FAIR and Open Research Software

Based on: W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T.
Tiropanis: “From FAIR Research Data toward FAIR and Open

Research Software”, it - Information Technology, 2020.
DOI https://doi.org/10.1515/itit-2019-0040

Wilhelm (Willi) Hasselbring

Software Engineering
http://se.informatik.uni-kiel.de

FAU Erlangen-Nirnberg, November 11t 2022

University of
S

Kiel University OUthﬂmthn

Christian-Albrechts-Universitat zu Kiel

https://doi.org/10.1515/itit-2019-0040

(ff—\\ Software
J8 Sustainability
P Institute

Research Software socert o reseanc RESEARCH

e Research software is software
* that is employed in the scientific discovery process or
* aresearch object itself.

e Computational science (also scientific computing)
involves the development of research software

* for model simulations and

* data analytics

to understand natural systems answering questions that
neither theory nor experiment alone are equipped to
answer.

Agenda

1. Research Software
* Characteristics
* Mutual ignorance

2. Research Software Publishing

3. Open Science
* For Computational Science
* For Computer Science / Software Engineering: Artifact Evaluation

4. FAIR and Open Research Software
5. Summary & Outlook

Characteristics of Research Software

* Functional Requirements are not known up front
* And often hard to comprehend without some PhD in science

» Verification and validation are difficult,
* and strictly scientific

* Overly formal software processes restrict research

Vague idea of Develop piece Is this
' I ?
what is needed of software what | want!

L Modify/extend [¢———

No
Looks
No like it.
Decide: Does it seem to
“That will do.” do what | expect?

[Johanson & Hasselbring 2018]

Characteristics of Research Software

* Software quality requirements

 Jeffrey Carver and colleagues.found that scientific software developers rank the
following characteristics as the most important, in descending order [Carver et al.
2007]:
1. functional (scientific) correctness,
2. performance,
3. portability, and
4. maintainability.

e Research software in itself has no value
* Not really true for community software

* Few scientists are trained in software engineering

* Disregard of most modern software engineering
methods and tools

SE for Computational Science ?

SOFTWARE ENGINEERING

Report on a conference sponsored by the
NATO SCIENCE COMMITTEE
Garmisch, Germany, 7th to 11th October 1968

Chairman: Professor Dr. F. L. Bauver

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969

gttp://homepages.cs.ncI.ac.uk/brian.randeII/NATO/index.htmI

Although much of the discussions were of a detailed technical nature, the report also contains sections reporting on
discussions which will be of interest to a much wider audience. This holds for subjects like

. the problems of achieving sufficient reliability in the data systems which are becoming increasingly
integrated into the central activities of modern society

. the difficulties of meeting schedules and specifications on large software projects

. the education of software (or data systems) engineers

. the highly controversial question of whether software should be priced separately from hardware.

Thus, while the report is of particular concern to the immediate users of computers and to computer manufacturers,
many points may serve to enlighten and warn policy makers at all levels. Readers from the wider audience should
note, however, that the conference was concentrating on the basic issues and key problems in the critical areas of
software engineering. It therefore did not attempt to provide a balanced review of the total state of software, and tends
to understress the achievements of the field.

In fact, a tremendously excited and enthusiastic atmosphere developed at the
conference as participants came to realize the degree of common concern
about what some were even willing to term the “sofiware crisis”, and general
agreement arose about the importance of trying to convince not just other
colleagues, but also policy makers at all levels, of the seriousness of the
problems that were being discussed.

[Randell 2018]

Mutual Ignorance: Software Engineering

Software Engineering and Computer Science for Generality [Randell 2018]:

* “That NATO was the sponsor of this conference marks the relative distance of software
engineering from computation in the academic context.

* The perception was that while errors in scientific data processing applications might be a
‘hassle,” they are all in all tolerable.

* In contrast, failures in mission-critical military systems might cost lives and substantial
amounts of money.

* Based on this attitude, software engineering—like computer science as a whole— aimed
for generality in its methods, techniques, and processes and focused almost exclusively
on business and embedded software.

