
Open-Source Software Maintenance: Experience from IPOL

Pascal Monasse <pascal.monasse@enpc.fr>

LIGM, École des Ponts, Univ. Gustave Eiffel, Marne-la-Vallée, France

Workshop Open Science, Bilbao, Nov. 10-12, 2022

mailto:pascal.monasse@enpc.fr


Software as Integral Part of Research Work

Software needs to be published

• with a review process

• with quality criteria

In the case of IPOL, we have

• detailed algorithms

• verified and usable code

• instant test demos

1/9



IPOL Software Guidelines

Requirements

• All software should have an open source license.

• The original authors may not be available to maintain the software.

• The IPOL team should be able to deal with minor adaptations

Consequences

• Originally, only ISO C/C++ code was accepted.

• Limited libraries with a stable API were authorized: Eigen (linear algebra),

GSL (GNU Scientific Libraries), libpng, libjpeg, libtiff (image i/o).

• There was some “glue” Python code for the demo system.

• Reviewers should make sure the source is commented and does not use

overly complex optimizations (keep it simple).

2/9



IPOL Software Guidelines

Requirements

• All software should have an open source license.

• The original authors may not be available to maintain the software.

• The IPOL team should be able to deal with minor adaptations

Consequences

• Originally, only ISO C/C++ code was accepted.

• Limited libraries with a stable API were authorized: Eigen (linear algebra),

GSL (GNU Scientific Libraries), libpng, libjpeg, libtiff (image i/o).

• There was some “glue” Python code for the demo system.

• Reviewers should make sure the source is commented and does not use

overly complex optimizations (keep it simple).

2/9



IPOL Meets Reality

Stringent requirements limited the submissions

• Additional libraries are allowed, should be embedded in the source archive.

• Matlab very popular in signal/image processing, but no standard, evolving

API.

→ Encourage GNU Octave compatibility.

• Python with NumPy, same problems.

→ Minimize dependencies by using virtual environments with PIP (file

requirements.txt).

3/9



Library Development for RR

Contribution to RR from library development

• Way to diffuse research results to larger use.

• Documented and referenced algorithms easy to be used from new PhD

student.

• Extend the classic academic results to real applications.

• Gather algorithms and make easier comparisons and use in other context.

• Make easier software demonstrator or online demonstrations.

Attention key point towards reproducibility

• Compatibility problems: libraries evolve rapidly (compilation issues).

• Implementation change: can change numerical results from a version to

another.

• Implies the use of a container solution like Docker to ensure longer terms

reproducibility.

4/9



Library Development for RR

Contribution to RR from library development

• Way to diffuse research results to larger use.

• Documented and referenced algorithms easy to be used from new PhD

student.

• Extend the classic academic results to real applications.

• Gather algorithms and make easier comparisons and use in other context.

• Make easier software demonstrator or online demonstrations.

Attention key point towards reproducibility

• Compatibility problems: libraries evolve rapidly (compilation issues).

• Implementation change: can change numerical results from a version to

another.

• Implies the use of a container solution like Docker to ensure longer terms

reproducibility.

4/9



Example of libraries of vision/imagine/geometry domains

Example of library of vision/image/geometry domains

• Some libraries were initiated/funded by private company.

• The others come mainly from university initiatives.

Library domain langage version #auth. date funding

OpenCV Comp. Vision C++ 4.5.5 1,383 1999 Willow Garage

ITK Image Processing C++/Pyt. 5.2.1 265 2000 Kitware

PCL Point clouds C++ 1.12.1 464 2010 Willow Garage

CGal Geometry proc. C++ 5.4 123 1996 Acad./GeometryFactory

CImg Image processing C++ 3.1.2 72 1999 Acad.

Geogram Geometric algorith. C++ 1.7.8 7 1998 Acad./INRIA/ERC

Olena Image processing C++/Pyt. 2.1 50 2001 Acad. / Project

Tulip huge graph visualiz C++/Pyt. 5.6.2 9 2001 Acad./private

Vigra Comp. Vision C++ 1.11 50 2008 Acad.

DGtal Digital geometry C++/Pyt. 1.2 27 2011 Acad. / Project

OpenMVG Mult. View Geom. C++ 2.0 86 2013 Acad./Mikros/Foxel

TTK Topology ToolKit C++ 1.0 36 2017 Acad. / Project

Higra Graph analysis C++/Pyt. 0.6.5 4 2018 Acad. / Project

5/9

https://github.com/opencv/opencv
https://github.com/InsightSoftwareConsortium/ITK
https://github.com/PointCloudLibrary/pcl
https://github.com/CGAL/cgal
https://github.com/dtschump/CImg
https://github.com/BrunoLevy/geogram
https://gitlab.lrde.epita.fr/olena
https://tulip.labri.fr
https://github.com/ukoethe/vigra
https://github.com/DGtal-team/DGtal
https://github.com/openMVG/openMVG
https://github.com/topology-tool-kit/ttk
https://github.com/higra/Higra


Example of libraries of vision/imagine/geometry domains

Example of library of vision/image/geometry domains

• Some libraries were initiated/funded by private company.

• The others come mainly from university initiatives.

Library domain langage version #auth. date funding

OpenCV Comp. Vision C++ 4.5.5 1,383 1999 Willow Garage

ITK Image Processing C++/Pyt. 5.2.1 265 2000 Kitware

PCL Point clouds C++ 1.12.1 464 2010 Willow Garage

CGal Geometry proc. C++ 5.4 123 1996 Acad./GeometryFactory

CImg Image processing C++ 3.1.2 72 1999 Acad.

