Random Automata

Cyril Nicaud

LIGM – Université Gustave Eiffel & CNRS

GASCOM 2024

Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is contained in another string T

▶ Both can be solved using a computer

Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is contained in another string T

- ▶ Both can be solved using a computer
- ► Only PATTERN-MATCHING can be solved using an *automaton*

Introduction

PRIMALITY: check whether a given n is a prime number

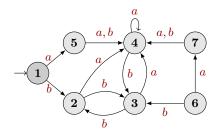
PATTERN-MATCHING: check whether a given string P is contained in another string T

- ▶ Both can be solved using a computer
- ► Only PATTERN-MATCHING can be solved using an automaton

 \rightarrow Problems that fall within automata theory possess many beneficial properties

A (deterministic and complete) automaton is a directed graph s.t.:

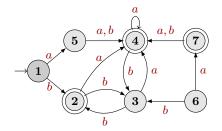
- ▶ vertices are called "states", edges are called "transitions"
- \blacktriangleright for each state and for each letter a of a fixed alphabet A, there is exactly one outgoing transition labeled by a
- ▶ there is a distinguished initial state



For every word $u \in A^*$, δ_u is the map from the set of states to itself, obtained by following the path labeled by u.

A (deterministic and complete) automaton is a directed graph s.t.:

- ightharpoonup One transition $p \xrightarrow{a} q$ outgoing from every state p for each letter a
- ► A distinguished initial state
- ► A set of final states



- ightharpoonup A word is recognized if it labels a path from the initial state to a final state in the automaton A
- ▶ The language recognized by \mathcal{A} is the set $L(\mathcal{A})$ of recognized words

A (deterministic and complete) automaton is a directed graph s.t.:

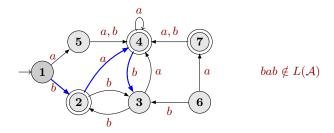
- ightharpoonup One transition $p \xrightarrow{a} q$ outgoing from every state p for each letter a
- ► A distinguished initial state
- ► A set of final states



- ightharpoonup A word is recognized if it labels a path from the initial state to a final state in the automaton \mathcal{A}
- ▶ The language recognized by A is the set L(A) of recognized words

A (deterministic and complete) automaton is a directed graph s.t.:

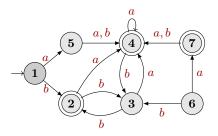
- ightharpoonup One transition $p \xrightarrow{a} q$ outgoing from every state p for each letter a
- ► A distinguished initial state
- ► A set of final states



- ▶ A word is recognized if it labels a path from the initial state to a final state in the automaton \mathcal{A}
- ▶ The language recognized by \mathcal{A} is the set $L(\mathcal{A})$ of recognized words

Accessible states, accessible automata

► State 6 and state 7 are useless (not accessible from the initial state)

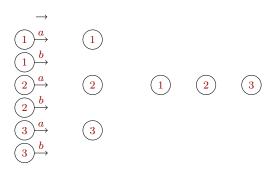


▶ An automaton is *accessible* when all its states are accessible

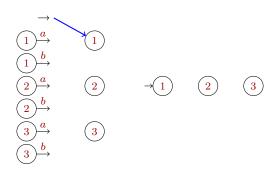
Question

Can we design an efficient algorithm to generate accessible automata with n states uniformly at random?

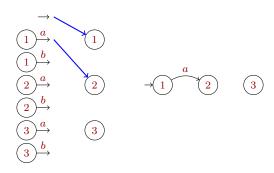
- ► Consider automata where each state, except possibly the initial one, has an incoming transition
- ► This is a necessary condition for accessibility
- ► It's a surjection from the set of "arrows" (transition or initial →) onto the set of states



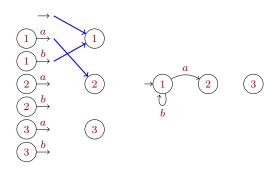
- ► Consider automata where each state, except possibly the initial one, has an incoming transition
- ► This is a necessary condition for accessibility
- ▶ It's a surjection from the set of "arrows" (transition or initial \rightarrow) onto the set of states