* Because of this ideal of generality, the question of how specifically computational
scientists should develop their software in a well-engineered way would
probably have perplexed a software engineer, whose answer might
have been:

e ‘Well, just like any other application software.””

Mutual lgnorance: Computational Science

The Productivity Crisis in Computational Science

* As early scientific software was developed by small teams of scientists primarily for their
own research, modularity, maintainability, and team coordination could often be
neglected without a large impact.

The Credibility Crisis in Computational Science:

* Climategate. The scandal erupted after hackers leaked the email correspondence of
scientists just before the 2009 United Nations Climate Change Conference.

* While the accusations that data was forged for this conference turned out to be
unfounded, the emails uncovered a lack of programming skills among the researchers
and exposed to a large public audience the widely applied practice in climate science of
not releasing simulation code and data together with corresponding publications
[Merali 2010%.

* This in itself was, of course, enough to undermine the scientists’
work, as the predictive capabilities of simulations are only as
good as their code quality and their code was not even
available for peer review—not to mention public review
[Fuller and Millett 2011].

2 soFTwame
IMPACTS

Contents lists available at ScienceDirect

Modular
Scientific
Code

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Eulerian-Lagrangian fluid dynamics platform: The ch4-project bl

Check for
updates

Enrico Calzavarini

Highlights

* Ch4-project is a fluid dynamics code used in academia for the study of
fundamental problems in fluid mechanics.

* It has contributed to the understanding of global scaling laws in non-ideal
turbulent thermal convection.

* It has been used for the characterisation of statistical properties of bubbles and
particles in developed turbulence.

* Itis currently employed for a variety for research projects on inertial particle
dynamics and convective melting.

 Its modular code structure allows for a low learning threshold and to easily
implement new features.

Modular Scientific Code

[Calzavarini 2019]:

“A dream for principal investigators in this field is to not have to deal
with different (and soon mutually incompatible) code versions for each
project and junior researcher in his/her own group.

* In this respect an object-oriented modular code structure would be
the ideal one,

* but this makes the code less prone to modifications by the less experienced
users.

* The choice made here is to rely on a systematic use of
C language preprocessing directives and on a
hierarchical naming convention in order to
configure the desired simulation setting in a
module-like fashion at compiling time.”

11

So, SE for
Computational Science

[Johanson & Hasselbring 2018]:

« Among the methods and
techniques that software
engineering can offer to
computational science are

 testing without test oracles,

. mc:jdular software architectures,
an

* model-driven software engineering
with domain-specific languages.

* This way, computational science may achieve

maintainable, long-living software

[Goltz et al., 2015; Reussner et al. 2019],

* in particular for community software.

Software Engineering for
Computational Science:

Past, Present, Future

Arne N. Johanson Despite the increasing importance of in silico
XING Marketing Solutions . e

. experiments to the scientific discovery process,
GmbH
Wilhelm Hasselbring state-of-the-art software engineering practices are
Kiel University rarely adopted in computational science. To

Editors: understand the underlying causes for this situation
Jeffrey Carver.

carver(@cs.ua.edu; Damian
Rouson, literature survey on software engineering practices
damian(@sourceryinstitute.org

and to identify ways to improve it, we conducted a

in computational science. We identified 13 recurring
key characteristics of scientific software
development that are the result of the nature of scientific challenges, the limitations of
computers, and the cultural environment of scientific software development. Our
findings allow us to point out shortcomings of existing approaches for bridging the gap
between software engineering and computational science and to provide an outlook on

promising research directions that could contribute to improving the current situation.

Teaching basic lab skills

Sd[)ftwa re Ca rpe ntry for research computing

* Programming / Coding
e Fortran, C++, Python, R, etc
* Using compilers, interpreters, editors, etc

e Using version control (git etc)

* Team coordination (GitHub, Gitlab, etc)
e Continuous integration (Jenkins, etc)

* https://software-carpentry.org/

12

Agenda

1.

