
it – Information Technology 2020; 62(1): 39–47

Wilhelm Hasselbring*, Leslie Carr, Simon Hettrick, Heather Packer, and Thanassis Tiropanis

From FAIR research data toward FAIR and open
research software
https://doi.org/10.1515/itit-2019-0040
ReceivedOctober 10, 2019; revisedNovember 30, 2019; accepted Jan-
uary 25, 2020

Abstract: The Open Science agenda holds that science ad-
vances fasterwhenwe can build on existing results. There-
fore, research datamust be FAIR (Findable, Accessible, In-
teroperable, and Reusable) in order to advance the find-
ability, reproducibility and reuse of research results. Be-
sides the research data, all the processing steps on these
data – as basis of scientific publications – have to be avail-
able, too.

For good scientific practice, the resulting research
software should be both open and adhere to the FAIR
principles to allow full repeatability, reproducibility, and
reuse. As compared to research data, research software
should be both archived for reproducibility and actively
maintained for reusability.

The FAIR data principles do not require openness, but
research software should be open source software. Estab-
lished open source software licenses provide sufficient li-
censing options, such that it should be the rare exception
to keep research software closed.

We review and analyze the current state in this area in
order to give recommendations for making research soft-
ware FAIR and open.

Keywords: FAIR principles, research software, open
source software

ACM CCS: Software and its engineering → Software cre-
ation andmanagement→ Collaboration in software devel-
opment→Open source model, Information systems→ In-
formation retrieval→ Retrieval tasks and goals

*Corresponding author: Wilhelm Hasselbring,
Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany,
e-mail: hasselbring@email.uni-kiel.de, ORCID:
https://orcid.org/0000-0001-6625-4335
Leslie Carr, Simon Hettrick, Heather Packer, Thanassis Tiropanis,
University of Southampton, SO17 1TW Southampton, UK, e-mails:
lac@ecs.soton.ac.uk, sjh@ecs.soton.ac.uk, hp3@ecs.soton.ac.uk,
t.tiropanis@southampton.ac.uk

1 Introduction

Replicability and reproducibility are the ultimate stan-
dards by which scientific claims are judged [34]. Repro-
ducibility and reuse of research can be improved by in-
creasing transparency of the research process and prod-
ucts via an open science culture [32].

Of the variations of open science [13], in this paper,
we consider the pragmatic and infrastructure views. The
pragmatic view regards open science as a method to make
research and knowledge dissemination more efficient. It
thereby considers science and research as a process that
can be optimized by, for instance, modularizing the pro-
cess of knowledge creation, opening the scientific value
chain, including external knowledge and allowing collab-
oration through online tools such as Github, etc. The in-
frastructure view is concerned with the technical infras-
tructure that enables emerging research practices on the
Internet, for themost part software tools and applications,
as well as (high-performance) computing systems. Exam-
ples for such infrastructures are the European Open Sci-
ence Cloud EOSC [1] and the Generic Research Data Infras-
tructure GeRDI [43].

Research data must be FAIR (Findable, Accessible, In-
teroperable, and Reusable) in order to advance the find-
ability, reproducibility and reuse of research results. Be-
sides the research data, all the processing steps on these
data – as basis of scientific publications – have to be avail-
able, too.

To review and analyze the current state in this area we
first introduce research software and research software en-
gineering in Sections 2 and 3, respectively. The FAIR prin-
ciples are originally intended for research data. Section 4
explains how the FAIR principles apply to research soft-
ware. For findability and accessibility, approaches to soft-
ware publishing are relevant, as will be discussed in Sec-
tion 5. For reproducibility and reusability, so-called arti-
fact evaluation serves as a review mechanism, see Sec-
tion 6. Our recommendations to make research software
FAIR and open are summarized in Section 7. We propose
the deployment of research software observatories in Sec-
tion 8 to better support both research software retrieval
and analysis. Section 9 concludes the paper with an out-
look to future work.

Open Access. © 2020 Hasselbring et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public
License.

https://doi.org/10.1515/itit-2019-0040
mailto:hasselbring@email.uni-kiel.de
https://orcid.org/0000-0001-6625-4335
mailto:lac@ecs.soton.ac.uk
mailto:sjh@ecs.soton.ac.uk
mailto:hp3@ecs.soton.ac.uk
mailto:t.tiropanis@southampton.ac.uk


40 | W. Hasselbring et al., From FAIR research data toward FAIR and open research software

2 Research software

Research software is software that is employed in the sci-
entific discovery process or a research object itself. Com-
putational science (also scientific computing) involves the
development of research software for model simulations
and data analytics to understand natural systems answer-
ing questions that neither theory nor experiment alone are
equipped to answer. Computational science is a multidis-
ciplinary field lying at the intersection ofmathematics and
statistics, computer science, and core disciplines of sci-
ence and research.

Many researchers spend significant time creating and
contributing to software, an activity which is currently not
well represented in the scholarly record. This situation cre-
ates some problems:
1. Trust in research relies on the peer review system but

without ready access to the software used to perform a
given experiment or analysis, it is difficult for readers
to check a paper’s validity.

