (0/1)]
[value is false in case any x and b /= (0/1) and a = (0/1)]
[value is true in case x = ((-1/1)/a))*/b and any b and a /= (0/1)]
[value is false in case x /= ((-1/1)/a))*/b and any b and a /= (0/1)]

This means that the expression ax+b is zero if and only if the parameters a,b,x verify
the sets of constraints:

{a=0 and b=0 and any x}, {a ≠ 0 and any b and x= -b/a}

ax + b = 0 ?

a = 0 ?

x + b/a = 0 ? b = 0 ?

x ≠ - b/a
any b
a ≠ 0

x = - b/a
any b
a ≠ 0

any x
b ≠ 0
a = 0

any x
b = 0
a = 0

a:= parameter(�a�)

b:= parameter(�b�)

x:= parameter(�x�)
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and the expression ax+b is not equal to zero if and only if the parameters a,b,x verify
the sets of constraints:

{a=0 and b ≠ 0 and any x}, {a ≠ 0 and any b and x ≠  -b/a}.

3.1.2. File ecgrado2.as [GD94,Del99a]
We can use D7 to solve the classic equation:

ay2+by+c=0

This is quite simple. After the introduction of the parameters a,b,c and y, we just have to call
the function mustBeEqual. We obtain then the little program:

DynReso():Boolean == {
a:CL:= parameter(�a�);
b:CL:= parameter(�b�);
c:CL:= parameter(�c�);
y:CL:= parameter(�y�);
mustBeEqual(a*y^2+b*y+c,0) ;

}

with result (see ecgrado.outng):

[value is true in case any y and c = (0/1) and b = (0/1) and a = (0/1)]
[value is true in case y = ((-1/1)/(b))*c and any c and b /= (0/1) and a = (0/1)]
[value is true in case y = ((-1/2)/(a))*b and c = ((1/4)/(a))*b^2 and any b and a /= (0/1)]
[value is true in case y^2 + (((1/1)/a))*b)*y + ((1/1)/(a))*c = 0 and c /= ((1/4)/(a))*b^2 and
any b and a /= (0/1)]

If we denote by S the set of solutions of the equation, this means that:

• if a = b = c = 0 then S = CL(Q);
• if a = 0 and b ≠ 0 then S = {-c/b};
• if a ≠ 0 and c = b2/(4a) then S = {-b/(2a)};
• if a ≠ 0 and c ≠ b2/(4a) then S = {y ∈ CL(Q); y2+(b/a)y+(c/a)=0}.

3.1.3. File ecdeno.as [GD94]
In this example, we also want to solve an equation (with the unknown y  and a

parameter a). But this time, there are non trivial denominators:

Of course, this is equivalent to:

4a2 � y2 ≠ 0 and (y + 2a)2 � (y � 2a)2 = 4a2

=
y + 2a

 2a - y

y - 2a

 2a +  y

4a2

4a2 � y2

+
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where there is no more denominator but an inequation instead. In fact, the goal of this
example is to show that D7 allows to solve directly equations with non trivial denominators

To solve the equation with D7 is not difficult. After introducing the parameters a and y with
parameter, we need to impose the conditions:

2a � y ≠ 0, 2a + y ≠ 0 and 4a2 � y2 ≠ 0.

with mustBeDifferent in order to be able to construct the denominators. Then we just have to
translate the equation into D7 terms with mustBeEqual. The only subtlety is to solve the
equation under the hypothesis that the two parameters satisfy the three inequalities. We
construct then the following program:

dynReso():Boolean == {
a:CL:= parameter(�a�);
y:CL:= parameter(�y�);
tt :Boolean := {

mustBeDifferent((2@I)*a-y,0);
mustBeDifferent((2@I)*a+y,0);
mustBeDifferent((4@I)*a^2-y^2,0);

}
if tt then {

e1:CL:= (y+(2@I)*a)/((2@I)*a-y) + (y-(2@I)*a)/((2@I)*a+y);
mustBeEqual(e1,((4@I)*a^2)/((4@I)*a^2-y^2));

}
else tt;

}

where we denote by I the Aldor domain for the integer numbers. The reader not familiar with
Aldor have to know that when we write for example:

4@I

it means that we take the element �4� of the domain I.

We obtain then the result (see the file ecdeno.outng):

[value is true in case y /= (0/1) and a = (0/1)]
[value is true in case y /= (1/2)*a and a /= (0/1)]

If we denote by S the set of solutions of our equation, it means that:

o if a = 0 then S = {y ∈ CL(Q); y ≠ 0};
o if a ≠ 0 then S = {a/2}.