Research Software
e Characteristics
* Mutual ignorance

Research Software Publishing

Open Science
* For Computational Science
* For Computer Science / Software Engineering: Artifact Evaluation

FAIR and Open Research Software
Summary & Outlook

14

Computer

Open Source
Research Software

Wilhelm Hasselbring, Kiel University
Leslie Carr, University of Southampton

Simon Hettrick, Software Sustainability Institute and University of
Southampton

Heather Packer and Thanassis Tiropanis, University of Southampton

For good scientific practice, research software
should be open source. It should be both archived
for reproducibility and actively maintained for
reusability

are reused. To study the state of the
artinthis field, we analyzed research
software publishing practices in com-
puter and computational science
and observed significant differences:
computational science emphasizes
reproducibility, while computer sci-
ence emphasizes reuse.

SOFTWARE ENGINEERING
FOR SUSTAINABLE
RESEARCH SOFTWARE

| 1EEE
/| COMPUTER
| SOCIETY

[Hasselbring et al. 2020a]

Research Software Publishing

* Relating research software to research publications:

<<repository>>
Publication Fulltext

search

<<search result>>
Publication Search Result

generate

<<metadata>>

<<persistent identifier>>
Software ID

relates to

0.*

<<persistent identifier>>
Publication ID

<<repository>>

Software Code

-

search

<<search result>>

Software Search Result

Publication Metadata [<_>

Research software is identified either by
research publications that cite software repositories or
software repositories that cite research publications.

<<metadata>>

Software Metadata

generate

16

Research Software Publishing Practices

— Education
Math | Social Science

|||
‘ Life Science

General Science

Engineering

Psychology

Computer Science
Physics

Earth Science

Unpublished/
Archives

(a) Research areas of publications cited from

Github repositories

General
and Reference Mathematics
of Computing

Information
Systems

Software and Its
Engineering

Hardware _/

Computer
Systems
Organization

Human-Centered
Computing

Social and
Professional
Topics

Computing

Methodologies Theolry of

Computation

(b) Research areas of ACM computer science

publications citing GitHub repositories

[Hasselbring et al. 2020a]

Research Software Publishing Practices

General Relativity Distributed, Parallel, and
and Quantum Cluster Computing
Cosmology High-Energy Physics: Theory Data Structures and Algo_rithms
ﬂ_ Others Neural and E‘(I)cznltrjr;[;:?&ielrwré
Social and Information Networks

Information Theory -
Sound —
Al
Information Retrieval —

Computation
and Language

Electrical Engineering
and Systems Science
Condensed Matter
High-Energy Physics:
Phenomenology
Quantum Physics

Mathematics
Physics
Quantitative Biology —

Computers and Society

\ Computer Vision
and Pattern

Computer Science Recognition

Machine
Learning
(Computer Science)

Astrophysics

(c) ()
(c) Research areas of arXiv publications (d) Computer science publications in arXiv
citing GitHub repositories from Figure 2c refined into sub-areas

[Hasselbring et al. 2020a]

17

Covered Research Areas

A first interesting observation is that our three data sets cover quite different
research areas:

* The GitHub research software set is drawn mainly from the computational
sciences, particularly the life sciences.

 The ACM research software set is dominated by software engineering,
information systems, social and professional topics and human-centered

computing.
* The arXiv research software set is dominated by computer science
topics,

* which is mainly composed of Al topics (computer vision,
machine learning, computational linguistics, Figure 2d).

19

Sustainability of Research Software

* Research software publishing practices in computer science and in computational

science show significant differences:
e computational science emphasizes reproducibility,
e computer science emphasizes reuse.

N
o
|

Repositories

20 H —

O [|

i

T

D D = ‘ | =

12
(a)

3

4

5

6 7 8 9 10 11 12
Years

Lifespan of Github repositories cited in
computer science publications

1,600
1,400

1,200 —

—

o

3
|

800 [—
600 [

@ Dormant @ Active

Repositories

400

200

0 1 2 3 4 5 6 7
(c) Years

Lifespan of Github repositories cited in
computational science publications

[Hasselbring et al. 2020a]

8

9

Sustainability of Research Software

* The computer science software repositories’ lifespan is distributed with a median of 5
years.

* Our hypothesis is that in computer science research, often commercial open-source software
frameworks are employed.

* These software frameworks are maintained over long times by employees of the associated
companies.