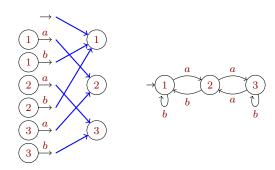
- ► Consider automata where each state, except possibly the initial one, has an incoming transition
- ► This is a necessary condition for accessibility
- ► It's a surjection from the set of "arrows" (transition or initial →) onto the set of states



- ► Consider automata where each state, except possibly the initial one, has an incoming transition
- ► This is a necessary condition for accessibility
- ► It's a surjection from the set of "arrows" (transition or initial →) onto the set of states



- ► Consider automata where each state, except possibly the initial one, has an incoming transition
- ► This is a necessary condition for accessibility
- ► It's a surjection from the set of "arrows" (transition or initial →) onto the set of states



Korshunov's theorem

Theorem [Korshunov 1978]

An asymptotically constant proportion of surjections of [kn+1] onto [n] produces accessible automata ($\approx 74.5\%$ for k=2)

We can generate such surjections:

- ▶ using the recursive method : precomputation in $\Theta(n^2)$ and generation in $\Theta(n)$ arithmetic operations [N. 2000]
- ▶ using Boltzmann sampler : $\Theta(n^{3/2})$ time for exact sampling [Bassino, N. 2006]

Korshunov's theorem

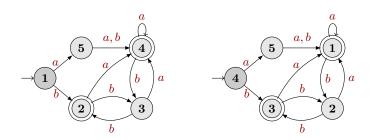
Theorem [Korshunov 1978]

An asymptotically constant proportion of surjections of [kn+1] onto [n] produces accessible automata ($\approx 74.5\%$ for k=2)

We can generate such surjections:

- ▶ using the recursive method : precomputation in $\Theta(n^2)$ and generation in $\Theta(n)$ arithmetic operations [N. 2000]
- ▶ using Boltzmann sampler : $\Theta(n^{3/2})$ time for exact sampling [Bassino, N. 2006]
- ightharpoonup Mixed method in $\Theta(n)$ [Bassino, Sportiello, 2013]
- \Rightarrow This yields efficient algorithm to generate uniform accessible n-state automata using a simple rejection algorithm

Remark: no symmetry



- ► Changing state labels doesn't change the recognized language
- ► Each state is <u>uniquely identified</u> by its minlex shortest word that labels a path from the initial state
- ightharpoonup There are n! different ways to label the states (no symmetry)
- ▶ not true for non-accessible automata

So we could have worked on partitions instead of surjections

Counting accessible automata

Theorem [Korshunov 1978]

the number of n-state accessible automata is asymptotically equivalent to

$$E_k \cdot n! \cdot {kn+1 \choose n} \cdot 2^n$$

▶ ${n \brace k}$ is the number of partitions of [n] into k parts, the Stirling numbers of the second kind: ${n \brack k} = {n-1 \brack k-1} + k {n-1 \brack k}$

Theorem [Good 1961]

We have the asymptotic equivalent for fixed k

$$\begin{Bmatrix} kn \\ n \end{Bmatrix} \sim \alpha_k \cdot \beta_k^n \cdot n^{(k-1)n-1/2}$$

Proof. Saddle point method

Regular languages

- ▶ The alphabet is Σ , e.g. $\Sigma = \{a, b\}$
- ▶ A language is a subset of Σ^*
- ► concatenation: $u \cdot v = u_0 \cdots u_{\ell-1} \cdot v_0 \cdots v_{m-1}$, extended to languages $K \cdot L = \{u \cdot v : u \in K, v \in L\}$
- ► Kleene star: concatenations of an arbitrary number of words

$$L^{\star} = \{\varepsilon\} \cup L \cup L \cdot L \cup L \cdot L \cdot L \cup \dots$$

The set \mathcal{R} of regular languages is inductively defined by \emptyset , $\{\varepsilon\}$ and $\{a\}$ are in \mathcal{R} for $a \in \Sigma$ and closed by union, concatenation and Kleene star

