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Birds and Frogs
Freeman Dyson

S
ome mathematicians are birds, others 
are frogs. Birds fly high in the air and 
survey broad vistas of mathematics out 
to the far horizon. They delight in con-
cepts that unify our thinking and bring 

together diverse problems from different parts of 
the landscape. Frogs live in the mud below and see 
only the flowers that grow nearby. They delight 
in the details of particular objects, and they solve 
problems one at a time. I happen to be a frog, but 
many of my best friends are birds. The main theme 
of my talk tonight is this. Mathematics needs both 
birds and frogs. Mathematics is rich and beautiful 
because birds give it broad visions and frogs give it 
intricate details. Mathematics is both great art and 
important science, because it combines generality 
of concepts with depth of structures. It is stupid 
to claim that birds are better than frogs because 
they see farther, or that frogs are better than birds 
because they see deeper. The world of mathemat-
ics is both broad and deep, and we need birds and 
frogs working together to explore it.

This talk is called the Einstein lecture, and I am 
grateful to the American Mathematical Society 
for inviting me to do honor to Albert Einstein. 
Einstein was not a mathematician, but a physicist 
who had mixed feelings about mathematics. On 
the one hand, he had enormous respect for the 
power of mathematics to describe the workings 
of nature, and he had an instinct for mathematical 
beauty which led him onto the right track to find 
nature’s laws. On the other hand, he had no inter-
est in pure mathematics, and he had no technical 

skill as a mathematician. In his later years he hired 
younger colleagues with the title of assistants to 
do mathematical calculations for him. His way of 
thinking was physical rather than mathematical. 
He was supreme among physicists as a bird who 
saw further than others. I will not talk about Ein-
stein since I have nothing new to say.

Francis Bacon and René Descartes
At the beginning of the seventeenth century, two 
great philosophers, Francis Bacon in England and 
René Descartes in France, proclaimed the birth of 
modern science. Descartes was a bird, and Bacon 
was a frog. Each of them described his vision of 
the future. Their visions were very different. Bacon 
said, “All depends on keeping the eye steadily fixed 
on the facts of nature.” Descartes said, “I think, 
therefore I am.” According to Bacon, scientists 
should travel over the earth collecting facts, until 
the accumulated facts reveal how Nature works. 
The scientists will then induce from the facts the 
laws that Nature obeys. According to Descartes, 
scientists should stay at home and deduce the 
laws of Nature by pure thought. In order to deduce 
the laws correctly, the scientists will need only 
the rules of logic and knowledge of the existence 
of God. For four hundred years since Bacon and 
Descartes led the way, science has raced ahead 
by following both paths simultaneously. Neither 
Baconian empiricism nor Cartesian dogmatism 
has the power to elucidate Nature’s secrets by 
itself, but both together have been amazingly suc-
cessful. For four hundred years English scientists 
have tended to be Baconian and French scientists 
Cartesian. Faraday and Darwin and Rutherford 
were Baconians; Pascal and Laplace and Poincaré 
were Cartesians. Science was greatly enriched by 
the cross-fertilization of the two contrasting cul-
tures. Both cultures were always at work in both 
countries. Newton was at heart a Cartesian, using 
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pure thought as Descartes intended, and using 
it to demolish the Cartesian dogma of vortices. 
Marie Curie was at heart a Baconian, boiling tons 
of crude uranium ore to demolish the dogma of 
the indestructibility of atoms.

In the history of twentieth century mathematics, 
there were two decisive events, one belonging to 
the Baconian tradition and the other to the Carte-
sian tradition. The first was the International Con-
gress of Mathematicians in Paris in 1900, at which 
Hilbert gave the keynote address, 
charting the course of mathematics 
for the coming century by propound-
ing his famous list of twenty-three 
outstanding unsolved problems. Hil-
bert himself was a bird, flying high 
over the whole territory of mathemat-
ics, but he addressed his problems to 
the frogs who would solve them one 
at a time. The second decisive event 
was the formation of the Bourbaki 
group of mathematical birds in France 
in the 1930s, dedicated to publish-
ing a series of textbooks that would 
establish a unifying framework for 
all of mathematics. The Hilbert prob-
lems were enormously successful in 
guiding mathematical research into 
fruitful directions. Some of them were 
solved and some remain unsolved, 
but almost all of them stimulated the 
growth of new ideas and new fields 
of mathematics. The Bourbaki project 
was equally influential. It changed the 
style of mathematics for the next fifty 
years, imposing a logical coherence 
that did not exist before, and moving 
the emphasis from concrete examples 
to abstract generalities. In the Bour-
baki scheme of things, mathematics is 
the abstract structure included in the 
Bourbaki textbooks. What is not in the textbooks 
is not mathematics. Concrete examples, since they 
do not appear in the textbooks, are not math-
ematics. The Bourbaki program was the extreme 
expression of the Cartesian style. It narrowed the 
scope of mathematics by excluding the beautiful 
flowers that Baconian travelers might collect by 
the wayside.

Jokes of Nature
For me, as a Baconian, the main thing missing in 
the Bourbaki program is the element of surprise. 
The Bourbaki program tried to make mathematics 
logical. When I look at the history of mathematics, 
I see a succession of illogical jumps, improbable 
coincidences, jokes of nature. One of the most 
profound jokes of nature is the square root of 
minus one that the physicist Erwin Schrödinger 
put into his wave equation when he invented 

wave mechanics in 1926. Schrödinger was a bird 
who started from the idea of unifying mechanics 
with optics. A hundred years earlier, Hamilton had 
unified classical mechanics with ray optics, using 
the same mathematics to describe optical rays 
and classical particle trajectories. Schrödinger’s 
idea was to extend this unification to wave optics 
and wave mechanics. Wave optics already existed, 
but wave mechanics did not. Schrödinger had to 
invent wave mechanics to complete the unification. 

Starting from wave optics as a model, 
he wrote down a differential equa-
tion for a mechanical particle, but the 
equation made no sense. The equation 
looked like the equation of conduction 
of heat in a continuous medium. Heat 
conduction has no visible relevance to 
particle mechanics. Schrödinger’s idea 
seemed to be going nowhere. But then 
came the surprise. Schrödinger put 
the square root of minus one into the 
equation, and suddenly it made sense. 
Suddenly it became a wave equation 
instead of a heat conduction equation. 
And Schrödinger found to his delight 
that the equation has solutions cor-
responding to the quantized orbits in 
the Bohr model of the atom.