2. Lack of access to the software underlying research
makes it significantly more difficult to build new re-
search results on top of existing ones: it is difficult to
‘stand on the shoulders of giants’.

3. Promotion and hiring in academic research are highly
dependent on building a portfolio of well-cited pa-
pers, and researchers whose main work is software
development often have fewer research papers pub-
lished.

Publishing research software as open source is an estab-
lished practice in science; a popular open source platform
is GitHub [5]. Researchers also disseminate the code and
data for their experiments as virtual machines on reposi-
tories such as DockerHub [10]. Open source software prac-
tices have enabled the more general open science agenda.
Open Science principles affect the research life-cycle, in
the way science is performed, its results – including soft-
ware – published, assessed, discovered, and monitored,
as will be discussed in the following section.

3 Research software engineering
for sustainable research software

Despite the increasing importance of research software to
the scientific discovery process, well-established software
engineering practices are rarely adopted in computational
science [24], but the computational science community

has started to appreciate that software engineering is cen-
tral to any effort to increase its research software produc-
tivity [37]. Computer science, in particular software engi-
neering, may help with reproducibility and reuse to ad-
vance computational science.

The above-mentioned pragmatic and infrastructure
views of open science require software engineering to en-
able sustainable research software. We need proper re-
search software engineering for obtaining sustainable re-
search software. Research Software Engineers (RSE) com-
bine an intimate understanding of research with expertise
in software engineering [36]. It is a relatively new role in
academia, but a highly popular one that has shown signif-
icant growth in countries around the world [35]. The RSE
community has displayed a particular interest in adopt-
ing and promoting open science, and as such are perfectly
placed to help researchers adopt FAIR and open software
practices.

One of the biggest obstacles to making research soft-
ware sustainable is ensuring appropriate credit and recog-
nition for researcherswhodevelop andmaintain such soft-
ware. Thegoal is to address the challenges that researchers
face regarding sustainable research software. It is also es-
sential to sustain software by sustaining its communities
(researchers, developers, maintainers, managers, active
users). If we would achieve that software citations appear
somehow very close to publication citations, this could
help with giving appropriate credit and recognition for re-
searchers who develop and maintain research software.
Approaches to software citation and software observato-
ries may promote this, as we will discuss below.

4 The FAIR principles for research
software

The FAIR principles are originally intended to make data
findable, accessible, interoperable, and reusable [48].
However, for open science it is essential to publish re-
search software in addition to research data. Extended to
research software, the FAIR principles can be summarized
as follows:
Findable: The first step in (re)using data and software is

to find it.
Accessible: Once the user finds the required data and

software, she or he needs to know how to access it,
possibly including authentication andauthorization if
data is involved.

Interoperable: Thedata and software oftenneed to be in-
tegrated with other data and software.



W. Hasselbring et al., From FAIR research data toward FAIR and open research software | 41

Reusable: For reusability, metadata, data and software
should be well-described such that they can be
reused, combined and extended in different settings.

Some communities also use source code itself as data.
For example, the Mining Software Repositories commu-
nity analyzes the rich data available in software reposi-
tories to uncover interesting information about software
systems and projects [19]. Data from GitHub, Stackover-
flow etc. is harvested into repositories such as GHTorrent
to be employed in research [27]. Thus, the FAIR principles
can also be applied to software, which can be stored and
treated as data.

However, at present research software is typically not
published and archived using the same practices as FAIR
data, with a common vocabulary to describe the artifacts
with metadata and in a citable way with a persistent iden-
tifier. GitHub is not a platform for archival publishing. Zen-
odo supports archiving and publishing snapshots from
GitHub with persistent DOIs [16], however, it remains a
great challenge to collect, preserve, and share all the soft-
ware source code. Research software is the result of cre-
ative work that can continue to evolve over time. In gen-
eral, software must be continuously maintained to func-
tion.

Computer science and software engineering play an
important role in the implementation of the FAIR princi-
ples, which usually have a focus on helping other disci-
plines to be FAIR. However, computer science research it-
self is often also based on software; thus, computer sci-
ence research software should also consider the FAIR prin-
ciples.

5 Approaches to software
publishing

For findability and accessibility, approaches to software
publishing are relevant. Traditionally, the scientific pa-
per is central to the research communication process.
Guidelines for authors define what aspects of the research
process should be made available to the community to
evaluate, critique, reuse, and extend. Scientists recognize
the value of transparency, openness, and reproducibility.
However, it remains unclear, how this may be achieved
with software.

Various journals allow one to add supplementary ma-
terial to an article, whichmay include software. Such addi-
tional material is usually just put into zip archives, whose
content is neither reviewed nor further explained with

metadata information or other documentation. Thus, this
may fail to promote reuse.

More publishing-oriented practices were also ex-
plored. For instance, Elsevier conducted the “Executable
Paper Grand Challenge” to enhance how scientific in-
formation is used and communicated, addressing both
computational science and computer science [15]. Several
projects presented their concepts of “Executable Papers”
which were published in the corresponding conference
proceedings. The example paper [30] from this competi-
tion uses literate programming to present a Curry program
within the paper. Thus, it contains the complete concise
source code of their software application, which is directly
executable, together with sufficient documentation to be
understandable.