3.2. Solving polynomial and constructible systems

A polynomial system or a constructible system (i.e. a polynomial system with
inequalities ≠ 0) with coefficients in K can be �solved�, in the sense of triangularized, by
computations in the constructible closure of K . The key-point is to consider each
indeterminate as a parameter introduced by parameter and respectively each equation and
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each inequation as a constraint introduced by mustBeEqual or mustBeDifferent. In
particular, this means that indeterminates, equations and inequations are ordered.
Suppose that we want to triangularize an algebraic system T (polynomial or constructible)
with coefficients in a field K. We get as output a finite union of constructible triangular
systems T1,�,Tr with the Boolean true and constructible triangular systems Tr+1,�,Ts with the
Boolean false. This means that (see [GD94,DGD95,Del99a] for more details):

Zero(T) = Zero(T1) U Zero(T2) U ... U Zero(Tr)

where:

• given two sets E and F, the expression E U F is the disjoint union of E and F;
• given a constructible triangular system S, we denote by Zero(S) the set of zeros of S in

CL(K).

Note that the systems Tr+1,�,Ts  are useless in this context as they are associated with the
Boolean false.

One must note that these systems T1,�,Ts are not �polynomial� in the usual sense. Indeed, if
a1,�,an denote the parameters (introduced in this order), each constructible triangular system
Ti has the form:

where expi(ai) is a description of a constraint for ai over K(a1,a2,�,ai-1). Thus expi(ai) is either:

• any ai for the anyElement constraint;
• Pi,1(ai) ≠ 0, �, Pi k(i) (ai) ≠ 0 for an exception constraint;
• Pi(ai) = 0 for an algebraic constraint;

with Pi,1(Xi), �, Pi,k(i)(Xi), Pi(Xi) in K(a1,�, ai-1)[Xi], monic, of positive degree in ai, and square
free (in the sense of D.Lazard, see footnote p.4 [Del99a,Del99b]) if K has characteristic 0. In
addition, the polynomials Pi,1(Xi), �, Pi,k(i)(Xi) are coprime. The non-trivial denominators
which appear in coefficients of these polynomials involve only the parameters aj of exception
type (with j< i).
In fact, we can establish an algebraic model for these systems in the classic commutative
algebra. This is one of the main goals of the work done in [Del99a]. The reader interested by
these questions is also refered to [Del99b,Del99c] where we point out connections between
these kind of systems and respectively D.Lazard triangular sets [Laz91] and D.M.Wang
simple systems [Wan98].

3.2.1. File var4.as [GD93,GD95c]
In this example, we want to �solve� in the sense of triangularization the following

polynomial system (see for example [Laz92]):

exprn(an)
�
�
expr2(a2)
expr1(a1)
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with a < b < c < d. It is the system of �cyclic 4-roots�. In order to solve this system with D7,
we have first to introduce the parameters a,b,c,d which represent the variables of the system.
This is done in the dynamic constructible closure in the following way:

a:CL:= parameter(�a�);
b:CL:= parameter(�b�);
c:CL:= parameter(�c�);
d:CL:= parameter(�d�);

Then we only have to interpret every equation as a call of mustBeEqual that is to say7:

mustBeEqual(a + b + c +d,0)
and mustBeEqual(ab + bc + cd + da,0)
and mustBeEqual(abc + bcd + cda + dab,0)
and mustBeEqual(abcd � 1,0);

We deduce then easily a little program which solve �cyclic 4-roots� and obtain the following
result:

[value is false in case d  = - b and c = (0/1) and any b and a = (0/1)]
[value is true in case d = - b and c = - a and b^2 + (-1/1)/(a)^2 = 0 and a /= (0/1)]

 This means that the solutions of �cyclic 4-roots� can be also expressed as the solutions of the
constructible triangular system:

Of course, one can use other decomposition methods to �solve� the system �cyclic 4-roots�
(see for example [MM97]).

3.2.2. File romin.as [GLR93,Del99a,Del99b]
In this file, we are interested in an example coming from robotic called the ROMIN

inverse geometric model [GLR93]. This problem leads to the following constructible system:

                                                  
7 You should not forget the �and� when you translate polynomial or constructible systems into dynamic
evaluation terms !

a + b + c +d = 0
ab + bc + cd + da = 0
abc + bcd + cda + dab = 0
abcd � 1 = 0

d + b = 0
c + a = 0
b2 � 1/a2 = 0
a ≠ 0



17

with d < c < b < a < l3 < l2 < s1 < c1 < s2 < c2 < s3 < c3.