It turns out that the Schrödinger 
equation describes correctly every-
thing we know about the behavior of 
atoms. It is the basis of all of chem-
istry and most of physics. And that 
square root of minus one means that 
nature works with complex numbers 
and not with real numbers. This dis-
covery came as a complete surprise, 
to Schrödinger as well as to every-
body else. According to Schrödinger, 
his fourteen-year-old girl friend Itha 
Junger said to him at the time, “Hey, 

you never even thought when you began that so 
much sensible stuff would come out of it.” All 
through the nineteenth century, mathematicians 
from Abel to Riemann and Weierstrass had been 
creating a magnificent theory of functions of 
complex variables. They had discovered that the 
theory of functions became far deeper and more 
powerful when it was extended from real to com-
plex numbers. But they always thought of complex 
numbers as an artificial construction, invented by 
human mathematicians as a useful and elegant 
abstraction from real life. It never entered their 
heads that this artificial number system that they 
had invented was in fact the ground on which 
atoms move. They never imagined that nature had 
got there first.

Another joke of nature is the precise linearity 
of quantum mechanics, the fact that the possible 
states of any physical object form a linear space. 

Francis Bacon
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Before quantum mechanics was invented, classical 
physics was always nonlinear, and linear models 
were only approximately valid. After quantum 
mechanics, nature itself suddenly became linear. 
This had profound consequences for mathemat-
ics. During the nineteenth century Sophus Lie 
developed his elaborate theory of continuous 
groups, intended to clarify the behavior of classical 
dynamical systems. Lie groups were then of little 
interest either to mathematicians or to physicists. 
The nonlinear theory of Lie groups was too compli-
cated for the mathematicians and too obscure for 
the physicists. Lie died a disappointed man. And 
then, fifty years later, it turned out that nature was 
precisely linear, and the theory of linear represen-
tations of Lie algebras was the natural language of 
particle physics. Lie groups and Lie algebras were 
reborn as one of the central themes of twentieth 
century mathematics.

A third joke of nature is the existence of quasi-
crystals. In the nineteenth century the study of 
crystals led to a complete enumeration of possible 
discrete symmetry groups in Euclidean space. 
Theorems were proved, establishing the fact that 
in three-dimensional space discrete symmetry 
groups could contain only rotations of order three, 
four, or six. Then in 1984 quasi-crystals were dis-
covered, real solid objects growing out of liquid 
metal alloys, showing the symmetry of the icosa-
hedral group, which includes five-fold rotations. 
Meanwhile, the mathematician Roger Penrose 
discovered the Penrose tilings of the plane. These 
are arrangements of parallelograms that cover a 
plane with pentagonal long-range order. The alloy 
quasi-crystals are three-dimensional analogs of 
the two-dimensional Penrose tilings. After these 
discoveries, mathematicians had to enlarge the 
theory of crystallographic groups to include quasi-
crystals. That is a major program of research which 
is still in progress.

A fourth joke of nature is a similarity in be-
havior between quasi-crystals and the zeros of 
the Riemann Zeta function. The zeros of the zeta-
function are exciting to mathematicians because 
they are found to lie on a straight line and nobody 
understands why. The statement that with trivial 
exceptions they all lie on a straight line is the 
famous Riemann Hypothesis. To prove the Rie-
mann Hypothesis has been the dream of young 
mathematicians for more than a hundred years. 
I am now making the outrageous suggestion that 
we might use quasi-crystals to prove the Riemann 
Hypothesis. Those of you who are mathematicians 
may consider the suggestion frivolous. Those who 
are not mathematicians may consider it uninterest-
ing. Nevertheless I am putting it forward for your 
serious consideration. When the physicist Leo 
Szilard was young, he became dissatisfied with the 
ten commandments of Moses and wrote a new set 
of ten commandments to replace them. Szilard’s 

second commandment says: “Let your acts be di-
rected towards a worthy goal, but do not ask if they 
can reach it: they are to be models and examples, 
not means to an end.” Szilard practiced what he 
preached. He was the first physicist to imagine 
nuclear weapons and the first to campaign ac-
tively against their use. His second commandment 
certainly applies here. The proof of the Riemann 
Hypothesis is a worthy goal, and it is not for us to 
ask whether we can reach it. I will give you some 
hints describing how it might be achieved. Here I 
will be giving voice to the mathematician that I was 
fifty years ago before I became a physicist. I will 
talk first about the Riemann Hypothesis and then 
about quasi-crystals.

There were until recently two supreme unsolved 
problems in the world of pure mathematics, the 
proof of Fermat’s Last Theorem and the proof of 
the Riemann Hypothesis. Twelve years ago, my 
Princeton colleague Andrew Wiles polished off 
Fermat’s Last Theorem, and only the Riemann Hy-
pothesis remains. Wiles’ proof of the Fermat Theo-
rem was not just a technical stunt. It required the 
discovery and exploration of a new field of math-
ematical ideas, far wider and more consequential 
than the Fermat Theorem itself. It is likely that 
any proof of the Riemann Hypothesis will likewise 
lead to a deeper understanding of many diverse 
areas of mathematics and perhaps of physics too. 
Riemann’s zeta-function, and other zeta-func-
tions similar to it, appear ubiquitously in number 
theory, in the theory of dynamical systems, in 
geometry, in function theory, and in physics. The 
zeta-function stands at a junction where paths lead 
in many directions. A proof of the hypothesis will 
illuminate all the connections. Like every serious 
student of pure mathematics, when I was young I 
had dreams of proving the Riemann Hypothesis. 
I had some vague ideas that I thought might lead 
to a proof. In recent years, after the discovery of 
quasi-crystals, my ideas became a little less vague. 
I offer them here for the consideration of any 
young mathematician who has ambitions to win 
a Fields Medal.

Quasi-crystals can exist in spaces of one, two, 
or three dimensions. From the point of view of 
physics, the three-dimensional quasi-crystals are 
the most interesting, since they inhabit our three-
dimensional world and can be studied experi-
mentally. From the point of view of a mathemati-
cian, one-dimensional quasi-crystals are much 
more interesting than two-dimensional or three- 
dimensional quasi-crystals because they exist in 
far greater variety. The mathematical definition 
of a quasi-crystal is as follows. A quasi-crystal 
is a distribution of discrete point masses whose 
Fourier transform is a distribution of discrete 
point frequencies. Or to say it more briefly, a 
quasi-crystal is a pure point distribution that has 
a pure point spectrum. This definition includes 
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as a special case the ordinary crystals, 
which are periodic distributions with 
periodic spectra.