Research software may also be published in software
journals such as the Journal of Open Source Software [33],
the Journal of OpenResearch Software [40] or Software Im-
pacts [12] but this is rarely adopted in computer science.

Some research communities are also building on-
line platforms for sharing research software services. The
SoBigData Lab [39], for instance, provides a cloud ser-
vice for data analytics, with a focus on social mining re-
search. OceanTEA provides an online service for analyz-
ing ocean observation data [22]. The integrated toolchain
LabPal for running, processing, and including the results
of computer experiments in scientific publications is pre-
sented in [18]. The tool Qresp for curating, discovering
and exploring reproducible scientific papers is presented
in [17]. Generic services such as BinderHub [44] and Code
Ocean [7] support online execution of reproducible code.

6 Artifact evaluation as a review
mechanism

For reproducibility and reusability, so-called artifact eval-
uationmay serve as a reviewmechanism. The code quality
of research software often is a hindrance for reuse. For ex-
ample, there are typically no tests, documentation is often
lacking, and the code does not usually adhere to any cod-
ing standards. This is not necessarily caused by the scien-
tist’s bad work, but rather it is the natural result of what
scientists are judged on, namely the scientific quality of
the papers they put out, as opposed to the quality of soft-
ware that enables such papers.

To address these issues, several ACM conferences ini-
tiated artifact evaluation processes, in which supplemen-
tary material is part of the review process [28]. The ACM



42 | W. Hasselbring et al., From FAIR research data toward FAIR and open research software

distinguishes between repeatability (same team, same ex-
perimental setup), replicability (different team, same ex-
perimental setup), reproducibility (different team, differ-
ent experimental setup), or reusability (artifacts are care-
fully documented and well-structured to the extent that
reuse and repurposing are facilitated) of research arti-
facts [4].

Artifacts can be software systems, scripts used to
run experiments, input datasets, data collected in exper-
iments, or scripts used to analyze results. Artifact evalua-
tion processes help to check their quality via peer review.
In some subdisciplines of Computer Science these artifact
evaluation processes have been established: Databases
(ACMSIGMOD), Software Engineering (ACMSIGSOFT) and
Programming Languages (ACM SIGPLAN), see [28]. SIG-
MOD calls the process reproducibility evaluation and also
offers the ‘Most Reproducible Paper Award’. The Super
Computing Conference Series introduced a reproducibility
initiative with an artifact evaluation process in 2016 [42].
However, some subdisciplines of Computer Science are
still discussing whether they should adopt the artifact
evaluation process. Such a subdiscipline is Information
Retrieval (ACMSIGIR), which started an initiative to imple-
ment the ACM artifact review and badging process [14].

Recently, the Empirical Software Engineering journal
initiated an open science initiative including an artifact
evaluation process [31]. Once a manuscript gets minor re-
vision, the authors are encouraged to prepare a replication
package. When the manuscript gets accepted, the authors
are invited to submit the replication package for evalua-
tion.

Childers and Chrysanthis [6] examine how artifact
evaluation has incentivized authors, and whether the pro-
cess is having a measurable impact. They observe a statis-
tical correlation between successfully evaluated artifacts
and higher citation counts of the associated papers. This
correlation does not imply a cause-and-effect conclusion,
but the hypothesis is that authors who participate in arti-
fact evaluations for whatever reason may have a tendency
to be more active and visible in the community.

It is important to appreciate that the artifact evalua-
tion process requires significant effort and expertise, sim-
ilar to the review process for scientific papers. To address
these challenges, program chairs and artifact evaluation
chairs usually appoint different committees: members of
program committees are mostly senior researchers while
members of artifact evaluation committees are mostly
early-stage researchers such as postdocs and experienced
PhD students. Senior researchers contribute their long-
term research experience and early-stage researchers con-

tribute their knowledge of state-of-the-art software engi-
neering practices.

7 Recommendations to make
research software FAIR and open

Publishing research software in an archival repository is
currently not common in all areas of science. Research
software is usually managed in GitHub or similar plat-
forms, where it can be maintained and re-used, but not
published for scientific reward and proper citation. An ap-
proach to addressing these issues is by enabling and stan-
dardizing citation of software. Software citation brings
the effort of software development into the current model
of academic credit, while simultaneously enhancing the
scholarly record by linking together software with pub-
lications, datasets, methods, and other research objects.
Therefore, our recommendations along to the FAIR princi-
ples are the following:
For findability, challenges to be addressed for FAIR pub-

lication of research software are methods for software
citation and software retrieval. To support findabil-
ity, computer science sub-disciplines may adopt ap-
proaches that are currently under exploration for re-
search software in general. However, appropriate soft-
ware metadata remains a great challenge.
Authors sometimes want their users to cite something
other than the piece of software directly. Examples in-
clude citing a paper that introduces the software, a
published softwaremanual or book, a ‘softwarepaper’
created specifically as a citation target, or a bench-
marking paper.
However, there exists guidelines for software citation
and identification [38], and already some metadata
standards for software citation exist [26]:
– The Citation File Format (CFF) is a human- and

machine-readable file format in YAML which pro-
vides citation metadata for software [11].