It is easy to translate this system in the dynamic constructible closure using the three
functions parameter, mustBeEqual and mustBeDifferent:

DynamicReso():Boolean == {
d:CL:= parameter(�d�);
c:CL:= parameter(�c�);
b:CL:= parameter(�b�);
a:CL:= parameter(�a�);
l3:CL:= parameter(�l3�);
l2:CL:= parameter(�l2�);
s1:CL:= parameter(�s1�);
c1:CL:= parameter(�c1�);
s2:CL:= parameter(�s2�);
c2:CL:= parameter(�c2�);
s3:CL:= parameter(�s3�);
c3:CL:= parameter(�c3�);
mustBeDifferent(l2,0)
and mustBeDifferent(l3,0)
and mustBeEqual(-d*s1-a,0)
and mustBeEqual(d*c1-b,0)
and mustBeEqual(l2*c2+l3*c3-d,0)
and mustBeEqual(l2*s2+l3*s3-c,0)
and mustBeEqual(s1^2+c1^2-1,0)
and mustBeEqual(s2^2+c2^2-1,0)
and mustBeEqual(s3^2+c3^2-1,0);

}

After the computation (see the file romin.outng), we obtain four constructible triangular
systems with the Boolean true. We refer to [section 7.4 p.211, Del99] for a detailed analysis
of the result.
One can note that this system have been also studied in the polynomial case i.e. without the
inequalities (see [AMM99,Aub99,MM97]).

3.2.3. File consis.as [GD94]
It is a second example of constructible system solving. More precisely, we want to

�solve� the following constructible system:

l2 ≠ 0
l3 ≠ 0
-ds1-a=0
dc1-b=0
l2c2+l3c3-d=0
l2s2+l3s3-c=0
s1

2+c1
2-1=0

s2
2+c2

2-1=0
s3

2+c3
2-1=0
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with x < y. Nothing difficult now, it leads to the function:

DynReso():Boolean == {
x:CL:= parameter(�x�);
y:CL:= parameter(�y�);
mustBeDifferent(x,0)
and mustBeEqual(y^2-x^3,0)
and mustBeEqual((2@I)*y^2-x^2,0)
and mustBeEqual(((8@I)*x-(3@I::CL))^2+((8@I)*y)^2,9@I::CL);

}

with result:

[value is true in case y2-1/8=0 and x=1/2]

This means that the set S of solutions of the constructible system is:

S = {(1/2,y) with y2=1/8}.

3.3. Automatic theorem proving in elementary geometry

Let us first explain what we call automatic theorem proving in elementary geometry
and how we can use D7 to study this kind of problems. Given a field K of characteristic zero,
we denote by h1,�,hr and t r+1 polynomials in K[X1,�,Xn] such that H={h1,�,hr} and t are
respectively the set of hypotheses and the conclusion of a theorem T in elementary geometry:

T: (H=0)  ==>  (t=0).

The problem is to study the validity of the theorem T.

Definition [definition 1.3 p.5, RV99]. The theorem ((H=0)  ==>  (t=0)) is geometrically true
if the variety of  the hypotheses V(H) is included in the variety of the conclusion V(t).

We can use D7 to decide whether the theorem T is geometrically true or not. For this purpose,
we write a program in the following form:

if (mustBeEqual(h1,0)
and mustBeEqual(h2,0)
�
�
and mustBeEqual(hr,0))

then [(t = 0)$CL];
else [failed];

x ≠ 0
y2-x3 =0
2y2-x2 = 0
(8x-3)2+8y2-9 = 0
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C

G

B

H

F

A
E

M+

By construction, we obtain three kinds of systems in the output (i.e. three kinds of clauses):
• constructible systems with the Boolean true: they describe the variety V(H) ∩V(t);
• constructible systems with the Boolean false: they describe the set V(H) � V(t);
• constructible systems with �failed�: they describe subsets of CL(Q)n � V(H).

One can then easily prove that the theorem T is geometrically true if and only if there is no
constructible system associated with the Boolean false.

Finally, in this kind of problems, one can note that the operator mustBeDifferent is a good
tool to avoid degenerate cases. For example we can impose that two points are distinct or that
three points are not on a line [GD93]. Let�s see an example.

3.3.1. File dccgeo.as8 [Duv90,GD93,GD94,GD95c]
In this file, we want to prove the following theorem. Given a triangle ABC, right-

angled in C, the circle Γ through the midpoints E, F and G of the sides CA, AB and BC (Γ is
the Euler�s circle of triangle ABC), and the foot H of the altitude from C. Then Γ passes
through H.

