
Image reconstruction in parallel MRI using wavelets

Context

- Goal: dynamical study of brain activity trough functional MRI (collaboration with NeuroSpin-CEA)
- Problem: reduce acquisition time
- Solution: parallel MRI

Parallel MRI

Model: $d = \mathbf{S} \rho + B$

- Antennas operating in parallel
- Complementary sensitivity profiles of antennas
- Subsampling in the Fourier domain
 - − d: observed data
 - S: sensitivty matrix
 - $-\rho$: image to be reconstructed
 - -B: circular Gaussian acquisition noise with zero-mean and covariance matrix Ψ

ANR project OPTIMED

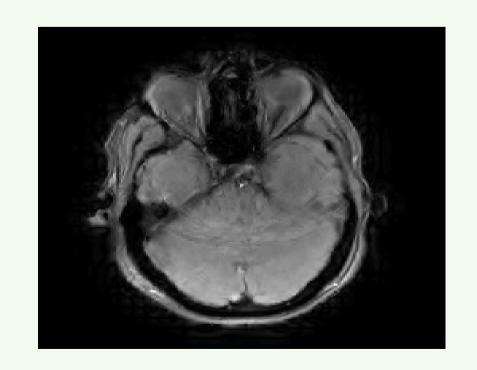
Reconstruction

• Classical solution: SENSE (weighted least squares)

$$\hat{\rho}_{WLS} = [\mathbf{S}^H \boldsymbol{\Psi}^{-1} \mathbf{S}]^{-1} \mathbf{S}^H \boldsymbol{\Psi}^{-1} d$$

- Proposed method: regularization in the wavelet domain
 - coefficients of the image to be reconstructed: \mathbf{O}_{o}
 - coefficients of the observed image: \mathbf{O}_{d}
 - coefficients estimated by maximum a posteriori:

$$\hat{\mathbf{O}}_{\rho} = \arg \max_{\mathbf{O}_{\rho}} f(\mathbf{O}_{\rho} | \mathbf{O}_{d}) = \arg \max_{\mathbf{O}_{\rho}} \left[\ln f(\mathbf{O}_{d} | \mathbf{O}_{\rho}) + \ln f(\mathbf{O}_{\rho}) \right]$$


Non necessarily convex criterion promoting the sparsity of the solution

Use of iterative proximal algorithms

Results

Classical solution SENSE

Proposed method