– A CodeMeta instance file describes the metadata
associated with a software object using JSON’s
linked data (JSON-LD) notation [3].

The CiteAs.org online service links between software
repositories and their requested citations, exploiting
the above standards. What is missing, are search en-
gines that exploit this metadata and, more impor-
tantly, widespread annotation of research software
with citation information.

For accessibility, software artifacts should be published
with preservation in mind. GitHub, for example, does

http://CiteAs.org


W. Hasselbring et al., From FAIR research data toward FAIR and open research software | 43

not directly support the preservation of software
“snapshots” which were used to achieve some re-
search results. This may, for instance be achieved
via taking a snapshot from GitHub to be archived on
Zenodo.org [16]:
– GitHub serves for use, reuse, and active involve-

ment of researchers.
– Zenodo serves for archival and reproducibility of

published research results.
An open question is whether computer science re-
search needs its own discipline-specific data reposi-
tory and whether the combination of GitHub and Zen-
odo is sufficient.
A snapshot that has been archived at Zenodo can help
with reproducing a published research result, but it
represents only the state of a possibly outdated soft-
ware at this time. Concurrent version control systems
such as Git (for which GitHub is a development plat-
form) also allow tagging of releases. Such tags allow
you to identify specific release versions of your code,
which may also support reproducibility of some spe-
cific research result.
The Software Heritage archive could be another op-
tion for software preservation [9]. However, be aware
that long-term preservation of software is difficult and
expensive. It will be a challenge archiving, for in-
stance, complete virtual machines or Docker images
in a way that we can execute them even after decades.
Approaches such as CernVM intend to address these
challenges [47].

For interoperability, research software engineers
should adhere to established software and data stan-
dards allowing for interoperable software components
[20]. Proper interface definitions in modular software
architectures are essential for interoperable research
software components.
Software virtualization techniques such as Docker
containers and online services help to support porta-
bility, and thus interoperability and reusability across
platforms. To achieve this, researchers must be com-
petent and willing to learn to provide their software
in executable ways for whatever infrastructure they
would like to have impact via reuse through other re-
searchers.
Artifact evaluation processes may also support inter-
operability, if the reviewers take this concern into ac-
count.

For reusability, artifact evaluation processes review
replicability and reproducibility and, if success-
ful, reusability of research software. This way, the

reusability of research software may be improved sig-
nificantly.
From a software engineering point of view, modular
software architectures allow for reusing parts of re-
search software systems [21]. So far, many research
software systems are not structured in a modular ar-
chitecture, what should be improved in the future.
Domain-specific languages may also help with the
comprehensibility and modularity of research soft-
ware [23].
It is vital for reusability to follow good software engi-
neering practices to ensure that the software can be
built on by others [8]. Adequate documentation is im-
portant, but so are engineering practices such as pro-
viding testing frameworks and test data for continu-
ous integration to ensure that future adaptations can
be tested to ensure that they work correctly.
As mentioned above, software virtualization tech-
niques also support reusability across platforms.How-
ever, most current technologies and platforms are not
yet sufficient to enable reusability, e. g. for a complex,
steadily growing C++ research prototype running in a
specialized HPC environment of some university. To
improve this situation, more innovations on the in-
frastructure level are required. It may be useful to dis-
tinguish between Software-as-Code (e. g., via GitHub)
andSoftware-as-a-Service (e. g., via someonline cloud
service on which the software is executed, such as
BinderHub [44]).

8 Observatories for FAIR and open
research software

Based on our experience with analyzing the relationships
of research software and research publications, we pro-
pose the deployment of Research Software Observatories
to better support both research software retrieval andanal-
ysis; thus FAIR research software. Discovery and analysis
of data resources have been considered in the conceptu-
alization of web observatories [46] and later in data ob-
servatories [45]. A data observatory is a catalogue of data
resources and of observations (analytic applications) on
those resources. Data observatories envisage decentral-
ized, interoperable catalogues of data resources, hosted by
different organizations.1 Thus, data observatories are dis-

1 Reference implementations have already emerged; e. g. https://
github.com/webobservatory/

http://Zenodo.org
https://github.com/webobservatory/
https://github.com/webobservatory/


44 | W. Hasselbring et al., From FAIR research data toward FAIR and open research software

Table 1: Recommendations for FAIR Research Software.

FAIR Principle Recommended Measure

Findability Provide software metadata to improve software retrieval
Use software citation to allow for proper reference and reward
Employ research software observatories which may serve as retrieval service

Accessibility Use software development platforms such as GitHub for code cloning
Use repositories such as Zenodo to access archived software versions
Use research software observatories as dedicated repository services

Interoperability Provide proper interface definitions in modular software architectures
Conform to established software standards
Use software virtualization techniques for portability
Participate in artifact evaluation processes to evaluate interoperability

Reusability Use software development platforms such as GitHub for active involvement
Build modular software architectures to allow for reusing parts of research software
Use domain-specific languages for comprehensibility and modularity of research software
Follow good software engineering practices to achieve high software quality
Use software virtualization techniques such as Docker to support reusability across platforms
Use software-as-a-service platforms such as BinderHub for immediate execution
Use research software observatories for online analytics
Participate in artifact evaluation processes to evaluate reusability

tributed, federated collections of datasets and tools for an-
alyzing data, each with their own user community. Decen-
tralization in this sense can provide for agile architectures
inways that centralized, one-size-fits-all solutions cannot.

