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Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is
contained in another string T

▶ Both can be solved using a computer

▶ Only PATTERN-MATCHING can be solved using an
automaton

→ Problems that fall within automata theory possess many beneficial
properties
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Deterministic and complete automata

A (deterministic and complete) automaton is a directed graph s.t.:

▶ vertices are called “states”, edges are called “transitions”

▶ for each state and for each letter a of a fixed alphabet A, there is
exactly one outgoing transition labeled by a

▶ there is a distinguished initial state
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For every word u ∈ A∗, δu is the map from the set of states to itself,
obtained by following the path labeled by u.



Deterministic and complete automata

A (deterministic and complete) automaton is a directed graph s.t.:

▶ One transition p
a−→ q outgoing from every state p for each letter a

▶ A distinguished initial state
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1

2 3

45

6

7
a

b

a

b
a

b

b

a

a, b

a

b

a, b

blabla white

▶ A word is recognized if it labels a path from the initial state to a
final state in the automaton A

▶ The language recognized by A is the set L(A) of recognized words
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Accessible states, accessible automata

▶ State 6 and state 7 are useless (not accessible from the initial
state)
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▶ An automaton is accessible when all its states are accessible

Can we design an efficient algorithm to generate accessible au-
tomata with n states uniformly at random?

Question



Korshunov’s idea

▶ Consider automata where each state, except possibly the initial
one, has an incoming transition

▶ This is a necessary condition for accessibility

▶ It’s a surjection from the set of “arrows” (transition or initial →)
onto the set of states
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Korshunov’s theorem

An asymptotically constant proportion of surjections of [kn+ 1]
onto [n] produces accessible automata (≈ 74.5% for k = 2)

Theorem [Korshunov 1978]

We can generate such surjections :

▶ using the recursive method : precomputation in Θ(n2) and
generation in Θ(n) arithmetic operations [N. 2000]

▶ using Boltzmann sampler : Θ(n3/2) time for exact sampling
[Bassino, N. 2006]

▶ Mixed method in Θ(n) [Bassino, Sportiello, 2013]

⇒ This yields efficient algorithm to generate uniform accessible
n-state automata using a simple rejection algorithm
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Remark: no symmetry
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▶ Changing state labels doesn’t change the recognized language

▶ Each state is uniquely identified by its minlex shortest word that
labels a path from the initial state

▶ There are n! different ways to label the states (no symmetry)

▶ not true for non-accessible automata

So we could have worked on partitions instead of surjections



Counting accessible automata

the number of n-state accessible automata is asymptotically
equivalent to

Ek · n! ·
{
kn + 1

n

}
· 2n

Theorem [Korshunov 1978]

▶
{
n
k

}
is the number of partitions of [n] into k parts, the Stirling

numbers of the second kind:
{
n
k

}
=

{
n−1
k−1

}
+ k

{
n−1
k

}

We have the asymptotic equivalent for fixed k{
kn

n

}
∼ αk · βn

k · n(k−1)n−1/2

Theorem [Good 1961]

Proof. Saddle point method



Regular languages

▶ The alphabet is Σ, e.g. Σ = {a, b}
▶ A language is a subset of Σ∗

▶ concatenation: u · v = u0 · · ·uℓ−1 · v0 · · · vm−1, extended to
languages K · L = {u · v : u ∈ K, v ∈ L}

▶ Kleene star: concatenations of an arbitrary number of words

L⋆ = {ε} ∪ L ∪ L · L ∪ L · L · L ∪ . . .

The set R of regular languages is inductively defined by ∅, {ε} and {a}
are in R for a ∈ Σ and closed by union, concatenation and Kleene star

A language is recognized by an automaton iff it is regular

Kleene’s Theorem



Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

a · b · (a + a · c)⋆ + ε

The Glushkov automaton of a regular expression is obtained by:

▶ Distinguishing the letters a1 · b2 · (a3 + a4 · c5)⋆ + ε

▶ Use an initial state q0 and one state by letter

q0 a1 b2

a3

a4

c5
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Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:
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Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

a · b · (a + a · c)⋆ + ε

The Glushkov automaton of a regular expression is obtained by:

▶ Distinguishing the letters a1 · b2 · (a3 + a4 · c5)⋆ + ε

▶ Use an initial state q0 and one state by letter

▶ remove the letter indices
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Non-deterministic automata
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▶ This automaton is neither deterministic nor complete

▶ A word u is accepted by such an automaton if there is a path
from an initial state to a final state labeled by u

Non-deterministic automata and deterministic automata recog-
nize the same languages (regular languages)

Theorem
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Back to Glushkov automaton

q0 b2
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a · b · (a + a · c)⋆ + ε

A regular expression and its Glushkov automaton describe the
same language

Theorem [Glushkov 1961]

It has up to a quadratic number of transitions



Average case analysis of Glushkov’s construction

▶ A regular expression can be seen as a tree, i.e. for
a · b · (a + a · c)⋆ + ε

+

• ε

b •

⋆

+

a •

a c

In expectation, the Glushkov automaton of a size-n regular ex-
pression taken uniformly at random has O(n) transitions

Theorem [N. 2009]

→ followed by several results on other similar constructions



Wait a minute . . .

