
FAIR and Open Research Software

Based on: W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T.
Tiropanis: “From FAIR Research Data toward FAIR and Open

Research Software”, it - Information Technology, 2020.
DOI https://doi.org/10.1515/itit-2019-0040

Wilhelm (Willi) Hasselbring

Software Engineering
http://se.informatik.uni-kiel.de

FAU Erlangen-Nürnberg, November 11th 2022

1

https://doi.org/10.1515/itit-2019-0040

Research Software
• Research software is software

• that is employed in the scientific discovery process or
• a research object itself.

• Computational science (also scientific computing)
involves the development of research software

• for model simulations and
• data analytics
to understand natural systems answering questions that
neither theory nor experiment alone are equipped to
answer.

2

Agenda

1. Research Software
• Characteristics
• Mutual ignorance

2. Research Software Publishing
3. Open Science

• For Computational Science
• For Computer Science / Software Engineering: Artifact Evaluation

4. FAIR and Open Research Software
5. Summary & Outlook

3

Characteristics of Research Software
• Functional Requirements are not known up front

• And often hard to comprehend without some PhD in science

• Verification and validation are difficult,
• and strictly scientific

• Overly formal software processes restrict research

4 [Johanson & Hasselbring 2018]

Characteristics of Research Software

• Software quality requirements
• Jeffrey Carver and colleagues22 found that scientific software developers rank the

following characteristics as the most important, in descending order [Carver et al.
2007]:

1. functional (scientific) correctness,
2. performance,
3. portability, and
4. maintainability.

• Research software in itself has no value
• Not really true for community software

• Few scientists are trained in software engineering
• Disregard of most modern software engineering

methods and tools

5

SE for Computational Science ?

6http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html [Randell 2018]

Mutual Ignorance: Software Engineering
Software Engineering and Computer Science for Generality [Randell 2018]:

• “That NATO was the sponsor of this conference marks the relative distance of software
engineering from computation in the academic context.

• The perception was that while errors in scientific data processing applications might be a
‘hassle,’ they are all in all tolerable.

• In contrast, failures in mission-critical military systems might cost lives and substantial
amounts of money.

• Based on this attitude, software engineering—like computer science as a whole— aimed
for generality in its methods, techniques, and processes and focused almost exclusively
on business and embedded software.

• Because of this ideal of generality, the question of how specifically computational
scientists should develop their software in a well-engineered way would
probably have perplexed a software engineer, whose answer might
have been:

• ‘Well, just like any other application software.’ ”

7

Mutual Ignorance: Computational Science
The Productivity Crisis in Computational Science
• As early scientific software was developed by small teams of scientists primarily for their

own research, modularity, maintainability, and team coordination could often be
neglected without a large impact.

The Credibility Crisis in Computational Science:
• Climategate. The scandal erupted after hackers leaked the email correspondence of

scientists just before the 2009 United Nations Climate Change Conference.
• While the accusations that data was forged for this conference turned out to be

unfounded, the emails uncovered a lack of programming skills among the researchers
and exposed to a large public audience the widely applied practice in climate science of
not releasing simulation code and data together with corresponding publications
[Merali 2010].

• This in itself was, of course, enough to undermine the scientists’
work, as the predictive capabilities of simulations are only as
good as their code quality and their code was not even
available for peer review—not to mention public review
[Fuller and Millett 2011].

8

Modular
Scientific
Code

Highlights
• Ch4-project is a fluid dynamics code used in academia for the study of

fundamental problems in fluid mechanics.
• It has contributed to the understanding of global scaling laws in non-ideal

turbulent thermal convection.
• It has been used for the characterisation of statistical properties of bubbles and

particles in developed turbulence.
• It is currently employed for a variety for research projects on inertial particle

dynamics and convective melting.
• Its modular code structure allows for a low learning threshold and to easily

implement new features.
9

Modular Scientific Code
[Calzavarini 2019]:
“A dream for principal investigators in this field is to not have to deal
with different (and soon mutually incompatible) code versions for each
project and junior researcher in his/her own group.
• In this respect an object-oriented modular code structure would be

the ideal one,
• but this makes the code less prone to modifications by the less experienced

users.
• The choice made here is to rely on a systematic use of

C language preprocessing directives and on a
hierarchical naming convention in order to
configure the desired simulation setting in a
module-like fashion at compiling time.”