In the context of open science and research software,
research software observatories can be considered in three
different ways. First, in terms of describing a research soft-
ware observatory for FAIR and open research software,
that will allow scientists to share software and observa-
tions on the status of this software. A research software
observatory could support open science research and en-
courage best practice among research communities. Sec-
ond, one could consider the research software used for
processing scientific data andproducing observations (an-
alytics) in ways that respect the FAIR and open principles.
Third, the opportunities and challenges of cataloging re-
search software with appropriate citation links in obser-
vatories can be explored. Research software observatories
need to support metadata for research software classifica-
tion and citation to further empower researchers to find,
access and reuse relevant and interoperable research soft-
ware.

Related to such research software observatories is the
Research Software Directory, which is a content manage-
ment system for research software that aims to improve the
findability, citability, and reproducibility of the software
packages advertised in it, while enabling a qualitative as-
sessment of their impact [41]. Collberg & Proebsting [8]
studied the extent to which computer systems researchers

share their code and data. Their focus is on re-building
the research software for repeatability and on sharing con-
tracts, not FAIR and open publishing. Lamprecht et al. [29]
propose that research software and its associated meta-
data should be included in a searchable software registry.
Research software observatories could serve this purpose.

9 Conclusions and future work

In this paper, we review and analyze the current state
for publishing research software to give recommendations
for making research software FAIR and open. For find-
ability and accessibility, approaches to appropriate soft-
ware publishing and citation aims at findability and ac-
cessibility. Artifact evaluation serves as a review mecha-
nism to improve reproducibility and reusability. Research
software observatories support research software retrieval
and analysis. Table 1 summarizes our recommendations
for FAIR research software.

Compared to research data, research software should
be both archived for reproducibility and actively main-
tained for reusability. The combination of Zenodo (for
archival and reproducibility) andGitHub (formaintenance
and reuse) may be used to achieve this. Furthermore, re-
search software should be open source software. Estab-
lished open source software licenses [2] provide adequate
licensing options such that there is no need to keep re-
search software closed. In the vast majority of cases some



W. Hasselbring et al., From FAIR research data toward FAIR and open research software | 45

existing license will be appropriate. For research data this
is different. Research data may, for instance, be subject to
privacy regulations. Thus, the FAIR data principles do not
require openness, but accessibility that might include au-
thentication and authorization.However, for research soft-
ware, openness is to be expected [25]. Only in exceptional
cases and for very good reasons should research software
be closed.

Reproducibility and reusability are essential for good
scientific practice. Future work should address the defini-
tion and establishment of appropriate metadata for citing
both software code and software services. Such metadata
could make research software also better searchable and
discoverable. Research software observatories may pro-
vide such services for software retrieval and analysis.

Modularity is essential for maintainability, scalability
and agility, but also for reusability. We suggest to further
establish the concept of artifact evaluation to ensure the
quality of published artifacts for better reusability.

Proper research software engineering enables repro-
ducibility and reusability of research software in compu-
tational science. However, software engineering should
also help software engineering and computer science re-
search itself to support replicability and reproducibility of
research software that is used in computer science experi-
ments. This way, wemay achieve FAIR and open computer
science and software engineering research.

Acknowledgment: The presented work was conducted
while the first author was on sabbatical leave at the Uni-
versity of Southampton, UK.

References
1. Paul Ayris, Jean-Yves Berthou, Rachel Bruce, Stefanie

Lindstaedt, Anna Monreale, Barend Mons, Yasuhiro Murayama,
Caj Södergård, Klaus Tochtermann, and Ross Wilkinson.
Realising the European Open Science Cloud. European Union,
Luxembourg, 2016. doi:10.2777/940154.

2. Miriam Ballhausen. Free and open source software
licenses explained. Computer, 52(06):82–86, June 2019.
doi:10.1109/MC.2019.2907766.

3. Carl Boettiger. Generating CodeMeta metadata for R packages.
Journal of Open Source Software, 2(19):454, 2017. URL:
https://codemeta.github.io/, doi:10.21105/joss.00454.

4. Ronald F. Boisvert. Incentivizing reproducibility.
Communications of the ACM, 59(10):5, September 2016. URL:
https://www.acm.org/publications/policies/artifact-review-
badging, doi:10.1145/2994031.

5. Hudson Borges, Andre Hora, and Marco Tulio Valente.
Understanding the factors that impact the popularity of GitHub
repositories. In 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 334–344, October
2016. doi:10.1109/ICSME.2016.31.