* The computational science software repositories’ lifespan has a distribution with a
median lifespan of 15 days. A third of these repositories are live for less than 1 day.
* Our hypothesis is that in computational science research, often the research software is only

published when the corresponding paper has been published. The software is then not further
maintained at GitHub, but at some private place as before (if it is further maintained at all).

* The arXiv repositories are somewhere in between with a median of 8
months lifespan. Furthermore, 75% of the arXiv repositories are live.
* Our hypothesis is that the attitude of publishing as early as possible in parts of

the artificial intelligence community also motivates the researchers to develop
their research software openly from the start of research projects.

Categories of Research Software

We observe different categories and relationships between research publications
and research software:

» Software as an output of research, collaboratively constructed and maintained
through an active open source community.

e Software as an output of research, privately developed but published openly
and abandoned after publication.

» Software itself as an object of study or analysis.

e Software that then leads to a fork (in GitHub) that is independently
developed as a research output and published openly (if successful,
it may be fed back into the original project via pull requests).

e Software used as a tool or framework to do the research.

Besides these relationships, software is cited as related work,
background, or example.

Agenda

1.

Research Software
e Characteristics
* Mutual ignorance

Research Software Publishing

Open Science
* For Computational Science
* For Computer Science / Software Engineering: Artifact Evaluation

FAIR and Open Research Software
Summary & Outlook

Reproducible Research in Computational

Sclence

“Replication is the ultimate standard by which scientific
claims are judged.”

Reproducibility Spectrum
Publication +

Publication liFkEaErd Full
only Code replication
Code executable
and data
code and data

Not reproducible Gold standard

[Peng 2011]

23

Science

Agenda

1.

Research Software
e Characteristics
* Mutual ignorance

Research Software Publishing

Open Science
* For Computational Science
* For Computer Science / Software Engineering: Artifact Evaluation

FAIR and Open Research Software
Summary & Outlook

COMMUNICATIONS OF THE ACM | MARCH 2015 | VOL. 58 | NO. 3

DOI:10.1145/2658987 Shriram Krishnamurthi and Jan Vitek

Viewpoint

The Real Software
Crisis: Repeatability
as a Core Value

Sharing experiences running artifact evaluation
committees for five major conferences.

“Science advances faster when we can build on existing results,

and when new ideas can easily be measured against the state of
the art.”

Repeatability, replicability & reproducibility

Several ACM SIGMOD, SIGPLAN, and SIGSOFT conferences have
initiated artifact evaluation processes.

25

1 Software Engineering Group, Christian-Albrechts-University Kiel, Germany

26

Example Experimenta

in Software Engineering

A Comparison of the Influence of Different
Multi-Core Processors on the Runtime

Overhead for Application-Level Monitoring

Jan Waller! and Wilhelm Hasselbring!+?

2 SPEC Research Group, Steering Committee, Gainesville, VA, USA

Execution time (ps)

505

515

510

500

Overhead (median with quartiles) of ...
Writing (W) Collecting (C)
1 Instrumentation () O Method Time (T)
O (mean values with 95% confidence intervals)

V!l‘?
N\

NN |

NO.1]

Experiment

[Waller and Hasselbring 2012]

|II

May 31,2012

 software Jlopen Access |

Benchmark for: A Comparison of the Influence
of Different Multi-Core Processors on the
Runtime Overhead for Application-Level
Monitoring

Waller, Jan; Hasselbring, Wilhelm

Application-level monitoring is required for continuously operating software systems to maintain their performance and
availability at runtime. Performance monitoring of software systems requires storing time series data in a monitoring log or
stream. Such monitoring may cause a significant runtime overhead to the monitored system

In this paper, we evaluate the influence of multi-core processors on the overhead of the Kieker application-level monitoring
framework. We present a breakdown of the monitoring overhead into three portions and the results of extensive controlled
Iaboratory experiments with microbenchmarks to quantify these portions of monitoring overhead under controlled and
repeatable conditions. Our experiments show that the already low overhead of the Kieker framework may be further
reduced on multi-core processors with asynchronous writing of the monitoring log

Our experiment code and data are available as open source software such that interested researchers may repeat or
extend our experiments for comparison on other hardware platforms or with other monitoring frameworks

This set supplements the paper and contains the used benchmark and its configuration for all experiments.