Excluding the ordinary crystals, 
quasi-crystals in three dimensions 
come in very limited variety, all of 
them associated with the icosahedral 
group. The two-dimensional quasi-
crystals are more numerous, roughly 
one distinct type associated with each 
regular polygon in a plane. The two- 
dimensional quasi-crystal with pentag-
onal symmetry is the famous Penrose 
tiling of the plane. Finally, the one-
dimensional quasi-crystals have a far 
richer structure since they are not tied 
to any rotational symmetries. So far as 
I know, no complete enumeration of 
one-dimensional quasi-crystals exists. 
It is known that a unique quasi-crystal 
exists corresponding to every Pisot- 
Vijayaraghavan number or PV number. 
A PV number is a real algebraic inte-
ger, a root of a polynomial equation 
with integer coefficients, such that all 
the other roots have absolute value 
less than one, [1]. The set of all PV 
numbers is infinite and has a remark-
able topological structure. The set 
of all one-dimensional quasi-crystals 
has a structure at least as rich as the 
set of all PV numbers and probably much richer. 
We do not know for sure, but it is likely that a 
huge universe of one-dimensional quasi-crystals 
not associated with PV numbers is waiting to be 
discovered.

Here comes the connection of the one- 
dimensional quasi-crystals with the Riemann 
hypothesis. If the Riemann hypothesis is true, 
then the zeros of the zeta-function form a one- 
dimensional quasi-crystal according to the defini-
tion. They constitute a distribution of point masses 
on a straight line, and their Fourier transform is 
likewise a distribution of point masses, one at each 
of the logarithms of ordinary prime numbers and 
prime-power numbers. My friend Andrew Odlyzko 
has published a beautiful computer calculation of 
the Fourier transform of the zeta-function zeros, 
[6]. The calculation shows precisely the expected 
structure of the Fourier transform, with a sharp 
discontinuity at every logarithm of a prime or 
prime-power number and nowhere else.

My suggestion is the following. Let us pretend 
that we do not know that the Riemann Hypothesis 
is true. Let us tackle the problem from the other 
end. Let us try to obtain a complete enumera-
tion and classification of one-dimensional quasi- 
crystals. That is to say, we enumerate and classify 
all point distributions that have a discrete point 
spectrum. Collecting and classifying new species of 

objects is a quintessentially Baconian 
activity. It is an appropriate activity 
for mathematical frogs. We shall then 
find the well-known quasi-crystals 
associated with PV numbers, and 
also a whole universe of other quasi- 
crystals, known and unknown. Among 
the multitude of other quasi-crystals 
we search for one corresponding to 
the Riemann zeta-function and one 
corresponding to each of the other 
zeta-functions that resemble the Rie-
mann zeta-function. Suppose that 
we find one of the quasi-crystals in 
our enumeration with properties 
that identify it with the zeros of the 
Riemann zeta-function. Then we have 
proved the Riemann Hypothesis and 
we can wait for the telephone call 
announcing the award of the Fields 
Medal.

These are of course idle dreams. 
The problem of classifying one- 
dimensional quasi-crystals is horren-
dously difficult, probably at least as 
difficult as the problems that Andrew 
Wiles took seven years to explore. But 
if we take a Baconian point of view, 
the history of mathematics is a his-
tory of horrendously difficult prob-

lems being solved by young people too ignorant to 
know that they were impossible. The classification 
of quasi-crystals is a worthy goal, and might even 
turn out to be achievable. Problems of that degree 
of difficulty will not be solved by old men like me. 
I leave this problem as an exercise for the young 
frogs in the audience.

Abram Besicovitch and Hermann Weyl
Let me now introduce you to some notable frogs 
and birds that I knew personally. I came to Cam-
bridge University as a student in 1941 and had 
the tremendous luck to be given the Russian 
mathematician Abram Samoilovich Besicovitch 
as my supervisor. Since this was in the middle 
of World War Two, there were very few students 
in Cambridge, and almost no graduate students. 
Although I was only seventeen years old and Besi-
covitch was already a famous professor, he gave 
me a great deal of his time and attention, and we 
became life-long friends. He set the style in which 
I began to work and think about mathematics. He 
gave wonderful lectures on measure-theory and 
integration, smiling amiably when we laughed at 
his glorious abuse of the English language. I re-
member only one occasion when he was annoyed 
by our laughter. He remained silent for a while and 
then said, “Gentlemen. Fifty million English speak 
English you speak. Hundred and fifty million Rus-
sians speak English I speak.”

Abram Besicovitch

Hermann Weyl
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into a regular and an irregular component, that 
the regular component has a tangent almost 
everywhere, and the irregular component has a 
projection of measure zero onto almost all direc-
tions. Roughly speaking, the regular component 
looks like a collection of continuous curves, while 
the irregular component looks nothing like a con-
tinuous curve. The existence and the properties of 
the irregular component are connected with the 
Besicovitch solution of the Kakeya problem. One 
of the problems that he gave me to work on was 
the division of measurable sets into regular and 
irregular components in spaces of higher dimen-
sions. I got nowhere with the problem, but became 
permanently imprinted with the Besicovitch style. 
The Besicovitch style is architectural. He builds 
out of simple elements a delicate and complicated 
architectural structure, usually with a hierarchical 
plan, and then, when the building is finished, the 
completed structure leads by simple arguments 
to an unexpected conclusion. Every Besicovitch 
proof is a work of art, as carefully constructed as 
a Bach fugue.

A few years after my apprenticeship with Be-
sicovitch, I came to Princeton and got to know 
Hermann Weyl. Weyl was a prototypical bird, just 
as Besicovitch was a prototypical frog. I was lucky 
to overlap with Weyl for one year at the Princeton 
Institute for Advanced Study before he retired 
from the Institute and moved back to his old home 
in Zürich. He liked me because during that year I 
published papers in the Annals of Mathematics 
about number theory and in the Physical Review 
about the quantum theory of radiation. He was one 
of the few people alive who was at home in both 
subjects. He welcomed me to the Institute, in the 
hope that I would be a bird like himself. He was dis-
appointed. I remained obstinately a frog. Although 
I poked around in a variety of mud-holes, I always 
looked at them one at a time and did not look for 
connections between them. For me, number theory 
and quantum theory were separate worlds with 
separate beauties. I did not look at them as Weyl 
did, hoping to find clues to a grand design.