10

So, SE for
Computational Science
[Johanson & Hasselbring 2018]:
• Among the methods and

techniques that software
engineering can offer to
computational science are

• testing without test oracles,
• modular software architectures,

and
• model-driven software engineering

with domain-specific languages.
• This way, computational science may achieve

maintainable, long-living software
[Goltz et al., 2015; Reussner et al. 2019],

• in particular for community software.

11

• Programming / Coding
• Fortran, C++, Python, R, etc
• Using compilers, interpreters, editors, etc

• Using version control (git etc)
• Team coordination (GitHub, Gitlab, etc)
• Continuous integration (Jenkins, etc)
• https://software-carpentry.org/

12

Agenda

1. Research Software
• Characteristics
• Mutual ignorance

2. Research Software Publishing
3. Open Science

• For Computational Science
• For Computer Science / Software Engineering: Artifact Evaluation

4. FAIR and Open Research Software
5. Summary & Outlook

13

14

[Hasselbring et al. 2020a]

Research Software Publishing
• Relating research software to research publications:

15

Research software is identified either by
• research publications that cite software repositories or
• software repositories that cite research publications.

Research Software Publishing Practices

16 [Hasselbring et al. 2020a]

Research Software Publishing Practices

17
[Hasselbring et al. 2020a]

Covered Research Areas

A first interesting observation is that our three data sets cover quite different
research areas:
• The GitHub research software set is drawn mainly from the computational

sciences, particularly the life sciences.
• The ACM research software set is dominated by software engineering,

information systems, social and professional topics and human-centered
computing.

• The arXiv research software set is dominated by computer science
topics,

• which is mainly composed of AI topics (computer vision,
machine learning, computational linguistics, Figure 2d).

18

Sustainability of Research Software
• Research software publishing practices in computer science and in computational

science show significant differences:
• computational science emphasizes reproducibility,
• computer science emphasizes reuse.

19

Lifespan of Github repositories cited in
computer science publications

Lifespan of Github repositories cited in
computational science publications

[Hasselbring et al. 2020a]

Sustainability of Research Software
• The computer science software repositories’ lifespan is distributed with a median of 5

years.
• Our hypothesis is that in computer science research, often commercial open-source software

frameworks are employed.
• These software frameworks are maintained over long times by employees of the associated

companies.

• The computational science software repositories’ lifespan has a distribution with a
median lifespan of 15 days. A third of these repositories are live for less than 1 day.

• Our hypothesis is that in computational science research, often the research software is only
published when the corresponding paper has been published. The software is then not further
maintained at GitHub, but at some private place as before (if it is further maintained at all).

• The arXiv repositories are somewhere in between with a median of 8
months lifespan. Furthermore, 75% of the arXiv repositories are live.

• Our hypothesis is that the attitude of publishing as early as possible in parts of
the artificial intelligence community also motivates the researchers to develop
their research software openly from the start of research projects.

20

Categories of Research Software
We observe different categories and relationships between research publications
and research software:
• Software as an output of research, collaboratively constructed and maintained

through an active open source community.
• Software as an output of research, privately developed but published openly

and abandoned after publication.
• Software itself as an object of study or analysis.
• Software that then leads to a fork (in GitHub) that is independently

developed as a research output and published openly (if successful,
it may be fed back into the original project via pull requests).

• Software used as a tool or framework to do the research.
Besides these relationships, software is cited as related work,
background, or example.

21

Agenda

1. Research Software
• Characteristics
• Mutual ignorance

2. Research Software Publishing
3. Open Science

• For Computational Science
• For Computer Science / Software Engineering: Artifact Evaluation

4. FAIR and Open Research Software
5. Summary & Outlook

22

Reproducible Research in Computational
Science

23

“Replication is the ultimate standard by which scientific
claims are judged.”