6. Bruce R. Childers, and Panos K. Chrysanthis. Artifact
evaluation: Is it a real incentive? In IEEE 13th International
Conference on e-Science, pages 488–489, October 2017.
doi:10.1109/eScience.2017.79.

7. Code Ocean. Research collaboration platform, 2019. URL:
https://codeocean.com/.

8. Christian Collberg, and Todd A. Proebsting. Repeatability in
computer systems research. Communications of the ACM,
59(3):62–69, February 2016. doi:10.1145/2812803.

9. Roberto Di Cosmo, and Stefano Zacchiroli. Software Heritage:
Why and How to Preserve Software Source Code. In iPRES
2017 – 14th International Conference on Digital Preservation,
September 2017. URL: https://hal.archives-ouvertes.fr/hal-
01590958.

10. Docker Inc. DockerHub: Build and Ship any Application
Anywhere, 2019. URL: https://hub.docker.com/.

11. Stephan Druskat, Neil Chue Hong, Robert Haines, and
James Baker. Citation File Format (CFF) – Specifications,
August 2018. URL: https://citation-file-format.github.io,
doi:10.5281/zenodo.1003149.

12. Elsevier. Software Impacts, 2019. URL: https://www.journals.
elsevier.com/software-impacts/.

13. Benedikt Fecher, and Sascha Friesike. Open science: One
term, five schools of thought. In Opening Science: The
Evolving Guide on How the Internet is Changing Research,
Collaboration and Scholarly Publishing, chapter 2, pages
17–47. Springer International Publishing, Cham, 2014.
doi:10.1007/978-3-319-00026-8_2.

14. Nicola Ferro, and Diane Kelly. SIGIR initiative to implement
ACM artifact review and badging. SIGIR Forum, 52(1):4–10, June
2018. doi:10.1145/3274784.3274786.

15. Ann Gabriel, and Rebecca Capone. Executable paper grand
challenge workshop. Procedia Computer Science, 4:577–578,
2011. doi:10.1016/j.procs.2011.04.060.

16. GitHub. Making Your Code Citable, 2019. URL: https://guides.
github.com/activities/citable-code/.

17. Marco Govoni et al. Qresp, a tool for curating, discovering and
exploring reproducible scientific papers. Scientific Data, 6,
2019. doi:10.1038/sdata.2019.2.

18. Sylvain Halle, Raphael Khoury, and Mewena Awesso.
Streamlining the inclusion of computer experiments in a
research paper. Computer, 51(11):78–89, November 2018.
doi:10.1109/MC.2018.2876075.

19. Ahmed E. Hassan. The road ahead for mining software
repositories. In 2008 Frontiers of Software Maintenance, pages
48–57, September 2008. URL: http://www.msrconf.org/,
doi:10.1109/FOSM.2008.4659248.

20. Wilhelm Hasselbring. The role of standards for
interoperating information systems. In Information
Technology Standards and Standardization: A Global
Perspective, pages 116–130. IGI Global, Hershey, PA, 2000.
doi:10.4018/978-1-878289-70-4.ch008.

21. Wilhelm Hasselbring. Software architecture: Past, present,
future. In The Essence of Software Engineering, pages
169–184. Springer International Publishing, Cham, 2018.
doi:10.1007/978-3-319-73897-0_10.

22. Arne Johanson, Sascha Flögel, Christian Dullo, and Wilhelm
Hasselbring. OceanTEA: exploring ocean-derived climate data

https://doi.org/10.2777/940154
https://doi.org/10.1109/MC.2019.2907766
https://codemeta.github.io/
https://doi.org/10.21105/joss.00454
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/2994031
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1109/eScience.2017.79
https://codeocean.com/
https://doi.org/10.1145/2812803
https://hal.archives-ouvertes.fr/hal-01590958
https://hal.archives-ouvertes.fr/hal-01590958
https://hub.docker.com/
https://citation-file-format.github.io
https://doi.org/10.5281/zenodo.1003149
https://www.journals.elsevier.com/software-impacts/
https://www.journals.elsevier.com/software-impacts/
https://doi.org/10.1007/978-3-319-00026-8_2
https://doi.org/10.1145/3274784.3274786
https://doi.org/10.1016/j.procs.2011.04.060
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://doi.org/10.1038/sdata.2019.2
https://doi.org/10.1109/MC.2018.2876075
http://www.msrconf.org/
https://doi.org/10.1109/FOSM.2008.4659248
https://doi.org/10.4018/978-1-878289-70-4.ch008
https://doi.org/10.1007/978-3-319-73897-0_10


46 | W. Hasselbring et al., From FAIR research data toward FAIR and open research software

using microservices. In Proceedings of the Sixth International
Workshop on Climate Informatics (CI 2016), pages 25–28,
September 2016. doi:10.5065/D6K072N6.

23. Arne Johanson, and Wilhelm Hasselbring. Effectiveness
and efficiency of a domain-specific language for
high-performance marine ecosystem simulation: a
controlled experiment. Empirical Software Engineering,
22(4):2206–2236, August 2017. URL: http://rdcu.be/urXK,
doi:10.1007/s10664-016-9483-z.