Weyl’s great contribution to the quantum theory 
of radiation was his invention of gauge fields. The 
idea of gauge fields had a curious history. Weyl 
invented them in 1918 as classical fields in his 
unified theory of general relativity and electromag-
netism, [7]. He called them “gauge fields” because 
they were concerned with the non-integrability 
of measurements of length. His unified theory 
was promptly and publicly rejected by Einstein. 
After this thunderbolt from on high, Weyl did 
not abandon his theory but moved on to other 
things. The theory had no experimental conse-
quences that could be tested. Then in 1929, after 
quantum mechanics had been invented by others, 
Weyl realized that his gauge fields fitted far bet-
ter into the quantum world than they did into the 

Besicovitch was a frog, and he became famous 
when he was young by solving a problem in el-
ementary plane geometry known as the Kakeya 
problem. The Kakeya problem was the following. 
A line segment of length one is allowed to move 
freely in a plane while rotating through an angle 
of 360 degrees. What is the smallest area of the 
plane that it can cover during its rotation? The 
problem was posed by the Japanese mathematician 
Kakeya in 1917 and remained a famous unsolved 
problem for ten years. George Birkhoff, the lead-
ing American mathematician at that time, publicly 
proclaimed that the Kakeya problem and the four-
color problem were the outstanding unsolved 
problems of the day. It was widely believed that 
the minimum area was π​/8, which is the area of a 
three-cusped hypocycloid. The three-cusped hypo-
cycloid is a beautiful three-pointed curve. It is the 
curve traced out by a point on the circumference 
of a circle with radius one-quarter, when the circle 
rolls around the inside of a fixed circle with radius 
three-quarters. The line segment of length one can 
turn while always remaining tangent to the hypo-
cycloid with its two ends also on the hypocycloid. 
This picture of the line turning while touching the 
inside of the hypocycloid at three points was so 
elegant that most people believed it must give the 
minimum area. Then Besicovitch surprised every-
one by proving that the area covered by the line as 
it turns can be less than ​ for any positive ​.

Besicovitch had actually solved the problem in 
1920 before it became famous, not even knowing 
that Kakeya had proposed it. In 1920 he published 
the solution in Russian in the Journal of the Perm 
Physics and Mathematics Society, a journal that 
was not widely read. The university of Perm, a 
city 1,100 kilometers east of Moscow, was briefly 
a refuge for many distinguished mathematicians 
after the Russian revolution. They published two 
volumes of their journal before it died amid the 
chaos of revolution and civil war. Outside Russia 
the journal was not only unknown but unobtain-
able. Besicovitch left Russia in 1925 and arrived at 
Copenhagen, where he learned about the famous 
Kakeya problem that he had solved five years ear-
lier. He published the solution again, this time in 
English in the Mathematische Zeitschrift. The Ka-
keya problem as Kakeya proposed it was a typical 
frog problem, a concrete problem without much 
connection with the rest of mathematics. Besico-
vitch gave it an elegant and deep solution, which 
revealed a connection with general theorems about 
the structure of sets of points in a plane.

The Besicovitch style is seen at its finest in 
his three classic papers with the title, “On the 
fundamental geometric properties of linearly 
measurable plane sets of points”, published in 
Mathematische Annalen in the years 1928, 1938, 
and 1939. In these papers he proved that every 
linearly measurable set in the plane is divisible 
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classical world, [8]. All 
that he needed to do, to 
change a classical gauge 
into a quantum gauge, 
was to change real 
numbers into complex 
numbers. In quantum 
mechanics, every quan-
tum of electric charge 
carries with it a com-
plex wave function with 
a phase, and the gauge 
field is concerned with 
the non-integrability of 
measurements of phase. 
The gauge field could 
then be precisely identified with the electromag-
netic potential, and the law of conservation of 
charge became a consequence of the local phase 
invariance of the theory.

Weyl died four years after he returned from 
Princeton to Zürich, and I wrote his obituary for the 
journal Nature, [3]. “Among all the mathematicians 
who began their working lives in the twentieth 
century,” I wrote, “Hermann Weyl was the one who 
made major contributions in the greatest number 
of different fields. He alone could stand compari-
son with the last great universal mathematicians 
of the nineteenth century, Hilbert and Poincaré. 
So long as he was alive, he embodied a living con-
tact between the main lines of advance in pure 
mathematics and in theoretical physics. Now he 
is dead, the contact is broken, and our hopes of 
comprehending the physical universe by a direct 
use of creative mathematical imagination are for 
the time being ended.” I mourned his passing, but 
I had no desire to pursue his dream. I was happy 
to see pure mathematics and physics marching 
ahead in opposite directions.

The obituary ended with a sketch of Weyl as 
a human being: “Characteristic of Weyl was an 
aesthetic sense which dominated his thinking on 
all subjects. He once said to me, half joking, ‘My 
work always tried to unite the true with the beau-
tiful; but when I had to choose one or the other, 
I usually chose the beautiful’. This remark sums 
up his personality perfectly. It shows his profound 
faith in an ultimate harmony of Nature, in which 
the laws should inevitably express themselves in 
a mathematically beautiful form. It shows also 
his recognition of human frailty, and his humor, 
which always stopped him short of being pomp-
ous. His friends in Princeton will remember him 
as he was when I last saw him, at the Spring Dance 
of the Institute for Advanced Study last April: a 
big jovial man, enjoying himself splendidly, his 
cheerful frame and his light step giving no hint of 
his sixty-nine years.”

The fifty years after Weyl’s death were a golden 
age of experimental physics and observational 

astronomy, a golden 
age for Baconian travel-
ers picking up facts, for 
frogs exploring small 
patches of the swamp 
in which we live. Dur-
ing these fifty years, the 
frogs accumulated a de-
tailed knowledge of a 
large variety of cosmic 
structures and a large 
variety of particles and 
interactions. As the 
exploration of new ter-
ritories continued, the 
universe became more 

complicated. Instead of a grand design displaying 
the simplicity and beauty of Weyl’s mathematics, 
the explorers found weird objects such as quarks 
and gamma-ray bursts, weird concepts such as su-
persymmetry and multiple universes. Meanwhile, 
mathematics was also becoming more compli-
cated, as exploration continued into the phenom-
ena of chaos and many other new areas opened 
by electronic computers. The mathematicians 
discovered the central mystery of computability, 
the conjecture represented by the statement P is 
not equal to NP. The conjecture asserts that there 
exist mathematical problems which can be quickly 
solved in individual cases but cannot be solved 
by a quick algorithm applicable to all cases. The 
most famous example of such a problem is the 
traveling salesman problem, which is to find the 
shortest route for a salesman visiting a set of cit-
ies, knowing the distance between each pair. All 
the experts believe that the conjecture is true, and 
that the traveling salesman problem is an example 
of a problem that is P but not NP. But nobody has 
even a glimmer of an idea how to prove it. This is 
a mystery that could not even have been formu-
lated within the nineteenth-century mathematical 
universe of Hermann Weyl.