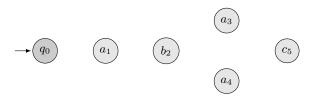
Kleene's Theorem

A language is recognized by an automaton iff it is regular

A regular expression is a formula that follows the inductive definition:

$$a \cdot b \cdot (a + a \cdot c)^* + \varepsilon$$

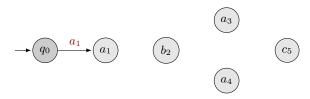
- ightharpoonup Distinguishing the letters $a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon$
- ▶ Use an initial state q_0 and one state by letter



A regular expression is a formula that follows the inductive definition:

$$a \cdot b \cdot (a + a \cdot c)^* + \varepsilon$$

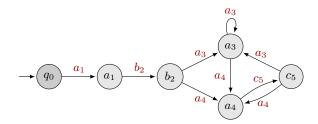
- ▶ Distinguishing the letters $a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon$
- ▶ Use an initial state q_0 and one state by letter
- ightharpoonup Add $q_0 \xrightarrow{\alpha} \alpha$ if α starts a word of the language



A regular expression is a formula that follows the inductive definition:

$$a \cdot b \cdot (a + a \cdot c)^* + \varepsilon$$

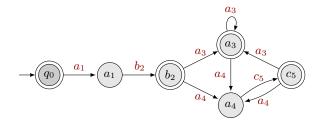
- ▶ Distinguishing the letters $a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon$
- ▶ Use an initial state q_0 and one state by letter
- ightharpoonup Add $\alpha \xrightarrow{\beta} \beta$ if $\alpha\beta$ is a factor of a word of the language



A regular expression is a formula that follows the inductive definition:

$$a \cdot b \cdot (a + a \cdot c)^* + \varepsilon$$

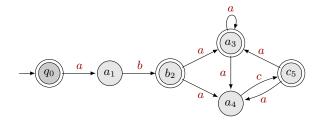
- ▶ Distinguishing the letters $a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon$
- ▶ Use an initial state q_0 and one state by letter
- $\triangleright \alpha$ is final if it ends a word of the language



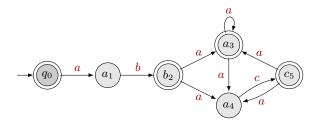
A regular expression is a formula that follows the inductive definition:

$$a \cdot b \cdot (a + a \cdot c)^* + \varepsilon$$

- ▶ Distinguishing the letters $a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon$
- ▶ Use an initial state q_0 and one state by letter
- remove the letter indices



Non-deterministic automata

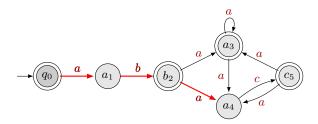


- ► This automaton is neither deterministic nor complete
- A word u is accepted by such an automaton if there is a path from an initial state to a final state labeled by u

Theorem

Non-deterministic automata and deterministic automata recognize the same languages (regular languages)

Non-deterministic automata

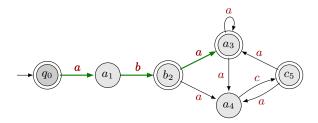


- ► This automaton is neither deterministic nor complete
- A word u is accepted by such an automaton if there is a path from an initial state to a final state labeled by u

Theorem

Non-deterministic automata and deterministic automata recognize the same languages (regular languages)

Non-deterministic automata

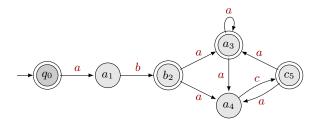


- ► This automaton is neither deterministic nor complete
- A word u is accepted by such an automaton if there is a path from an initial state to a final state labeled by u

Theorem

Non-deterministic automata and deterministic automata recognize the same languages (regular languages)

Back to Glushkov automaton



$$a \cdot b \cdot (a + a \cdot c)^* + \varepsilon$$

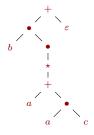
Theorem [Glushkov 1961]

A regular expression and its Glushkov automaton describe the same language

It has up to a quadratic number of transitions

Average case analysis of Glushkov's construction

► A regular expression can be seen as a *tree*, i.e. for $a \cdot b \cdot (a + a \cdot c)^* + \varepsilon$



Theorem [N. 2009]

In expectation, the Glushkov automaton of a size-n regular expression taken uniformly at random has $\mathcal{O}(n)$ transitions

 \rightarrow followed by several results on other similar constructions

Wait a minute ...