[Peng 2011]

Agenda

1. Research Software
• Characteristics
• Mutual ignorance

2. Research Software Publishing
3. Open Science

• For Computational Science
• For Computer Science / Software Engineering: Artifact Evaluation

4. FAIR and Open Research Software
5. Summary & Outlook

24

25

“Science advances faster when we can build on existing results,
and when new ideas can easily be measured against the state of
the art.”
Repeatability, replicability & reproducibility
Several ACM SIGMOD, SIGPLAN, and SIGSOFT conferences have
initiated artifact evaluation processes.

Example Experimental “Reproducibility Data”
in Software Engineering

26

[Waller and Hasselbring 2012] [Eichelberger et al. 2016]

27 https://www.acm.org/publications/artifacts

28
28

Report: Artifact Evaluation Track

Wilhelm (Willi) Hasselbring
Kiel University, Germany

Petr Tuma
Charles University, Czech Republic

Some numbers for ICPE 2018

• 59 submitted full research papers
• 14 accepted full research papers
• 6 submitted artifacts
• 2 accepted artifacts, evaluated as functional
• 0 accepted artifacts, evaluated as reusable

• It seems that repeatability and reproducibility of performance
research results brings specific challenges

• However, it is also of particular importance to this field
• Is it worth making the effort?

29

30

“Science advances faster when we can build on existing
results, and when new ideas can easily be measured against
the state of the art.”

[Krishnamurthi & Vitek 2015]

Impact of Artifact Evaluation

31

[Childers & Chrysanthis 2017]

Agenda

1. Research Software
• Characteristics
• Mutual ignorance

2. Research Software Publishing
3. Open Science

• For Computational Science
• For Computer Science / Software Engineering: Artifact Evaluation

4. FAIR and Open Research Software
5. Summary & Outlook

32

Open Science for Research Software

33

1. Findable
• Software citation
• Domain-specific Metadata

2. Accessible
• GitHub etc. for use and involvement
• Zenodo etc. for archival

3. Interoperable
• Obey to standards.
• Proper interfaces in modular software

4. Reusable
• Artifact evaluations support this.
• Domain-specific languages may help with comprehensibility
• Modular software architecture allow for reusing parts

Recommendations for FAIR Research
Software [Hasselbring et al. 2020b]

34

Modularization of Earth-system simulation software

35

Software Modularization

How to
• improve maintainability, stability, reusability, reproducibility, … ?
• enable scalable execution in the Cloud?
• parallelize for high performance and

exascale computing?
• test for higher quality?
• achieve higher flexibility?

Live Trace Visualization Tool

• Program- and system comprehension for software engineers
• Started as a Ph.D project in 2012
• Open Source from the beginning (Apache License, Version 2.0)
• Continuously extended over the years
• [Fittkau et al. 2013, 2015a-d, 2017; Krause et al. 2018, 2020;

Zirkelbach et al. 2019, 2020;
Hasselbring et al. 2020c]

• https://ExplorViz.dev
https://github.com/ExplorViz

• See also Kieker [Hasselbring et al. 2020d]
https://www.performance-symposium.org/2022/

36

https://explorviz.dev/
https://github.com/ExplorViz
https://www.performance-symposium.org/2022/

3D Application Visualization with

37

A: opened and pinned
B: pinged
C: highlighted

Summary & Outlook
• On the basis of an examination of the historical development of the relationship

between software engineering and computational science (the past),
• we identified key characteristics of scientific software development (the present).

• We examined attempts to bridge the gap in order to reveal the shortcomings of
existing solutions and indicate further research directions (the possible future),

• such as the use of domain-specific software engineering methods (OceanDSL project).

• Modularity is essential for maintainability, scalability and agility
• also for reusability
• also for testability

• Open Science also for Computer Science / Software Engineering
research itself

• “Eat your own dog food”
• Follow the FAIR principles and publish research software open source

38

deRSE23 - Conference for Research Software Engineering in Germany
20-21 Feb 2023 Paderborn (Germany)
https://de-rse23.sciencesconf.org/
Contribution Deadline: Nov. 21st 2022
Associated to:

https://se-2023.gi.de/

39

https://de-rse23.sciencesconf.org/
https://se-2023.gi.de/

Thanks!