Frank Yang and Yuri Manin
The last fifty years have been a hard time for 
birds. Even in hard times, there is work for birds 
to do, and birds have appeared with the courage to 
tackle it. Soon after Weyl left Princeton, Frank Yang 
arrived from Chicago and moved into Weyl’s old 
house. Yang took Weyl’s place as the leading bird 
among my generation of physicists. While Weyl 
was still alive, Yang and his student Robert Mills 
discovered the Yang-Mills theory of non-Abelian 
gauge fields, a marvelously elegant extension of 
Weyl’s idea of a gauge field, [11]. Weyl’s gauge field 
was a classical quantity, satisfying the commuta-
tive law of multiplication. The Yang-Mills theory 
had a triplet of gauge fields which did not com-
mute. They satisfied the commutation rules of the 
three components of a quantum mechanical spin, 
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the worlds of geometry and dynamics with his 
concept of fluxions, nowadays called calculus. In 
the nineteenth century Boole linked the worlds 
of logic and algebra with his concept of symbolic 
logic, and Riemann linked the worlds of geometry 
and analysis with his concept of Riemann sur-
faces. Coordinates, fluxions, symbolic logic, and 
Riemann surfaces are all metaphors, extending 
the meanings of words from familiar to unfamiliar 
contexts. Manin sees the future of mathematics 
as an exploration of metaphors that are already 
visible but not yet understood. The deepest such 
metaphor is the similarity in structure between 
number theory and physics. In both fields he sees 
tantalizing glimpses of parallel concepts, symme-
tries linking the continuous with the discrete. He 
looks forward to a unification which he calls the 
quantization of mathematics.

“Manin disagrees with the Baconian story, that 
Hilbert set the agenda for the mathematics of the 
twentieth century when he presented his famous 
list of twenty-three unsolved problems to the In-
ternational Congress of Mathematicians in Paris 
in 1900. According to Manin, Hilbert’s problems 
were a distraction from the central themes of 
mathematics. Manin sees the important advances 
in mathematics coming from programs, not from 
problems. Problems are usually solved by apply-
ing old ideas in new ways. Programs of research 
are the nurseries where new ideas are born. He 
sees the Bourbaki program, rewriting the whole of 
mathematics in a more abstract language, as the 
source of many of the new ideas of the twentieth 
century. He sees the Langlands program, unifying 
number theory with geometry, as a promising 
source of new ideas for the twenty-first. People 
who solve famous unsolved problems may win big 
prizes, but people who start new programs are the 
real pioneers.”

The Russian version of Mathematics as Meta-
phor contains ten chapters that were omitted from 
the English version. The American Mathematical 
Society decided that these chapters would not be 
of interest to English language readers. The omis-
sions are doubly unfortunate. First, readers of the 
English version see only a truncated view of Manin, 
who is perhaps unique among mathematicians in 
his broad range of interests extending far beyond 
mathematics. Second, we see a truncated view of 
Russian culture, which is less compartmentalized 
than English language culture, and brings math-
ematicians into closer contact with historians and 
artists and poets.

John von Neumann
Another important figure in twentieth century 
mathematics was John von Neumann. Von Neu-
mann was a frog, applying his prodigious tech-
nical skill to solve problems in many branches 
of mathematics and physics. He began with the 

which are generators of the simplest non-Abelian 
Lie algebra A2​. The theory was later generalized so 
that the gauge fields could be generators of any 
finite-dimensional Lie algebra. With this general-
ization, the Yang-Mills gauge field theory provided 
the framework for a model of all the known par-
ticles and interactions, a model that is now known 
as the Standard Model of particle physics. Yang put 
the finishing touch to it by showing that Einstein’s 
theory of gravitation fits into the same framework, 
with the Christoffel three-index symbol taking the 
role of gauge field, [10].

In an appendix to his 1918 paper, added in 1955 
for the volume of selected papers published to 
celebrate his seventieth birthday, Weyl expressed 
his final thoughts about gauge field theories (my 
translation), [12]: “The strongest argument for my 
theory seemed to be this, that gauge invariance 
was related to conservation of electric charge in 
the same way as coordinate invariance was related 
to conservation of energy and momentum.” Thirty 
years later Yang was in Zürich for the celebration 
of Weyl’s hundredth birthday. In his speech, [12], 
Yang quoted this remark as evidence of Weyl’s de-
votion to the idea of gauge invariance as a unifying 
principle for physics. Yang then went on, “Sym-
metry, Lie groups, and gauge invariance are now 
recognized, through theoretical and experimental 
developments, to play essential roles in determin-
ing the basic forces of the physical universe. I have 
called this the principle that symmetry dictates in-
teraction.” This idea, that symmetry dictates inter-
action, is Yang’s generalization of Weyl’s remark. 
Weyl observed that gauge invariance is intimately 
connected with physical conservation laws. Weyl 
could not go further than this, because he knew 
only the gauge invariance of commuting Abelian 
fields. Yang made the connection much stronger 
by introducing non-Abelian gauge fields. With 
non-Abelian gauge fields generating nontrivial Lie 
algebras, the possible forms of interaction between 
fields become unique, so that symmetry dictates 
interaction. This idea is Yang’s greatest contribu-
tion to physics. It is the contribution of a bird, 
flying high over the rain forest of little problems 
in which most of us spend our lives.

Another bird for whom I have a deep respect 
is the Russian mathematician Yuri Manin, who 
recently published a delightful book of essays with 
the title Mathematics as Metaphor [5]. The book 
was published in Moscow in Russian, and by the 
American Mathematical Society in English. I wrote 
a preface for the English version, and I give you 
here a short quote from my preface. “Mathematics 
as Metaphor is a good slogan for birds. It means 
that the deepest concepts in mathematics are 
those which link one world of ideas with another. 
In the seventeenth century Descartes linked the 
disparate worlds of algebra and geometry with 
his concept of coordinates, and Newton linked 
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foundations of mathematics. He found the first 
satisfactory set of axioms for set-theory, avoiding 
the logical paradoxes that Cantor had encountered 
in his attempts to deal with infinite sets and 
infinite numbers. Von Neumann’s axioms were 
used by his bird friend Kurt Gödel a few years later 
to prove the existence of undecidable propositions 
in mathematics. Gödel’s theorems gave birds a new 
vision of mathematics. After Gödel, mathematics 
was no longer a single structure tied 
together with a unique concept of 
truth, but an archipelago of structures 
with diverse sets of axioms and di-
verse notions of truth. Gödel showed 
that mathematics is inexhaustible. No 
matter which set of axioms is chosen 
as the foundation, birds can always 
find questions that those axioms can-
not answer.