 $(a+b)^*$ is an absorbing pattern for the union + on $\Sigma = \{a,b\}$:

$$E + (a+b)^* \equiv (a+b)^* + E \equiv (a+b)^*$$

Theorem [Koechlin, N., Rotondo 2021]

The expected size of a random regular expression after applying the bottom-up simplification algorithm is bounded by a constant

Wait a minute ...

 $(a+b)^{\star}$ is an absorbing pattern for the union + on $\Sigma = \{a,b\}$:

$$E + (a+b)^* \equiv (a+b)^* + E \equiv (a+b)^*$$

Theorem [Koechlin, N., Rotondo 2021]

The expected size of a random regular expression after applying the bottom-up simplification algorithm is bounded by a constant

- ► Works for many kind of expression, when there is an absorbing pattern
- ► Works in very general uniform settings

Wait a minute ...

 $(a+b)^*$ is an absorbing pattern for the union + on $\Sigma = \{a,b\}$:

$$E + (a+b)^* \equiv (a+b)^* + E \equiv (a+b)^*$$

Theorem [Koechlin, N., Rotondo 2021]

The expected size of a random regular expression after applying the bottom-up simplification algorithm is bounded by a constant

- ► Works for many kind of expression, when there is an absorbing pattern
- ▶ Works in very general uniform settings
- \rightarrow Uniform random expressions induce a degenerate distribution on regular languages
- → What about the languages recognized by random automata?

Exercice: multiples of 6 in binary

We take $\Sigma = \{0, 1\}$ and L_6 is the language of the binary representations of multiples of 6 and ε :

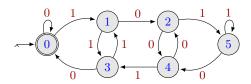
$$L_6 = \{\varepsilon, 0, 110, 0110, 1100, \ldots\}$$

Exercice: multiples of 6 in binary

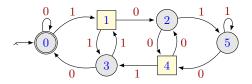
We take $\Sigma = \{0, 1\}$ and L_6 is the language of the binary representations of multiples of 6 and ε :

$$L_6 = \{\varepsilon, 0, 110, 0110, 1100, \ldots\}$$

- ightharpoonup adding a 0 on the right = multiply by 2
- ightharpoonup adding a 1 on the right = multiply by 2 and add 1



Equivalent states

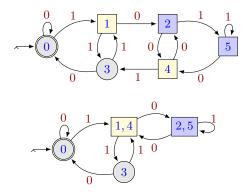


- ► State 1 and state 4 have the same "future"
- ▶ We can merge them without changing the recognized language
- ► Same for state 2 and state 5

Two states are equivalent when, placing the initial state on either of them, we recognize the same language

Minimal automaton

If we merge equivalent states, we obtain the *minimal automaton*



Theorem

The minimal automaton is the smallest deterministic and complete automaton that recognizes L(A). It is unique up to the labels of the states.

State complexity

Theorem

The minimal automaton is the smallest deterministic and complete automaton that recognizes L(A). It is unique up to the labels of the states.

There is a bijection between regular languages and their (normalized) minimal automata.

The *state complexity* of a regular language is the number of states of its minimal automaton.