40

References
[Calzavarini 2019] E. Calzavarini: “Eulerian–Lagrangian fluid dynamics platform: The ch4-project”. In: Software Impacts 1, 2019. DOI

https://doi.org/10.1016/j.simpa.2019.100002

[Childers & Chrysanthis 2017] B.R. Childers and P.K. Chrysanthis, "Artifact Evaluation: Is It a Real Incentive?," 2017 IEEE 13th International Conference on
e-Science, 2017, pp. 488-489. http://doi.org/10.1109/eScience.2017.79

[Eichelberger et al. 2016] H. Eichelberger et al., “From reproducibility problems to improvements: A journey,” Softwaretechnik-Trends: Proceedings of the
Symposium on Software Performance (SSP'16). Vol. 36. No. 4. 2016.

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, W. Hasselbring: “Live Trace Visualization for Comprehending Large Software Landscapes: The ExplorViz
Approach“, In: 1st IEEE International Working Conference on Software Visualization (VISSOFT 2013). DOI
https://doi.org/10.1109/VISSOFT.2013.6650536

[Fittkau et al. 2015a] F. Fittkau, S. Roth, W. Hasselbring: “ExplorViz: Visual Runtime Behavior Analysis of Enterprise Application Landscapes“, In: 23rd
European Conference on Information Systems (ECIS 2015). DOI https://doi.org/10.18151/7217313

[Fittkau et al. 2015b] F. Fittkau, A. Krause, W. Hasselbring: “Hierarchical Software Landscape Visualization for System Comprehension: A Controlled
Experiment”. In: 3rd IEEE Working Conference on Software Visualization, 2015. DOI https://doi.org/10.1109/VISSOFT.2015.7332413

[Fittkau et al. 2015c] F. Fittkau, A. Krause, W. Hasselbring: “Exploring Software Cities in Virtual Reality”, In: 3rd IEEE Working Conference on Software
Visualization, 2015. DOI https://doi.org/10.1109/VISSOFT.2015.7332423

[Fittkau et al. 2015d] F. Fittkau, S. Finke, W. Hasselbring, J. Waller: “Comparing Trace Visualizations for Program Comprehension through Controlled
Experiments”, In: 23rd IEEE International Conference on Program Comprehension (ICPC 2015), May 2015, Florence. DOI
https://doi.org/10.1109/ICPC.2015.37

[Fittkau et al. 2017] F. Fittkau, A. Krause, W. Hasselbring: “Software landscape and application visualization for system comprehension with ExplorViz”, In:
Information and Software Technology. DOI 10.1016/j.infsof.2016.07.004

[Fuller and Millett 2011] S.H. Fuller and L.I. Millett, “Computing Performance: Game Over or Next Level?,” Computer, vol. 44, no. 1, 2011, pp. 31–38.

[Goltz et al., 2015] U. Goltz et al., “Design for Future: Managed Software Evolution,” Computer Science - Research and Development, vol. 30, no. 3, 2015,
pp. 321–331. DOI https://doi.org/10.1007/s00450-014-0273-9

[Hasselbring 2006] W. Hasselbring, and others: “WISENT: e-Science for Energy Meteorology”. In: Proceedings of 2nd IEEE International Conference on e-
Science and Grid Computing (e-Science'06). pp. 93-100. DOI https://doi.org/10.1109/E-SCIENCE.2006.156

[Hasselbring 2016] W. Hasselbring, “Microservices for Scalability (Keynote Presentation),” In: 7th ACM/SPEC International Conference on Performance
Engineering (ACM/SPEC ICPE 2016), March 15, 2016 , Delft, NL. DOI https://doi.org/10.1145/2851553.2858659

[Hasselbring 2018] W. Hasselbring, “Software Architecture: Past, Present, Future,” In: The Essence of Software Engineering. Springer, pp. 169-184. 2018.
DOI 10.1007/978-3-319-73897-0_10

41

References
[Hasselbring et al. 2020a] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “Open Source Research Software”. In: Computer,

53 (8), pp. 84-88. 2020. DOI https://doi.org/10.1109/MC.2020.2998235

[Hasselbring et al. 2020b] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “From FAIR Research Data toward FAIR and Open
Research Software”, it - Information Technology, 2020. DOI https://doi.org/10.1515/itit-2019-0040

[Hasselbring et al. 2020c] W. Hasselbring, A. Krause, C. Zirkelbach: “ExplorViz: Research on software visualization, comprehension and
collaboration”. Software Impacts, 6, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100034.