Preview v
[® MooBench.zip X M
& MooBench
o M bin
= [run-benchmark-cycle-async.sh 7.0kB
= [run-benchmark-cycle-sync.sh 6.9kB
= Mrun-benchmark-recursive-imx.sh 53kB

Reproducibility Data”

...

S 0

@ views & downloads

See more details

Publication date:
May 31,2012
Dol
Keyword(s):
ot e s e e
Meeting:
' International Conference on Mult
Engineering, Performance, and Tools (MSEPT),
Prague, Czech Republic, May 31 - June 1, 2012
Related identifiers:
Supplement to

License (for files):
(@ Apache Software License 2

From Reproducibility Problems to Improvements: A journey

Holger Eichelberger, Aike Sass, Klaus Schmid
{eichelberger, schmid }@sse.uni-hildesheim.de, sassai@uni-hildesheim.de
University of Hildesheim, Software Systems Engineering, 31141 Hildesheim, Germany

[Eichelberger et al. 2016]

R DIGITAL
LIBRARY

’7 https://www.acm.org/publications/artifacts

9th ACM / SPEC
International Conference on Performance Engineering
Berlin, Germany, April, 9 - 13, 2018

Report: Artifact Evaluation Track

Wilhelm (Willi) Hasselbring Petr Tuma
Kiel University, Germany Charles University, Czech Republic

Kiel University
Christian-Albrechts-Universitat zu Kiel

CHARLES UNIVERSITY

28
28

Some numbers for ICPE 2018

e 59 submitted full research papers

* 14 accepted full research papers

* 6 submitted artifacts

e 2 accepted artifacts, evaluated as functional
* 0 accepted artifacts, evaluated as reusable

* |t seems that repeatability and reproducibility of performance
research results brings specific challenges

* However, it is also of particular importance to this field
* |s it worth making the effort?

IF | HAVE SEEN FURTHER,
IT IS BY STANDING

ON THE SHOULDERS
OF GIANTS. (@

- ISAAC NEWTON

“Science advances faster when we can build on existing
results, and when new ideas can easily be measured against
the state of the art”

[Krishnamurthi & Vitek 2015]

30

31

Impact of Artifact Evaluation

30

'AE s
NonAE mmm

N
a
T

N
o

—
o

a

Avg. Cites per Paper per Year
5

o

2013 2014 2015 2016

Fig. 1. Average citation counts of AE and non-AE papers for conferences
that used AE in 2013 to 2016 (conferences: VISSOFT, PPoPP, POPL, PLDI,
PACT, OOPSLA, ISSTA, FSE, ECRTS, ECOOP, CGO, CAV).

[Childers & Chrysanthis 2017]

BETTER
SOFTWARE

WHW, LAC. K

Agenda

1.

Research Software
e Characteristics
* Mutual ignorance

Research Software Publishing

Open Science
* For Computational Science
* For Computer Science / Software Engineering: Artifact Evaluation

FAIR and Open Research Software
Summary & Outlook

F/IR

Open Science for Research Software

1. Findable

e Software citation
 Domain-specific Metadata

2. Accessible
e GitHub etc. for use and involvement
e Zenodo etc. for archival

3. Interoperable

 Obey to standards.
* Properinterfaces in modular software

4. Reusable
e Artifact evaluations support this.
 Domain-specific languages may help with comprehensibility
 Modular software architecture allow for reusing parts

Recommendations for FAIR Research
Software [Hasselbring et al. 2020b]

FAIR Principle

Recommended Measure

Findability

Accessibility

Interoperability

Reusability

Provide software metadata to improve software retrieval
Use software citation to allow for proper reference and reward
Employ research software observatories which may serve as retrieval service

Use software development platforms such as GitHub for code cloning
Use repositories such as Zenodo to access archived software versions
Use research software observatories as dedicated repository services

Provide proper interface definitions in modular software architectures
Conform to established software standards