Von Neumann went on from the 
foundations of mathematics to the 
foundations of quantum mechanics. 
To give quantum mechanics a firm 
mathematical foundation, he created 
a magnificent theory of rings of op-
erators. Every observable quantity is 
represented by a linear operator, and 
the peculiarities of quantum behav-
ior are faithfully represented by the 
algebra of operators. Just as Newton 
invented calculus to describe classi-
cal dynamics, von Neumann invented 
rings of operators to describe quan-
tum dynamics.

Von Neumann made fundamental 
contributions to several other fields, 
especially to game theory and to the 
design of digital computers. For the 
last ten years of his life, he was deeply 
involved with computers. He was so 
strongly interested in computers that he decided 
not only to study their design but to build one with 
real hardware and software and use it for doing 
science. I have vivid memories of the early days of 
von Neumann’s computer project at the Institute 
for Advanced Study in Princeton. At that time he 
had two main scientific interests, hydrogen bombs 
and meteorology. He used his computer during the 
night for doing hydrogen bomb calculations and 
during the day for meteorology. Most of the people 
hanging around the computer building in daytime 
were meteorologists. Their leader was Jule Char-
ney. Charney was a real meteorologist, properly 
humble in dealing with the inscrutable mysteries 
of the weather, and skeptical of the ability of the 
computer to solve the mysteries. John von Neu-
mann was less humble and less skeptical. I heard 
von Neumann give a lecture about the aims of his 
project. He spoke, as he always did, with great con-
fidence. He said, “The computer will enable us to 

divide the atmosphere at any moment into stable 
regions and unstable regions. Stable regions we 
can predict. Unstable regions we can control.” Von 
Neumann believed that any unstable region could 
be pushed by a judiciously applied small perturba-
tion so that it would move in any desired direction. 
The small perturbation would be applied by a fleet 
of airplanes carrying smoke generators, to absorb 
sunlight and raise or lower temperatures at places 

where the perturbation would be most 
effective. In particular, we could stop 
an incipient hurricane by identifying 
the position of an instability early 
enough, and then cooling that patch 
of air before it started to rise and form 
a vortex. Von Neumann, speaking in 
1950, said it would take only ten years 
to build computers powerful enough 
to diagnose accurately the stable and 
unstable regions of the atmosphere. 
Then, once we had accurate diagno-
sis, it would take only a short time 
for us to have control. He expected 
that practical control of the weather 
would be a routine operation within 
the decade of the 1960s.

Von Neumann, of course, was 
wrong. He was wrong because he 
did not know about chaos. We now 
know that when the motion of the 
atmosphere is locally unstable, it is 
very often chaotic. The word “chaotic” 
means that motions that start close 
together diverge exponentially from 
each other as time goes on. When the 
motion is chaotic, it is unpredictable, 
and a small perturbation does not 
move it into a stable motion that can 
be predicted. A small perturbation 
will usually move it into another cha-

otic motion that is equally unpredictable. So von 
Neumann’s strategy for controlling the weather 
fails. He was, after all, a great mathematician but 
a mediocre meteorologist.

Edward Lorenz discovered in 1963 that the so-
lutions of the equations of meteorology are often 
chaotic. That was six years after von Neumann 
died. Lorenz was a meteorologist and is generally 
regarded as the discoverer of chaos. He discovered 
the phenomena of chaos in the meteorological con-
text and gave them their modern names. But in fact 
I had heard the mathematician Mary Cartwright, 
who died in 1998 at the age of 97, describe the 
same phenomena in a lecture in Cambridge in 1943, 
twenty years before Lorenz discovered them. She 
called the phenomena by different names, but they 
were the same phenomena. She discovered them in 
the solutions of the van der Pol equation which de-
scribe the oscillations of a nonlinear amplifier, [2]. 
The van der Pol equation was important in World 
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War II because nonlinear amplifiers fed power 
to the transmitters in early radar systems. The 
transmitters behaved erratically, and the Air Force 
blamed the manufacturers for making defective 
amplifiers. Mary Cartwright was asked to look into 
the problem. She showed that the manufacturers 
were not to blame. She showed that the van der Pol 
equation was to blame. The solutions of the van der 
Pol equation have precisely the chaotic behavior 
that the Air Force was complaining about. I heard 
all about chaos from Mary Cartwright seven years 
before I heard von Neumann talk about weather 
control, but I was not far-sighted enough to make 
the connection. It never entered my head that the 
erratic behavior of the van der Pol equation might 
have something to do with meteorology. If I had 
been a bird rather than a frog, I would probably 
have seen the connection, and I might have saved 
von Neumann a lot of trouble. If he had known 
about chaos in 1950, he would probably have 
thought about it deeply, and he would have had 
something important to say about it in 1954.

Von Neumann got into trouble at the end of 
his life because he was really a frog but everyone 
expected him to fly like a bird. In 1954 there was 
an International Congress of Mathematicians in 
Amsterdam. These congresses happen only once 
in four years and it is a great honor to be invited to 
speak at the opening session. The organizers of the 
Amsterdam congress invited von Neumann to give 
the keynote speech, expecting him to repeat the act 
that Hilbert had performed in Paris in 1900. Just as 
Hilbert had provided a list of unsolved problems 
to guide the development of mathematics for the 
first half of the twentieth century, von Neumann 
was invited to do the same for the second half of 
the century. The title of von Neumann’s talk was 
announced in the program of the congress. It was 
“Unsolved Problems in Mathematics: Address by 
Invitation of the Organizing Committee”. After the 
congress was over, the complete proceedings were 
published, with the texts of all the lectures except 
this one. In the proceedings there is a blank page 
with von Neumann’s name and the title of his talk. 
Underneath, it says, “No manuscript of this lecture 
was available.”