We now state this problem as a computation in the constructible closure of the field Q. Let M
denote the center of  the circle Γ. We choose a coordinate system adapted to the problem and
we give a name to the coordinates of every point in the figure. For example:

C=(0,0) A=(a1,0) B=(0,a2) E=(a3,0) F=(a4,a5) G=(0,a6) M=(a7,a8) H=(a9,a10).

So we need ten parameters in the constructible closure: a1,a2,�,a10. To avoid degenerate
triangles we impose:

a1 ≠ 0, a2 ≠ 0.

                                                  
8 The beginning of this section (i.e. the translation of this problem into dynamic evaluation context) comes
directly from [GD93].
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The choice of the coordinate system already reflects that the triangle is right-angled. Next we
write that E, F and G are the midpoints of CA, AB and BC respectively:

a3=(1/2)a1, a4=(1/2)a1, a5=(1/2)a2, a6=(1/2)a2.

The center M of the circle Γ is given by the conditions EM=FM and EM=GM, hence:

(a7 - a3)2 + a8
2 = (a7 - a4)2 + (a8  - a5)2

(a7 - a3)2 + a8
2 = a7

2 + (a8 - a6)2

The point H is the intersection of two perpendicular lines AB and CH. The equation of AB is:

(1/a1)x + (1/ a2)y = 1.

(recall that a1  and a2  are non-zero) hence:

(1/ a1) a1 + (1/ a1) = 1
- a1 a9 + a2  a10 = 0.

Finally, the conclusion of the theorem is EM = HM, that is:

(a7 - a3)2 + a8
2 = (a7 - a9)

2 + (a8 - a10)2.

The corresponding program is:

Geo():Union(bo:Boolean, fa:Enumeration(failed)) == {
a1:CL:= parameter(�a1�);
a2:CL:= parameter(�a2�);
a3:CL:= parameter(�a3�);
a4:CL:= parameter(�a4�);
a5:CL:= parameter(�a5�);
a6:CL:= parameter(�a6�);
a7:CL:= parameter(�a7�);
a8:CL:= parameter(�a8�);
a9:CL:= parameter(�a9�);
a10:CL:= parameter(�a10�);
e1:CL:= (a7-a3)^2 + a8^2 - (a7-a4)^2 � (a8-a5)^;
e2:CL:= (a7-a3)^2 + a8^2 �a7^2 � (a8-a6)^2;
e3:CL:= - a1*a9 + a2*a10;
e4:CL:= (a7-a3)^2 + a8^2 � (a7-a9)^2 � (a8-a10)^2;
if (mustBeDifferent(a1,0)

and mustBeDifferent(a2,0)
and mustBeEqual(a3,(1/2)*a1)
and mustBeEqual(a4,(1/2)*a1)
and mustBeEqual(a5,(1/2)*a2)
and mustBeEqual(a6,(1/2)*a2)
and mustBeEqual(e1,0)
and mustBeEqual(e2,0)
and mustBeEqual((1/a1)*a9 + (1/a2)*a10 � 1,0)
and mustBeEqual(e3,0))
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then [(e4 = 0)$CL);
else [failed];

}

with result:9

[value is U[2, ??@Enumeration(??)] in case a10 = (((-1/1)/(a1))*a2)*a9 + a2 and
any a9 and a8= ((1/4))*a2 and a7 = ((1/4))*a1 and a6 = ((1/2))*a2 and a5 =
((1/2))*a2 and a4 = ((1/2))*a1 and a3 = ((1/2))*a1 and a2^2 + a1^2 = 0 and a1 /=
(0/1)],
[value is U[1, true@Boolean] in case a10 = (a1^2)*a2/(a2^2 + a1 ^2) and a9 =
(a1)*a2^2/(a2^2 +a1^2) and a8 = ((1/4))*a2 and a7 = ((1/4))*a1 and a6 =
((1/2))*a2 and a5 = ((1/2))*a2 and a4 = ((1/2))*a1 and a3 = ((1/2))*a1 and a2 /=
(0/1), a2^2 + a1^2 /=0 and a1 /= (0/1)]

This means that:

• in the first case, the answer is �failed� which means that it is impossible to build the
figure. Note that this case cannot happen if a1 and a2 are real because they verify:

• In the second case, the answer is true. Then the theorem is true in this case, i.e. if the
parameters a1, a2,�, a10 verify the constraints of this clause:

The key point here is that there is no answer with Boolean value false. Therefore the theorem
is geometrically true and so it is proved.