Use software virtualization techniques for portability

Participate in artifact evaluation processes to evaluate interoperability

Use software development platforms such as GitHub for active involvement

Build modular software architectures to allow for reusing parts of research software

Use domain-specific languages for comprehensibility and modularity of research software
Follow good software engineering practices to achieve high software quality

Use software virtualization techniques such as Docker to support reusability across platforms
Use software-as-a-service platforms such as BinderHub for immediate execution

Use research software observatories for online analytics

Participate in artifact evaluation processes to evaluate reusability

Modularization of Earth-system simulation software

— ——— \

How to
* improve maintainability, stability, reusability, reproducibility, ... ?
* enable scalable execution in the Cloud?
» parallelize for high performance and
exascale computing?
* test for higher quality?
e achieve higher flexibility?

SOFTWARE

BETTER
RESEARGH

Wl

35

V|7

Live Trace Visualization Tool EXD

* Program- and system comprehension for software engineers

* Started as a Ph.D project in 2012

* Open Source from the beginning (Apache License, Version 2.0)
* Continuously extended over the years

 [Fittkau et al. 2013, 2015a-d, 2017; Krause et al. 2018, 2020;
Zirkelbach et al. 2019, 2020;
Hasselbring et al. 2020c]

 https://ExplorViz.dev
https://github.com/ExplorViz

* See also Kieker [Hasselbring et al. 2020d]
https://www.performance-symposium.org/2022/

36

https://explorviz.dev/
https://github.com/ExplorViz
https://www.performance-symposium.org/2022/

3D Application Vlsuallzatlon with EXD|@FViZ
«< [Bl

CustomersServiceClient
.
Metric Name
Instance Count:
Incomimng Reguests: 1
QOutgoing Requests: 4
Owerall Requests: 5

Contained Classes: 1
Contained Packages: 1

A: opened and pinned
B: pinged
C: highlighted

37

Summary & Outlook

On the basis of an examination of the historical development of the relationship
between software engineering and computational science (the past),

* we identified key characteristics of scientific software development (the present).

We examined attempts to bridge the gap in order to reveal the shortcomings of
existing solutions and indicate further research directions (the possible future),

* such as the use of domain-specific software engineering methods (OceanDSL project).

Modularity is essential for maintainability, scalability and agility
* also for reusability
* also for testability

Open Science also for Computer Science / Software Engineering
research itself

e “Eat your own dog food”

* Follow the FAIR principles and publish research software open source

39

de(SB GESELLSCHAFT FUR
FORSCHUNGSSOFTWARE

deRSE23 - Conference for Research Software Engineering in Germany
20-21 Feb 2023 Paderborn (Germany)
https://de-rse23.sciencesconf.org/

Contribution Deadline: Nov. 21st 2022
Associated to:

S 8 SICP
SOFTWARE ENGINEERING

https://se-2023.gi.de/

https://de-rse23.sciencesconf.org/
https://se-2023.gi.de/

DE GRUYTER OLDENBOURG W. Hasselbring et al., From FAIR research data toward FAIR and open research software = 9

Heather Packer
University of Southampton, SO017 1TTW I a r I S
Southampton, UK]

hp3@ecs.soton.ac.uk

Bionotes

Wilhelm Hasselbring
Christian-Albrechts-Universitit zu Kiel,
D-24098 Kiel, Germany
hasselbring@email.uni-kiel.de

Dr. Heather Packer is a New Frontier fellow in the Department of
Electronics and Computer Science at the University of Southampton.

Prof. Dr. Wilhelm Hasselbring is a full professor of software engi-

neering in the Department of Computer Science at Kiel University. Th iSTi .
anassis Tiropanis

University of Southampton, SO017 1TTW
Southampton, UK

Leslie Carr t.tiropanis@southampton.ac.uk

University of Southampton, S017 1TW
Southampton, UK
lac@ecs.soton.ac.uk

Prof. Dr. Thanassis Tiropanis is an associate professor in the De-
partment of Electronics and Computer Science at the University of
Southampton.

Prof. Dr. Leslie Carr is a full professor of web science in the De-
partment of Electronics and Computer Science at the University of
Southampton.