What happened? I know what happened, be-
cause I was there in the audience, at 3:00 p.m. 
on Thursday, September 2, 1954, in the Concert-
gebouw concert hall. The hall was packed with 
mathematicians, all expecting to hear a brilliant 
lecture worthy of such a historic occasion. The 
lecture was a huge disappointment. Von Neumann 
had probably agreed several years earlier to give 
a lecture about unsolved problems and had then 
forgotten about it. Being busy with many other 
things, he had neglected to prepare the lecture. 
Then, at the last moment, when he remembered 
that he had to travel to Amsterdam and say some-
thing about mathematics, he pulled an old lecture 

from the 1930s out of a drawer and dusted it off. 
The lecture was about rings of operators, a subject 
that was new and fashionable in the 1930s. Noth-
ing about unsolved problems. Nothing about the 
future. Nothing about computers, the subject that 
we knew was dearest to von Neumann’s heart. 
He might at least have had something new and 
exciting to say about computers. The audience in 
the concert hall became restless. Somebody said 
in a voice loud enough to be heard all over the 
hall, “Aufgewärmte Suppe”, which is German for 
“warmed-up soup”. In 1954 the great majority of 
mathematicians knew enough German to under-
stand the joke. Von Neumann, deeply embarrassed, 
brought his lecture to a quick end and left the hall 
without waiting for questions.

Weak Chaos
If von Neumann had known about chaos when he 
spoke in Amsterdam, one of the unsolved prob-
lems that he might have talked about was weak 
chaos. The problem of weak chaos is still unsolved 
fifty years later. The problem is to understand 
why chaotic motions often remain bounded and 
do not cause any violent instability. A good ex-
ample of weak chaos is the orbital motions of the 
planets and satellites in the solar system. It was 
discovered only recently that these motions are 
chaotic. This was a surprising discovery, upsetting 
the traditional picture of the solar system as the 
prime example of orderly stable motion. The math-
ematician Laplace two hundred years ago thought 
he had proved that the solar system is stable. It 
now turns out that Laplace was wrong. Accurate 
numerical integrations of the orbits show clearly 
that neighboring orbits diverge exponentially. It 
seems that chaos is almost universal in the world 
of classical dynamics.

Chaotic behavior was never suspected in the 
solar system before accurate long-term integra-
tions were done, because the chaos is weak. Weak 
chaos means that neighboring trajectories diverge 
exponentially but never diverge far. The divergence 
begins with exponential growth but afterwards 
remains bounded. Because the chaos of the plan-
etary motions is weak, the solar system can survive 
for four billion years. Although the motions are 
chaotic, the planets never wander far from their 
customary places, and the system as a whole does 
not fly apart. In spite of the prevalence of chaos, 
the Laplacian view of the solar system as a perfect 
piece of clockwork is not far from the truth.

We see the same phenomena of weak chaos in 
the domain of meteorology. Although the weather 
in New Jersey is painfully chaotic, the chaos has 
firm limits. Summers and winters are unpredict-
ably mild or severe, but we can reliably predict 
that the temperature will never rise to 45 degrees 
Celsius or fall to minus 30, extremes that are 
often exceeded in India or in Minnesota. There 
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is no conservation law of physics that forbids 
temperatures from rising as high in New Jersey 
as in India, or from falling as low in New Jersey 
as in Minnesota. The weakness of chaos has been 
essential to the long-term survival of life on this 
planet. Weak chaos gives us a challenging variety 
of weather while protecting us from fluctuations 
so severe as to endanger our existence. Chaos 
remains mercifully weak for reasons that we do 
not understand. That is another unsolved problem 
for young frogs in the audience to take home. I 
challenge you to understand the reasons why the 
chaos observed in a great diversity of dynamical 
systems is generally weak.

The subject of chaos is characterized by an 
abundance of quantitative data, an unending sup-
ply of beautiful pictures, and a shortage of rigor-
ous theorems. Rigorous theorems are the best way 
to give a subject intellectual depth and precision. 
Until you can prove rigorous theorems, you do not 
fully understand the meaning of your concepts. 
In the field of chaos I know only one rigorous 
theorem, proved by Tien-Yien Li and Jim Yorke in 
1975 and published in a short paper with the title, 
“Period Three Implies Chaos”, [4]. The Li-Yorke 
paper is one of the immortal gems in the literature 
of mathematics. Their theorem concerns nonlinear 
maps of an interval onto itself. The successive posi-
tions of a point when the mapping is repeated can 
be considered as the orbit of a classical particle. 
An orbit has period N​ if the point returns to its 
original position after N​ mappings. An orbit is 
defined to be chaotic, in this context, if it diverges 
from all periodic orbits. The theorem says that if a 
single orbit with period three exists, then chaotic 
orbits also exist. The proof is simple and short. To 
my mind, this theorem and its proof throw more 
light than a thousand beautiful pictures on the 
basic nature of chaos. The theorem explains why 
chaos is prevalent in the world. It does not explain 
why chaos is so often weak. That remains a task 
for the future. I believe that weak chaos will not 
be understood in a fundamental way until we can 
prove rigorous theorems about it.

String Theorists
I would like to say a few words about string theory. 
Few words, because I know very little about string 
theory. I never took the trouble to learn the subject 
or to work on it myself. But when I am at home at the 
Institute for Advanced Study in Princeton, I am sur-
rounded by string theorists, and I sometimes listen 
to their conversations. Occasionally I understand a 
little of what they are saying. Three things are clear. 
First, what they are doing is first-rate mathemat-
ics. The leading pure mathematicians, people like 
Michael Atiyah and Isadore Singer, love it. It has 
opened up a whole new branch of mathematics, 
with new ideas and new problems. Most remark-
ably, it gave the mathematicians new methods to 

solve old problems that were previously unsolvable. 
Second, the string theorists think of themselves 
as physicists rather than mathematicians. They 
believe that their theory describes something real 
in the physical world. And third, there is not yet 
any proof that the theory is relevant to physics. 
The theory is not yet testable by experiment. The 
theory remains in a world of its own, detached 
from the rest of physics. String theorists make 
strenuous efforts to deduce consequences of the 
theory that might be testable in the real world, so 
far without success.

My colleagues Ed Witten and Juan Maldacena 
and others who created string theory are birds, 
flying high and seeing grand visions of distant 
ranges of mountains. The thousands of hum-
bler practitioners of string theory in universities 
around the world are frogs, exploring fine details 
of the mathematical structures that birds first 
saw on the horizon. My anxieties about string 
theory are sociological rather than scientific. It is 
a glorious thing to be one of the first thousand 
string theorists, discovering new connections and 
pioneering new methods. It is not so glorious to 
be one of the second thousand or one of the tenth 
thousand. There are now about ten thousand 
string theorists scattered around the world. This 
is a dangerous situation for the tenth thousand 
and perhaps also for the second thousand. It may 
happen unpredictably that the fashion changes 
and string theory becomes unfashionable. Then it 
could happen that nine thousand string theorists 
lose their jobs. They have been trained in a narrow 
specialty, and they may be unemployable in other 
fields of science.