3.4. Gcd of two univariate polynomials with parameters

One can use D7 to compute gcd of two univariate polynomials with parameters in their
coefficients. This method is similar to the one developed by S.A.Abramov and
K.Yu.Kvashenko in [AK93]. In fact, there are deep connections between these two methods
[Del00].

                                                  
9 The reader can see again the poor writing of the outputs. In particular, by ??@Enumeration(??) one must
understand �failed�.

a 2
2 + a1

2 =0
a1 ≠ 0

a10 = a1
2a2/(a2

2+a1
2)

a9 = a1a2
2/(a2

2+a1
2)

a8 = (1/4)a2

a7 = (1/4)a1

a6 = (1/2)a2

a5 = (1/2)a2

a4 = (1/2)a1

a3 = (1/2)a1

a2 ≠ 0, a2
2 + a1

2 ≠ 0
a1 ≠ 0
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3.4.1. File ko.as [GD95c]
In this file, we want to compute the gcd of the two univariate polynomials (with

coefficients in the field Q of the rational numbers):

q1 = X2+aX-3a
q2 = X2+bX-3b

where a, b are parameters. For this purpose, we have to consider the domain
DynamicUnivariatePolynomial(CL) (denoted DUP) of the dynamic univariate polynomials
with coefficients in CL. We recall that (in practice) CL is here the Aldor symbol which
represents the dynamic constructible closure of the field Q.
The polynomials q1 and q2 belong to the domain DUP. We use a function gcd implemented in
this domain. The resulting program is the following:10

x:DUP:= monomial(1@CL,1$SI)$DUP;

DynamicGcd():DUP == {
a:CL:= parameter(�a�);
b:CL:= parameter(�b�);
p1:DUP := x^2+(1$SI)*(1$DUP) ;
p2:DUP := x^2+(2@SI)*(1$DUP) ;
f :DUP := x � (3@I::CL)*(1$DUP);
gcd(p1+a*f,p2+b*f)$DUP ;

}

The first line introduces the polynomial X of the Aldor domain DUP with the function
monomial. The reader not familiar with Aldor needs to know that the symbol �$� in (1$SI)
means that 1 is a function implemented in the SingleInteger domain (SI). Note that the
symbol @ in �1@CL� (for example) means that we consider the element 1 in the domain CL.
Moreover the expression  (3@I::CL) means that the element 3 of the domain I of integer
numbers is coerced to an element of the constructible closure domain CL.

The polynomials p1 and p2 are respectively X2+1 and X2+2. Their definition follows from the
structure of  �SI left-module� of DUP. More precisely, the instruction:

1$DUP

denotes the constant polynomial of DUP equal to 1. Then, there is a left multiplication with
elements of the domain SI. So if we want to define the constant polynomial of DUP equal to
2 we write (note that there are multiple ways to write it):

(2@SI)*(1$DUP).

We finally call the function gcd of the domain DUP with the two univariate polynomials
p1+a*f and p2+b*f which represent  respectively the polynomials q1 = X2+aX-3a and q2 =
X2+bX-3b.

                                                  
10 Note that we can also define the polynomials p1  and f as p1:DUP:= x^2+(1$DUP) ; and f:DUP:= x �
(3@SI)*(1$DUP).
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Using the function allCases, we obtain the result11:

[value is ? + ((-3/1))*a + (2/1)/(a + (6/1)) in case b = ((21/20))*a + (3/10) and a^2 +
((12/1))*a + (-4/1) = 0]
[value is (1/1) in case b /= ((21/20))*a + (3/10) and a2^+ ((12/1))*a + (-4/1) = 0]
[value is ? + ((-3/1))*b + ((3/1))*a +(1/1)/(b + - a) in case b^2 + (((-21/10))*a + (-3/5))*b +
((11/10))*a^2 + ((3/5))*a + (1/10) = 0 and a^2 + ((12/1))*a + (-4/1) /= 0]
[value is (1/1) in case b^2 + (((-21/10))*a + (-3/5))*b + ((11/10))*a^2 + ((3/5))*a + (1/10)
/= 0 and a^2 + ((12/1))*a + (-4/1) /= 0 ]

This means that:
• if a2 + 12a - 4 = 0 and b = (21/20)a + (3/10) then gcd(q1,q2) = X - 3a + 2/(a+6);
• if a2 + 12a - 4 = 0 and b ≠ (21/20)a + (3/10) then gcd(q1,q2) = 1;
• if a2 + 12a - 4 ≠ 0 and b2 + ((-21/10)a-3/5)b + (11/10)a2 + (3/5)a + (1/10) = 0 then

gcd(q1,q2) = X �3b +3a +1/(b-a);
• if a2 + 12a - 4 ≠ 0 and b2 + ((-21/10)a-3/5)b + (11/10)a2 + (3/5)a + (1/10) ≠ 0 then

gcd(q1,q2) = 1.