Simon Hettrick

University of Southampton, 5017 1TW
Southampton, UK
sjh@ecs.soton.ac.uk

Prof. Dr. Simon Hettrick is deputy director of UK’s Software Sustain-
ability Institute and a full professor in the Department of Electronics
and Computer Science at the University of Southampton.

References

[Calzavarini 2019] E. Calzavarini: “Eulerian—Lagrangian fluid dynamics platform: The ch4-project”. In: Software Impacts 1, 2019. DOI
https://doi.org/10.1016/j.simpa.2019.100002

[Childers & Chrysanthis 2017] B.R. Childers and P.K. Chrysanthis, "Artifact Evaluation: Is It a Real Incentive?," 2017 IEEE 13th International Conference on
e-Science, 2017, pp. 488-489. http://doi.org/10.1109/eScience.2017.79

[Eichelberger et al. 2016] H. Eichelberger et al., “From reproducibility problems to improvements: A journey,” Softwaretechnik-Trends: Proceedings of the
Symposium on Software Performance (SSP'16). Vol. 36. No. 4. 2016.

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, W. Hasselbring: “Live Trace Visualization for Comprehending Large Software Landscapes: The ExplorViz
Approach” In: 1st IEEE International Working Conference on Software Visualization (VISSOFT 2013). DOI
https://doi.org/10.1109/VISSOFT.2013.6650536

[Fittkau et al. 2015a# F. Fittkau, S. Roth, W. Hasselbring: “ExplorViz: Visual Runtime Behavior Analysis of Enterprise Application Landscapes®, In: 23rd
European Conference on Information Systems (ECIS 2015). DOI https://doi.org/10.18151/7217313

[Fittkau et al. 2015b] F. Fittkau, A. Krause, W. Hasselbring: “Hierarchical Software Landscape Visualization for System Comprehension: A Controlled
Experiment”. In: 3rd IEEE Working Conference on Software Visualization, 2015. DOI https://doi.org/10.1109/VISSOFT.2015.7332413

[Fittkau et al. 2015c] F. Fittkau, A. Krause, W. Hasselbring: “Exploring Software Cities in Virtual Reality”, In: 3rd IEEE Working Conference on Software
Visualization, 2015. DOI https://doi.org/10.1109/VISSOFT.2015.7332423

[Fittkau et al. 2015d] F. Fittkau, S. Finke, W. Hasselbring, J. Waller: “Comparing Trace Visualizations for Program Comprehension through Controlled
Experiments”, In: 23rd IEEE International Conference on Program Comprehension (ICPC 2015), May 2015, Florence. DOI
https://doi.org/10.1109/1CPC.2015.37

[Fittkau et al. 2017] F. Fittkau, A. Krause, W. Hasselbring: “Software landscape and application visualization for system comprehension with ExplorViz”, In:
Information and Software Technology. DOI 10.1016/j.infsof.2016.07.004

[Fuller and Millett 2011] S.H. Fuller and L.I. Millett, “Computing Performance: Game Over or Next Level?,” Computer, vol. 44, no. 1, 2011, pp. 31-38.

[Goltz et al., 2015] U. Goltz et al., “Design for Future: Managed Software Evolution,” Computer Science - Research and Development, vol. 30, no. 3, 2015,
pp. 321-331. DOI https://doi.org/10.1007/s00450-014-0273-9

[Hasselbring 2006] W. Hasselbring, and others: “WISENT: e-Science for Energy Meteorology”. In: Proceedings of 2nd IEEE International Conference on e-
Science and Grid Computing (e-Science'06). pp. 93-100. DOI https://doi.org/10.1109/E-SCIENCE.2006.156

[Hasselbring 2016] W. Hasselbring, “Microservices for Scalability (Keynote Presentation),” In: 7th ACM/SPEC International Conference on Performance
Engineering (ACM/SPEC ICPE 2016), March 15, 2016, Delft, NL. DOI https://doi.org/10.1145/2851553.2858659

[Hasselbring 2018] W. Hasselbring, “Software Architecture: Past, Present, Future,” In: The Essence of Software Engineering. Springer, pp. 169-184. 2018.
DOI 10.1007/978-3-319-73897-0_10