[Hasselbring et al. 2020d] W. Hasselbring, A. van Hoorn: “Kieker: A monitoring framework for software engineering research”.
Software Impacts, 5 . pp. 1-5, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100019

[Johanson & Hasselbring 2017] A. Johanson, W. Hasselbring: “Effectiveness and efficiency of a domain-specific language for high-
performance marine ecosystem simulation: a controlled experiment”, In: Empirical Software Engineering 22 (8). pp. 2206-2236,
2017. DOI https://doi.org/10.1007/s10664-016-9483-z

[Johanson & Hasselbring 2018] A. Johanson, W. Hasselbring: “Software Engineering for Computational Science: Past, Present, Future”,
In: Computing in Science & Engineering, 2018. DOI https://doi.org/10.1109/MCSE.2018.021651343

[Jung et al. 2021] R. Jung, S. Gundlach, S. Simonov, W. Hasselbring: “Developing Domain-Specific Languages for Ocean Modeling”. In:
Software Engineering 2021 Satellite Events, http://ceur-ws.org/Vol-2814/

[Merali 2010] Z. Merali, “Computational Science: Error, Why Scientific Programming Does Not Compute,” Nature, vol. 467, no. 7317,
2010, pp. 775–777

[Peng 2011] R.D. Peng, “Reproducible Research in Computational Science,” 334(6060), pp. 1226-1227, 2011

[Randell 2018] B. Randell: 50 years of Software Engineering. May 2018, https://arxiv.org/abs/1805.02742

[Reussner et al. 2019] R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser, J. Keim, L. Märtin, L. (Eds.): “Managed Software
Evolution”, Springer, 2019. DOI https://doi.org/10.1007/978-3-030-13499-0

[Zirkelbach et al. 2019] Zirkelbach, C., Krause, A. und Hasselbring, W.: “Modularization of Research Software for Collaborative Open
Source Development”, In: The Ninth International Conference on Advanced Collaborative Networks, Systems and Applications
(COLLA 2019), June 30 - July 04, 2019, Rome, Italy.

42

	FAIR and Open Research Software��Based on: W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “From FAIR Research Data toward FAIR and Open Research Software”, it - Information Technology, 2020. �DOI https://doi.org/10.1515/itit-2019-0040
	Research Software
	Agenda
	Characteristics of Research Software
	Characteristics of Research Software
	SE for Computational Science ?
	Mutual Ignorance: Software Engineering
	Mutual Ignorance: Computational Science
	Modular�Scientific�Code
	Modular Scientific Code
	So, SE for �Computational Science
	Foliennummer 12
	Agenda
	Foliennummer 14
	Research Software Publishing
	Research Software Publishing Practices
	Research Software Publishing Practices
	Covered Research Areas
	Sustainability of Research Software
	Sustainability of Research Software
	Categories of Research Software
	Agenda
	Reproducible Research in Computational Science
	Agenda
	Foliennummer 25
	Example Experimental “Reproducibility Data” in Software Engineering
	Foliennummer 27
	Foliennummer 28
	Some numbers for ICPE 2018
	Foliennummer 30
	Impact of Artifact Evaluation
	Agenda
	Open Science for Research Software
	Recommendations for FAIR Research Software [Hasselbring et al. 2020b]
	Modularization of Earth-system simulation software
	Live Trace Visualization Tool
	3D Application Visualization with
	Summary & Outlook
	Foliennummer 39
	Thanks!
	References�
	References�
	Threads to Validity