3.5. Linear algebra with parameters

3.5.1. File mat.as [GD94,BGDW95]
In this file, we ask for the rank of the two matrices:

according all possible values of the parameter a. The reader must note that there is a mistake
in the file mat.as which deals with a matrix M2 equal to:

and then leads to a second example of rank computing not very interesting�
To compute the rank of these matrixes, we only need to introduce the domain of the matrices
with coefficients in CL (noted MM) and call a standard rank function (implemented without
any �parameter� notion in a domain called MiMatrixOps). Therefore, if we denote for
example dynRang1 the function Aldor which calculate the rank of the matrix  M1 , one can
implement dynRang1 as follows:

dynRang1():SI == {
a:CL:= parameter(�a�);
m:MM:= matrix[[1,1],[1,a]];
rank(m)$MiMatrixOps(CL) ;

}

Recall that SI is the abbreviation for the domain SingleInteger. We obtain the result:

                                                  
11 In output, the symbol �?� denotes the indeterminate X. This is another example of the poor writing of the
outputs, you should not forget that these programs are in an experimental state.

a 1
1 1M2   =

1 1
1 aM1   =

1 a
1 1
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[value is 1 in case a = (1/1), value is 2 in case a /= (1/1)]

This means that:

• if a=1 then the rank of M1 is 1;
• in the other cases (a≠1) then the rank of M1 is 2.

In order to compute the rank of the matrix M2, we implement the following program:

DynRang2():SI == {
a:CL:= parameter(�a�);
m:MM:= matrix[[a,1],[1,1]];
rank(m)$MiMatrixOps(CL) ;

}

with result:

[value is 2 in case a = (0/1), value is 1 in case a = (1/1),
value is 2 in case a /= (0/1), a /= (1/1)]

This means that:

• if a=0 then the rank of M2  is 2;
• if a=1 then the rank of M2  is 1;
• in the other cases (a≠ 0,1) then the rank of M2 is 2.

One can note the difference with the computation of the rank of M1. It is because the
parameter a is the first entry of the matrix M2. So one has to distinguish the case a = 0 and a ≠
0 when applying a classical rank algorithm.

3.5.2. File linsis.as [GD94]
In this file, we want to solve the following linear system with one parameter a and two

unknowns {x,y}:

It is quite simple with D7, you just have to introduce a, x and y in the dynamic constructible
closure with parameter and then translate the two equations as two calls of mustBeEqual12.
This leads to the implementation of the following little function:

DynamicReso():Boolean == {
a:CL:= parameter(�a�);
x:CL:= parameter(�x�);
y:CL:= parameter(�y�);
mustBeEqual(a*x+y, 2@I:CL)

                                                  
12 In fact, we just have to consider every linear system as a particular case of polynomial system. If there are
additional constraints on the parameters, one has to consider the polynomial or constructible system made of the
linear system and these additional equations and inequations.

x
y

a 1
1 1

2
1

=
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and mustBeEqual(x + y, 1);
}

with result:

[value is false in case y = -x + (2/1) and any x and a = (1/1)]
[value is true in case y = a +(-2/1)/(a + (-1/1)) and x = (1/1)/(a + (-1/1)) and a /=
(1/1)]

This means that the set of solutions S of the linear system is:

• if a ≠ 1 then

• S =  ∅  otherwise.

3.5.3. File rob.as
This file contains three other examples of solving linear systems. More precisely, the

functions lin1, lin2 and lin3 are implemented to solve respectively the three following linear
systems:

Note that in the second one (see the function lin2), we impose two additional conditions on
the parameters a, b:

The treatment of these three problems is exactly the one presented in the file linsis.as.

x
y
z

1 -2 3
2 a 6
-1 3 a-3

1
6
a

=

x
y =

-2 3
a 6
3 a-3

0
0
0

x
y
z

1 -2 3
2 a 6
-1 3 (a/b)-

=
b
6b
a

1/(a-1)

a � 2/(a-1)
S   = ; a ∈ CL(Q) ;

a2+b2 = 1
b ≠ 0
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