References

[Hasselbring et al. 2020a] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “Open Source Research Software”. In: Computer,
53 (8), pp. 84-88. 2020. DOI https://doi.org/10.1109/MC.2020.2998235

[Hasselbring et al. 2020b] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “From FAIR Research Data toward FAIR and Open
Research Software”, it - Information Technology, 2020. DOI https://doi.org/10.1515/itit-2019-0040

[Hasselbring et al. 2020c] W. Hasselbring, A. Krause, C. Zirkelbach: “ExplorViz: Research on software visualization, comprehension and
collaboration”. Software Impacts, 6, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100034.

[Hasselbring et al. 2020d] W. Hasselbring, A. van Hoorn: “Kieker: A monitoring framework for software engineering research”.
Software Impacts, 5 . pp. 1-5, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100019

[Johanson & Hasselbring 2017] A. Johanson, W. Hasselbring: “Effectiveness and efficiency of a domain-specific language for high-
performance marine ecosystem simulation: a controlled experiment”, In: Empirical Software Engineering 22 (8). pp. 2206-2236,
2017. DOI https://doi.org/10.1007/s10664-016-9483-z

[Johanson & Hasselbring 2018] A. Johanson, W. Hasselbring: “Software Engineering for Computational Science: Past, Present, Future”,
In: Computing in Science & Engineering, 2018. DOI https://doi.org/10.1109/MCSE.2018.021651343

[Jung et al. 2021] R. Jung, S. Gundlach, S. Simonov, W. Hasselbring: “Developing Domain-Specific Languages for Ocean Modeling”. In:
Software Engineering 2021 Satellite Events, http://ceur-ws.org/Vol-2814/

[Merali 2010] Z. Merali, “Computational Science: Error, Why Scientific Programming Does Not Compute,” Nature, vol. 467, no. 7317,
2010, pp. 775-777

[Peng 2011] R.D. Peng, “Reproducible Research in Computational Science,” 334(6060), pp. 1226-1227, 2011
[Randell 2018] B. Randell: 50 years of Software Engineering. May 2018, https://arxiv.org/abs/1805.02742

[Reussner et al. 2019] R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser, J. Keim, L. Martin, L. (Eds.): “Managed Software
Evolution”, Springer, 2019. DOI https://doi.org/10.1007/978-3-030-13499-0

[Zirkelbach et al. 2019] Zirkelbach, C., Krause, A. und Hasselbring, W.: “Modularization of Research Software for Collaborative Open
Source Development”, In: The Ninth International Conference on Advanced Collaborative Networks, Systems and Applications
(COLLA 2019), June 30 - July 04, 2019, Rome, Italy.

	FAIR and Open Research Software��Based on: W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “From FAIR Research Data toward FAIR and Open Research Software”, it - Information Technology, 2020. �DOI https://doi.org/10.1515/itit-2019-0040
	Research Software
	Agenda
	Characteristics of Research Software
	Characteristics of Research Software
	SE for Computational Science ?
	Mutual Ignorance: Software Engineering
	Mutual Ignorance: Computational Science
	Modular�Scientific�Code
	Modular Scientific Code
	So, SE for �Computational Science
	Foliennummer 12
	Agenda
	Foliennummer 14
	Research Software Publishing
	Research Software Publishing Practices
	Research Software Publishing Practices
	Covered Research Areas
	Sustainability of Research Software
	Sustainability of Research Software
	Categories of Research Software
	Agenda
	Reproducible Research in Computational Science
	Agenda
	Foliennummer 25
	Example Experimental “Reproducibility Data” in Software Engineering
	Foliennummer 27
	Foliennummer 28
	Some numbers for ICPE 2018
	Foliennummer 30
	Impact of Artifact Evaluation
	Agenda
	Open Science for Research Software
	Recommendations for FAIR Research Software [Hasselbring et al. 2020b]
	Modularization of Earth-system simulation software
	Live Trace Visualization Tool
	3D Application Visualization with
	Summary & Outlook
	Foliennummer 39
	Thanks!
	References�
	References�
	Threads to Validity