Moore's state minimization algorithm

- ► The algorithm computes the minimal automaton of an automaton by approaching the state equivalence
- ▶ Two states p and q are i-equivalent, $p \sim_i q$, if they recognize the same words of length at most i
- ightharpoonup ~ 0 is easily computed
- $ightharpoonup \sim_{i+1}$ is computed from \sim_i in linear time
- $ightharpoonup \sim_n$ is the equivalence of states

Theorem [Moore 1956]

Moore's state minimization algorithm computes the minimal automaton of L(A) in $\mathcal{O}(n^2)$ time

▶ There is a $\mathcal{O}(n \log n)$ time algorithm [Hopcroft 1971]

Average case analysis

Theorem [Bassino, David, N. 2009]

The average running time of Moore's state minimization algorithm is $\mathcal{O}(n \log n)$

- ▶ The result is very robust on the shape of the automata
- For uniform random automata (not necessarily connected) it is $\mathcal{O}(n \log \log n)$ [David 2010]
- ► The algorithm is used in practice (Hopcroft's algorithm is way more complicated to implement)

Average case analysis

Theorem [Bassino, David, N. 2009]

The average running time of Moore's state minimization algorithm is $\mathcal{O}(n \log n)$

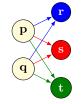
- ▶ The result is very robust on the shape of the automata
- For uniform random automata (not necessarily connected) it is $\mathcal{O}(n \log \log n)$ [David 2010]
- ► The algorithm is used in practice (Hopcroft's algorithm is way more complicated to implement)

 \rightarrow Is it good news, or is it because the distribution on regular languages is degenerated too?

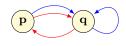
Proportion of minimal automata

Theorem (Bassino, David, Sportiello 12)

The probability that an accessible automaton taken uniformly at random is minimal tends to a positive constant if k=2 and to 1 if k > 3.



M-Pattern for k=3

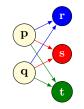


Unlikely for k=2

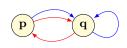
Proportion of minimal automata

Theorem (Bassino, David, Sportiello 12)

The probability that an accessible automaton taken uniformly at random is minimal tends to a positive constant if k=2 and to 1 if k > 3.



M-Pattern for k=3



Unlikely for k=2

Quite wrong justification (for uniform and independent $p \xrightarrow{\alpha}$):

$$\binom{n}{4} \frac{1}{n^4} \sim \frac{1}{4!}$$

$$\binom{n}{4} \frac{1}{n^4} \sim \frac{1}{4!} \qquad \qquad \binom{n}{5} \frac{1}{n^6} = \mathcal{O}\left(\frac{1}{n}\right) \qquad \binom{n}{2} \frac{1}{n^4} = \mathcal{O}\left(\frac{1}{n^2}\right)$$

$$\binom{n}{2} \frac{1}{n^4} = \mathcal{O}\left(\frac{1}{n^2}\right)$$

Proportion of minimal automata

Theorem (Bassino, David, Sportiello 2012)

The probability that an accessible automaton taken uniformly at random is minimal tends to a positive constant if k = 2 and to 1 if k > 3.

 \rightarrow The induced distribution on regular languages is *not degenerated*

Random (non-accessible) automata

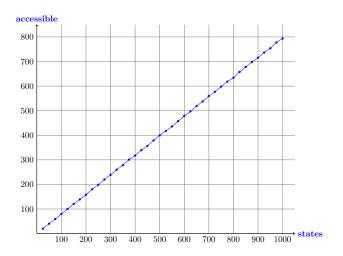
Probabilistic Settings

For given n and A, we consider the uniform distribution on all deterministic automata with n states on the alphabet A.

- ▶ 1 is the initial state
- ▶ There are exactly n^{kn} such automata, with k = |A|
- \blacktriangleright It is the same as choosing the image of every state by every letter uniformly and independently in Q

 \rightarrow Are there many accessible states?

Experiments – number of accessible states



Experiments – number of accessible states



The number of accessible states

Theorem

Let C_n be the number of accessible states in a uniform random automaton with n states. Then $\mathbb{E}[C_n] \sim \omega_k n$, where ω_k is the unique positive root of the equation $x = 1 - e^{-kx}$.

Moreover, C_n is asymptotically Gaussian, with standard deviation equivalent to $\sigma_k \sqrt{n}$.