24. Arne Johanson, and Wilhelm Hasselbring. Software engineering
for computational science: Past, present, future. Computing
in Science & Engineering, 20(2):90–109, March 2018.
doi:10.1109/MCSE.2018.021651343.

25. Daniel S. Katz, and Neil P. Chue Hong. FAIR is not fair enough,
particularly for software citation, availability, or quality.
AGU Fall Meeting Abstracts, December 2018. URL: http:
//adsabs.harvard.edu/abs/2018AGUFMIN41A..02K.

26. Daniel S. Katz, and Neil P. Chue Hong. Software citation in
theory and practice. InMathematical Software – ICMS 2018,
pages 289–296, Springer International Publishing, Cham,
2018. doi:10.1007/978-3-319-96418-8_34.

27. Zoe Kotti, and Diomidis Spinellis. Standing on shoulders or
feet? The usage of the MSR data papers. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories
(MSR), pages 565–576, 2019. doi:10.1109/MSR.2019.00085.

28. Shriram Krishnamurthi, and Jan Vitek. The real software crisis:
Repeatability as a core value. Communications of the ACM,
58(3):34–36, March 2015. doi:10.1145/2658987.

29. Anna-Lena Lamprecht, Leyla Garcia, Mateusz Kuzak, Carlos
Martinez, Ricardo Arcila, Eva Martin Del Pico, Victoria
Dominguez Del Angel, Stephanie van de Sandt, Jon Ison, Paula
Andrea Martinez, Peter McQuilton, Alfonso Valencia, Jennifer
Harrow, Fotis Psomopoulos, Josep Ll. Gelpi, Neil Chue Hong,
Carole Goble, and Salvador Capella-Gutierrez. Towards FAIR
principles for research software. Data Science, 1–23, November
2019. doi:10.3233/DS-190026.

30. Steffen Mazanek, and Michael Hanus. Constructing a
bidirectional transformation between BPMN and BPEL
with a functional logic programming language. Journal
of Visual Languages & Computing, 22(1):66–89, 2011.
doi:10.1016/j.jvlc.2010.11.005.

31. Daniel Méndez Fernández, Martin Monperrus, Robert Feldt,
and Thomas Zimmermann. The open science initiative
of the Empirical Software Engineering journal. Empirical
Software Engineering, 24(3):1057–1060, June 2019.
URL: https://github.com/emsejournal/openscience/,
doi:10.1007/s10664-019-09712-x.

32. Brian A. Nosek et al. Promoting an open research
culture. Science, 348(6242):1422–1425, 2015.
doi:10.1126/science.aab2374.

33. Open Source Inititative. The Journal of Open Source Software,
2019. URL: https://joss.theoj.org/.

34. Roger D. Peng. Reproducible research in computational
science. Science, 334(6060):1226–1227, 2011.
doi:10.1126/science.1213847.

35. Olivier Philippe, Martin Hammitzsch, Stephan Janosch, Anelda
van der Walt, Ben van Werkhoven, Simon Hettrick, Daniel S.
Katz, Katrin Leinweber, Sandra Gesing, Stephan Druskat, Scott
Henwood, Nicholas R. May, Nooriyah P. Lohani, and Manodeep
Sinha. softwaresaved/international-survey: Public release for

2018 results, March 2019. doi:10.5281/zenodo.2585783.
36. Research Software Engineers Association. Who is a Research

Software Engineer?, 2019. URL: https://rse.ac.uk/who/.
37. Ulrich Rüde, Karen Willcox, Lois Curfman McInnes, and

Hans De Sterck. Research and education in computational
science and engineering. SIAM Review, 60(3):707–754, 2018.
doi:10.1137/16M1096840.

38. Arfon M. Smith, Daniel S. Katz, and Kyle E. Niemeyer. Software
citation principles. PeerJ Computer Science, 2, September
2016. URL: https://www.force11.org/software-citation-
principles, doi:10.7717/peerj-cs.86.

39. SoBigData. European research infrastructure for big data and
social mining, 2019. URL: http://sobigdata.eu.

40. Software Sustainability Institute. The Journal of Open Research
Software, 2019. URL: https://openresearchsoftware.metajnl.
com/.

41. Jurriaan H. Spaaks, Jason Maassen, Tom Klaver, Stefan
Verhoeven, Pushpanjali Pawar, Willem van Hage, Lars Ridder,
Lode Kulik, Tom Bakker, Vincent van Hees, Laurens Bogaardt,
Adrianne Mendrik, Bram van Es, Jisk Attema, Elena Ranguelova,
and Rob van Nieuwpoort. Research Software Directory, March
2019. URL: https://github.com/research-software-directory/,
doi:10.5281/zenodo.2609141.

42. Super Computing Conference Series. SC Reproducibility
Initiative, 2018. URL: https://sc18.supercomputing.org/
submit/sc-reproducibility-initiative/.

43. Nelson Tavares de Sousa, Wilhelm Hasselbring, Tobias
Weber, and Dieter Kranzlmüller. Designing a generic research
data infrastructure architecture with continuous software
engineering. In Software Engineering Workshops 2018,
pages 85–88, March 2018. URL: http://ceur-ws.org/Vol-
2066/cse2018paper03.pdf.