Why are so many young people attracted to 
string theory? The attraction is partly intellectual. 
String theory is daring and mathematically elegant. 
But the attraction is also sociological. String theory 
is attractive because it offers jobs. And why are 
so many jobs offered in string theory? Because 
string theory is cheap. If you are the chairperson 
of a physics department in a remote place without 
much money, you cannot afford to build a modern 
laboratory to do experimental physics, but you can 
afford to hire a couple of string theorists. So you 
offer a couple of jobs in string theory, and you 
have a modern physics department. The tempta-
tions are strong for the chairperson to offer such 
jobs and for the young people to accept them. 
This is a hazardous situation for the young people 
and also for the future of science. I am not say-
ing that we should discourage young people from 
working in string theory if they find it exciting. I 
am saying that we should offer them alternatives, 
so that they are not pushed into string theory by 
economic necessity.

Finally, I give you my own guess for the future 
of string theory. My guess is probably wrong. I 
have no illusion that I can predict the future. I tell 
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you my guess, just to give you something to think 
about. I consider it unlikely that string theory will 
turn out to be either totally successful or totally 
useless. By totally successful I mean that it is a 
complete theory of physics, explaining all the de-
tails of particles and their interactions. By totally 
useless I mean that it remains a beautiful piece of 
pure mathematics. My guess is that string theory 
will end somewhere between complete success 
and failure. I guess that it will be like the theory 
of Lie groups, which Sophus Lie created in the 
nineteenth century as a mathematical framework 
for classical physics. So long as physics remained 
classical, Lie groups remained a failure. They were 
a solution looking for a problem. But then, fifty 
years later, the quantum revolution transformed 
physics, and Lie algebras found their proper place. 
They became the key to understanding the central 
role of symmetries in the quantum world. I expect 
that fifty or a hundred years from now another 
revolution in physics will happen, introducing new 
concepts of which we now have no inkling, and the 
new concepts will give string theory a new mean-
ing. After that, string theory will suddenly find 
its proper place in the universe, making testable 
statements about the real world. I warn you that 
this guess about the future is probably wrong. It 
has the virtue of being falsifiable, which accord-
ing to Karl Popper is the hallmark of a scientific 
statement. It may be demolished tomorrow by 
some discovery coming out of the Large Hadron 
Collider in Geneva.

Manin Again
To end this talk, I come back to Yuri Manin and 
his book Mathematics as Metaphor. The book 
is mainly about mathematics. It may come as a 
surprise to Western readers that he writes with 
equal eloquence about other subjects such as the 
collective unconscious, the origin of human lan-
guage, the psychology of autism, and the role of 
the trickster in the mythology of many cultures. 
To his compatriots in Russia, such many-sided 
interests and expertise would come as no surprise. 
Russian intellectuals maintain the proud tradition 
of the old Russian intelligentsia, with scientists 
and poets and artists and musicians belonging to 
a single community. They are still today, as we see 
them in the plays of Chekhov, a group of idealists 
bound together by their alienation from a super-
stitious society and a capricious government. In 
Russia, mathematicians and composers and film- 
producers talk to one another, walk together in the 
snow on winter nights, sit together over a bottle of 
wine, and share each others’ thoughts.

Manin is a bird whose vision extends far be-
yond the territory of mathematics into the wider 
landscape of human culture. One of his hobbies 
is the theory of archetypes invented by the Swiss 
psychologist Carl Jung. An archetype, according to 

Jung, is a mental image rooted in a collective un-
conscious that we all share. The intense emotions 
that archetypes carry with them are relics of lost 
memories of collective joy and suffering. Manin is 
saying that we do not need to accept Jung’s theory 
as true in order to find it illuminating.

More than thirty years ago, the singer Monique 
Morelli made a recording of songs with words by 
Pierre MacOrlan. One of the songs is La Ville Morte, 
the dead city, with a haunting melody tuned to 
Morelli’s deep contralto, with an accordion singing 
counterpoint to the voice, and with verbal images 
of extraordinary intensity. Printed on the page, the 
words are nothing special:

“En pénétrant dans la ville morte, 
Je tenait Margot par le main… 
Nous marchions de la nécropole, 
Les pieds brisés et sans parole, 
Devant ces portes sans cadole, 
Devant ces trous indéfinis, 
Devant ces portes sans parole 
Et ces poubelles pleines de cris”.

“As we entered the dead city, I held Margot by 
the hand…We walked from the graveyard on our 
bruised feet, without a word, passing by these 
doors without locks, these vaguely glimpsed holes, 
these doors without a word, these garbage cans 
full of screams.”

I can never listen to that song without a dispro-
portionate intensity of feeling. I often ask myself 
why the simple words of the song seem to resonate 
with some deep level of unconscious memory, as 
if the souls of the departed are speaking through 
Morelli’s music. And now unexpectedly in Manin’s 
book I find an answer to my question. In his chap-
ter, “The Empty City Archetype”, Manin describes 
how the archetype of the dead city appears again 
and again in the creations of architecture, litera-
ture, art and film, from ancient to modern times, 
ever since human beings began to congregate in 
cities, ever since other human beings began to 
congregate in armies to ravage and destroy them. 
The character who speaks to us in MacOrlan’s song 
is an old soldier who has long ago been part of an 
army of occupation. After he has walked with his 
wife through the dust and ashes of the dead city, 
he hears once more:

“Chansons de charme d’un clairon 
Qui fleurissait une heure lointaine 
Dans un rêve de garnison”.

“The magic calls of a bugle that came to life for 
an hour in an old soldier’s dream”.

The words of MacOrlan and the voice of Mo-
relli seem to be bringing to life a dream from our 
collective unconscious, a dream of an old soldier 
wandering through a dead city. The concept of the 
collective unconscious may be as mythical as the 
concept of the dead city. Manin’s chapter describes 
the subtle light that these two possibly mythical 
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concepts throw upon each other. He describes the 
collective unconscious as an irrational force that 
powerfully pulls us toward death and destruction. 
The archetype of the dead city is a distillation of 
the agonies of hundreds of real cities that have 
been destroyed since cities and marauding armies 
were invented. Our only way of escape from the 
insanity of the collective unconscious is a collec-
tive consciousness of sanity, based upon hope 
and reason. The great task that faces our contem-
porary civilization is to create such a collective 
consciousness.
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