- ► Probabilistic proof [Grusho 1973]
- ► Combinatorial proof, with a local limit [Carayol & N. 2012]
- ► Large deviations [Berend & Kontorovich 2016]
- ► Refined probabilistic study [Cai, Devroye 2017]

Random automata vs random digraphs

For $A = \{a, b\}$.

- ▶ Random automata: each state has 2 outgoing transitions
- **Random digraph (Erdős-Rényi):** each edge has probability $\frac{2}{n}$
- Let ω be the unique positive real solution of $1 x = e^{-2x}$ ($\omega \approx 0.79$)

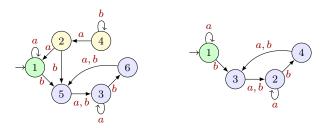
Random automaton Random digraph [Karp 1990] strongly connected 79% 21% 63% 16% 21%

Another random generation algorithm

Question

Is there an efficient algorithm to generate random **accessible** automata uniformly at random from this result?

- ▶ Idea: extract the accessible part from a random automaton
- ► Two accessible automata of the same size are generated with the same probability

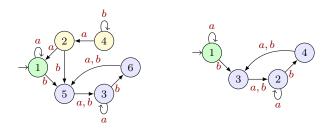


Another random generation algorithm

Question

Is there an efficient algorithm to generate random **accessible** automata uniformly at random from this result?

- ▶ Idea: extract the accessible part from a random automaton
- ► Two accessible automata of the same size are generated with the same probability



Each accessible automaton with 4 states is obtained from exactly $\binom{5}{3}6^{2\times2}$ automata, as 1 is the initial state

Random generation of accessible automata

Theorem

The expected number of accessible states in a uniform random automaton with n states is asymptotically $\sim \omega_k \, n$, with a standard deviation $\sim \sigma_k \sqrt{n}$.

- ightharpoonup Compute ω_k
- ► Repeat
 - $ightharpoonup \mathcal{A} = \operatorname{accessible}(\operatorname{random automaton}(n/\omega_k))$
- ▶ Until $|\mathcal{A}| = n$
- ► Return A

Average running time: $\mathcal{O}(n^{3/2})$

Random generation of accessible automata

Theorem

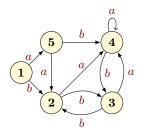
The expected number of accessible states in a uniform random automaton with n states is asymptotically $\sim \omega_k \, n$, with a standard deviation $\sim \sigma_k \sqrt{n}$.

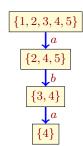
- ightharpoonup Compute α_k
- ► Repeat
 - $ightharpoonup A = accessible(random automaton(n/\alpha_k))$
- ▶ Until $|\mathcal{A}| = n \pm 1\%$
- ightharpoonup Return \mathcal{A}

Average running time: $\mathcal{O}(n)$

Synchronizing automata

- ► An automaton is **synchronizing** when there exists a word that brings every state to one and the same state
- ► Such a word is a **synchronizing word**

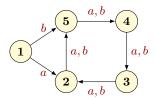




- ► aaaa is a synchronizing word
- ightharpoonup aba is a smaller synchronizing word

Synchronizing automata

- ► An automaton is **synchronizing** when there exists a word that brings every state to one and the same state
- ► Such a word is a **synchronizing word**



► This automaton is not synchronizing.

The Černý conjecture

Conjecture [Černý 1964]

A synchronizing automaton with n states admits a synchronizing word of length at most $(n-1)^2$.

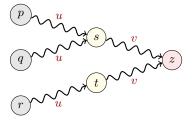
- $ightharpoonup (n-1)^2$ is best possible [Černý 1964]
- $ightharpoonup n^3$ is trivial
- ▶ better bound of $\frac{1}{6}(n^3 n)$ [Frankl 1983] [Pin 1983]
- $\blacktriangleright \approx 0.1664\,n^3$ [Szykuła 2017], $\approx 0.1654\,n^3$ [Shitov 2019]
- ▶ the conjecture holds for many families of automata

Pairwise synchronized = synchronizing

Two states p and q are synchronized if there exists a word u such that $\delta_u(p) = \delta_u(q)$

Lemma

If every pair of states is synchronized by a word of length at most ℓ then $\mathcal A$ admits a synchronizing word of length at most $(n-1)\ell$



 $u \cdot v$ synchronizes all three states

Synchronization of random automata

Question

Is a random automaton synchronizing with high probability?