Geogram Geometric algorith. C++ 1.7.8 7 1998 Acad./INRIA/ERC

Olena Image processing C++/Pyt. 2.1 50 2001 Acad. / Project

Tulip huge graph visualiz C++/Pyt. 5.6.2 9 2001 Acad./private

Vigra Comp. Vision C++ 1.11 50 2008 Acad.

DGtal Digital geometry C++/Pyt. 1.2 27 2011 Acad. / Project

OpenMVG Mult. View Geom. C++ 2.0 86 2013 Acad./Mikros/Foxel

TTK Topology ToolKit C++ 1.0 36 2017 Acad. / Project

Higra Graph analysis C++/Pyt. 0.6.5 4 2018 Acad. / Project

5/9

https://github.com/opencv/opencv
https://github.com/InsightSoftwareConsortium/ITK
https://github.com/PointCloudLibrary/pcl
https://github.com/CGAL/cgal
https://github.com/dtschump/CImg
https://github.com/BrunoLevy/geogram
https://gitlab.lrde.epita.fr/olena
https://tulip.labri.fr
https://github.com/ukoethe/vigra
https://github.com/DGtal-team/DGtal
https://github.com/openMVG/openMVG
https://github.com/topology-tool-kit/ttk
https://github.com/higra/Higra


Example of libraries of vision/imagine/geometry domains

Example of library of vision/image/geometry domains

• Some libraries were initiated/funded by private company.

• The others come mainly from university initiatives.

Library domain langage version #auth. date funding

OpenCV Comp. Vision C++ 4.5.5 1,383 1999 Willow Garage

ITK Image Processing C++/Pyt. 5.2.1 265 2000 Kitware

PCL Point clouds C++ 1.12.1 464 2010 Willow Garage

CGal Geometry proc. C++ 5.4 123 1996 Acad./GeometryFactory

CImg Image processing C++ 3.1.2 72 1999 Acad.

Geogram Geometric algorith. C++ 1.7.8 7 1998 Acad./INRIA/ERC

Olena Image processing C++/Pyt. 2.1 50 2001 Acad. / Project

Tulip huge graph visualiz C++/Pyt. 5.6.2 9 2001 Acad./private

Vigra Comp. Vision C++ 1.11 50 2008 Acad.

DGtal Digital geometry C++/Pyt. 1.2 27 2011 Acad. / Project

OpenMVG Mult. View Geom. C++ 2.0 86 2013 Acad./Mikros/Foxel

TTK Topology ToolKit C++ 1.0 36 2017 Acad. / Project

Higra Graph analysis C++/Pyt. 0.6.5 4 2018 Acad. / Project

5/9

https://github.com/opencv/opencv
https://github.com/InsightSoftwareConsortium/ITK
https://github.com/PointCloudLibrary/pcl
https://github.com/CGAL/cgal
https://github.com/dtschump/CImg
https://github.com/BrunoLevy/geogram
https://gitlab.lrde.epita.fr/olena
https://tulip.labri.fr
https://github.com/ukoethe/vigra
https://github.com/DGtal-team/DGtal
https://github.com/openMVG/openMVG
https://github.com/topology-tool-kit/ttk
https://github.com/higra/Higra


Library Development for RR

Elements to increase reproducibility across libraries

• Limit dependencies to other libraries or include them inside the library

itself.

• Orient to an header only library (if C++ like CImg or CGal since version

5).

• From a user perspective, extract all dependent header files.

Examples in C++:

It is possible to use a special option in order to list all header files:

g++ hello.c -o hello -I/specialHeaderLibPath -MD

Then command will generate a hello.d file containing all header files that are

really used by the compilator to produce the executable.

⇒ then an archive can be constructed including only needed files and

independently of library or system header file.

6/9



Library Development for RR

Elements to increase reproducibility across libraries

• Limit dependencies to other libraries or include them inside the library

itself.

• Orient to an header only library (if C++ like CImg or CGal since version

5).

• From a user perspective, extract all dependent header files.

Examples in C++:

It is possible to use a special option in order to list all header files:

g++ hello.c -o hello -I/specialHeaderLibPath -MD

Then command will generate a hello.d file containing all header files that are

really used by the compilator to produce the executable.

⇒ then an archive can be constructed including only needed files and

independently of library or system header file.

6/9



Library Development for RR

Elements to increase reproducibility across libraries

• Limit dependencies to other libraries or include them inside the library

itself.

• Orient to an header only library (if C++ like CImg or CGal since version

5).

• From a user perspective, extract all dependent header files.

Examples in C++:

It is possible to use a special option in order to list all header files:

g++ hello.c -o hello -I/specialHeaderLibPath -MD

Then command will generate a hello.d file containing all header files that are

really used by the compilator to produce the executable.

⇒ then an archive can be constructed including only needed files and

independently of library or system header file.

6/9



The IPOL Demo System

• Full architecture of microservices.

• Video demos are possible.

• Some servers with GPU.

→ Extension to machine learning applications.

7/9



Demo architecture (initial one)

8/9



Demo architecture

Limitations

• OK for isolated demos.

• Demo is standalone. Does not share information with the others. Statelss

• Not well adapted to machine learning applications.

• New concept: application

Demo vs Application

• Execution time: demo starts and ends shortly. Appication never ends.

• The application sleeps when there is no activity. It might wake up when a

new experiment is added to the archive.

• ML applications are more complex:

• Pre-processing more complex (less structured).

• Standardization of the data.

9/9



Demo architecture (current)

AppCore: same role as DemoCore, but controls the execution of applications.

10/9



Thank you for your attention

10/9