44. The Jupyter Team. BinderHub, 2019. URL: https://binderhub.
readthedocs.io/.

45. Thanassis Tiropanis. Data observatories: decentralised data
and interdisciplinary research. In Internet y Ciencia: Análisis
Desde la Complejidad Estructural y Dinámica, Ferrol, Spain,
March 2019. URL: https://eprints.soton.ac.uk/428200/.

46. Thanassis Tiropanis, Wendy Hall, James Hendler, and
Christian de Larrinaga. The Web Observatory: A middle layer
for broad data. Big Data, 2(3):129–133, September 2014.
doi:10.1089/big.2014.0035.

47. Dag Toppe Larsen, Jakob Blomer, Predrag Buncic, Ioannis
Charalampidis, and Artem Haratyunyan. Long-term
preservation of analysis software environment. Journal of
Physics: Conference Series, 396(3):1–8, December 2012.
doi:10.1088/1742-6596/396/3/032064.

48. Mark D. Wilkinson et al. The FAIR guiding principles for
scientific data management and stewardship. Scientific Data,
3, March, 2016. URL: https://www.go-fair.org/fair-principles/,
doi:10.1038/sdata.2016.18.

https://doi.org/10.5065/D6K072N6
http://rdcu.be/urXK
https://doi.org/10.1007/s10664-016-9483-z
https://doi.org/10.1109/MCSE.2018.021651343
http://adsabs.harvard.edu/abs/2018AGUFMIN41A..02K
http://adsabs.harvard.edu/abs/2018AGUFMIN41A..02K
https://doi.org/10.1007/978-3-319-96418-8_34
https://doi.org/10.1109/MSR.2019.00085
https://doi.org/10.1145/2658987
https://doi.org/10.3233/DS-190026
https://doi.org/10.1016/j.jvlc.2010.11.005
https://github.com/emsejournal/openscience/
https://doi.org/10.1007/s10664-019-09712-x
https://doi.org/10.1126/science.aab2374
https://joss.theoj.org/
https://doi.org/10.1126/science.1213847
https://doi.org/10.5281/zenodo.2585783
https://rse.ac.uk/who/
https://doi.org/10.1137/16M1096840
https://www.force11.org/software-citation-principles
https://www.force11.org/software-citation-principles
https://doi.org/10.7717/peerj-cs.86
http://sobigdata.eu
https://openresearchsoftware.metajnl.com/
https://openresearchsoftware.metajnl.com/
https://github.com/research-software-directory/
https://doi.org/10.5281/zenodo.2609141
https://sc18.supercomputing.org/submit/sc-reproducibility-initiative/
https://sc18.supercomputing.org/submit/sc-reproducibility-initiative/
http://ceur-ws.org/Vol-2066/cse2018paper03.pdf
http://ceur-ws.org/Vol-2066/cse2018paper03.pdf
https://binderhub.readthedocs.io/
https://binderhub.readthedocs.io/
https://eprints.soton.ac.uk/428200/
https://doi.org/10.1089/big.2014.0035
https://doi.org/10.1088/1742-6596/396/3/032064
https://www.go-fair.org/fair-principles/
https://doi.org/10.1038/sdata.2016.18


W. Hasselbring et al., From FAIR research data toward FAIR and open research software | 47

Bionotes
Wilhelm Hasselbring
Christian-Albrechts-Universität zu Kiel,
D-24098 Kiel, Germany
hasselbring@email.uni-kiel.de

Prof. Dr. Wilhelm Hasselbring is a full professor of software engi-
neering in the Department of Computer Science at Kiel University.

Leslie Carr
University of Southampton, SO17 1TW
Southampton, UK
lac@ecs.soton.ac.uk

Prof. Dr. Leslie Carr is a full professor of web science in the De-
partment of Electronics and Computer Science at the University of
Southampton.

Simon Hettrick
University of Southampton, SO17 1TW
Southampton, UK
sjh@ecs.soton.ac.uk

Prof. Dr. Simon Hettrick is deputy director of UK’s Software Sustain-
ability Institute and a full professor in the Department of Electronics
and Computer Science at the University of Southampton.

Heather Packer
University of Southampton, SO17 1TW
Southampton, UK
hp3@ecs.soton.ac.uk

Dr. Heather Packer is a New Frontier fellow in the Department of
Electronics and Computer Science at the University of Southampton.

Thanassis Tiropanis
University of Southampton, SO17 1TW
Southampton, UK
t.tiropanis@southampton.ac.uk

Prof. Dr. Thanassis Tiropanis is an associate professor in the De-
partment of Electronics and Computer Science at the University of
Southampton.


	From FAIR research data toward FAIR and open research software
	1 Introduction
	2 Research software
	3 Research software engineering for sustainable research software
	4 The FAIR principles for research software
	5 Approaches to software publishing
	6 Artifact evaluation as a review mechanism
	7 Recommendations to make research software FAIR and open
	8 Observatories for FAIR and open research software
	9 Conclusions and future work
	References