Synchronization of random automata

Question

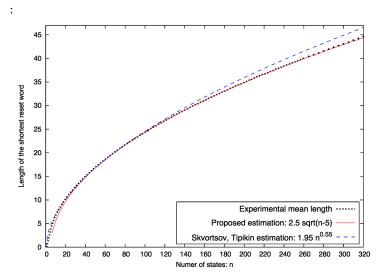
Is a random automaton synchronizing with high probability?

Theorem (Berlinkov 2016)

For alphabets with at least two letters, deterministic automata are synchronizing with high probability.

More precisely, a random automaton is not synchronizing with probability $\mathcal{O}(\frac{1}{n^{k/2}})$.

Experiments (Kisielewicz, Kowalski and Szykula 13)



The graphic comes from (Kisielewicz, Kowalski and Szykula 13)

Fast synchronization of random automata

Question

What is the length of the shortest synchronizing word of a random synchronizing automaton?

Fast synchronization of random automata

Question

What is the length of the shortest synchronizing word of a random synchronizing automaton?

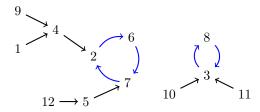
Theorem (N. 2016)

With at least two letters, with high probability a random automaton is synchronized by a word of length $\mathcal{O}(n\log^3 n)$.

→ The Černý conjecture holds with high probability

Proof idea 1/2

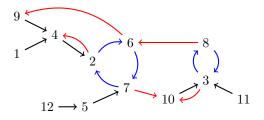
If we only consider the action of letter a it is a random mapping



- ► The cyclic part has size $\approx \sqrt{n}$
- ▶ The height is $\approx \sqrt{n}$
- ▶ Hence $u = a^{\sqrt{n}}$ maps the *n* states to a set of size $\approx \sqrt{n}$

Proof idea 2/2

If we only consider the action of letter a it is a random mapping



- $u = a^{\sqrt{n}}$ maps the *n* states to a set of size $\approx \sqrt{n}$
- ▶ From the *a*-cyclic part C_a generate the *b*-transitions
- ▶ $ba^{\sqrt{n}}$ is a (non-uniform) random mapping on C_a
- hence $v = a^{\sqrt{n}} (ba^{\sqrt{n}})^{n^{1/4}}$ maps the *n* states to a set of size $\approx n^{1/4}$

... continue until the image has size $\approx n^{1/8}$ then pairwise-synchronize the states with high probability

A better result

Theorem (Chapuy, Perarnau 2023)

With high probability a random automaton is synchronized by a word of length $\mathcal{O}(\sqrt{n}\log n)$.

- ► A random mapping is synchronizing iff it is a rooted tree
- ▶ It happens with probability $\frac{1}{n}$, by Cayley formula
- ▶ The action of the words of length $(1 + \epsilon) \log_2 n$ behave as independent uniform random mappings
- ► There are sufficiently many of them to get the result (second moment method)

 \rightarrow the technical details are complicated

A simpler proof

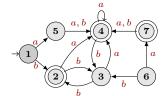
Theorem (Martinsson 2023)

With high probability at least $1 - \epsilon$ a random automaton is synchronized by a word of length $\mathcal{O}(\epsilon^{-1}\sqrt{n}\log n)$.

- $\blacktriangleright \ v = a^{\sqrt{n}} (ba^{\sqrt{n}})^{\log n}$ maps the n states to a set of size $\approx \sqrt{n}/\log n$
- ▶ States are pairwise synchronized by words of length $\mathcal{O}(\log n)$ with high probability

Open question: probabilistic lower bound?

That's all



Thank you!