(a + b)⋆ is an absorbing pattern for the union + on Σ = {a, b}:

E + (a + b)⋆ ≡ (a + b)⋆ + E ≡ (a + b)⋆

The expected size of a random regular expression after applying
the bottom-up simplification algorithm is bounded by a constant

Theorem [Koechlin, N., Rotondo 2021]

▶ Works for many kind of expression, when there is an absorbing
pattern

▶ Works in very general uniform settings

→ Uniform random expressions induce a degenerate distribution on
regular languages

→ What about the languages recognized by random automata?
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Exercice: multiples of 6 in binary

We take Σ = {0, 1} and L6 is the language of the binary
representations of multiples of 6 and ε:

L6 = {ε, 0, 110, 0110, 1100, . . .}

▶ adding a 0 on the right = multiply by 2

▶ adding a 1 on the right = multiply by 2 and add 1
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Equivalent states
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▶ State 1 and state 4 have the same “future”

▶ We can merge them without changing the recognized language

▶ Same for state 2 and state 5

Two states are equivalent when, placing the initial state on either of
them, we recognize the same language



Minimal automaton

If we merge equivalent states, we obtain the minimal automaton
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The minimal automaton is the smallest deterministic and com-
plete automaton that recognizes L(A). It is unique up to the
labels of the states.

Theorem



State complexity

The minimal automaton is the smallest deterministic and com-
plete automaton that recognizes L(A). It is unique up to the
labels of the states.

Theorem

There is a bijection between regular languages and their (normalized)
minimal automata.

The state complexity of a regular language is the number of states of
its minimal automaton.



Moore’s state minimization algorithm

▶ The algorithm computes the minimal automaton of an
automaton by approaching the state equivalence

▶ Two states p and q are i-equivalent, p ∼i q, if they recognize the
same words of length at most i

▶ ∼0 is easily computed

▶ ∼i+1 is computed from ∼i in linear time

▶ ∼n is the equivalence of states

Moore’s state minimization algorithm computes the minimal au-
tomaton of L(A) in O(n2) time

Theorem [Moore 1956]

▶ There is a O(n log n) time algorithm [Hopcroft 1971]



Average case analysis

The average running time of Moore’s state minimization algo-
rithm is O(n log n)

Theorem [Bassino, David, N. 2009]

▶ The result is very robust on the shape of the automata

▶ For uniform random automata (not necessarily connected) it is
O(n log log n) [David 2010]

▶ The algorithm is used in practice (Hopcroft’s algorithm is way
more complicated to implement)

→ Is it good news, or is it because the distribution on regular
languages is degenerated too?
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Proportion of minimal automata

The probability that an accessible automaton taken uniformly
at random is minimal tends to a positive constant if k = 2 and
to 1 if k ≥ 3.

Theorem (Bassino, David, Sportiello 12)
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Proportion of minimal automata

The probability that an accessible automaton taken uniformly
at random is minimal tends to a positive constant if k = 2 and
to 1 if k ≥ 3.

Theorem (Bassino, David, Sportiello 2012)

→ The induced distribution on regular languages is not degenerated



Random (non-accessible) automata

For given n and A, we consider the uniform distribution on all
deterministic automata with n states on the alphabet A.

Probabilistic Settings

▶ 1 is the initial state

▶ There are exactly nkn such automata, with k = |A|
▶ It is the same as choosing the image of every state by every letter

uniformly and independently in Q

→ Are there many accessible states?



Experiments – number of accessible states
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The number of accessible states

Let Cn be the number of accessible states in a uniform random
automaton with n states. Then E[Cn] ∼ ωk n, where ωk is the
unique positive root of the equation x = 1 − e−kx.

Moreover, Cn is asymptotically Gaussian, with standard devia-
tion equivalent to σk

√
n.

Theorem

▶ Probabilistic proof [Grusho 1973]

▶ Combinatorial proof, with a local limit [Carayol & N. 2012]

▶ Large deviations [Berend & Kontorovich 2016]

▶ Refined probabilistic study [Cai, Devroye 2017]



Random automata vs random digraphs

For A = {a, b}.

▶ Random automata: each state has 2 outgoing transitions

▶ Random digraph (Erdős-Rényi): each edge has probability 2
n

▶ Let ω be the unique positive real solution of 1 − x = e−2x

(ω ≈ 0.79)

strongly

connected

79% 21%

Random automaton

strongly

connected

63% 16% 21%

Random digraph [Karp 1990]



Another random generation algorithm

Is there an efficient algorithm to generate random accessible
automata uniformly at random from this result?

Question

▶ Idea: extract the accessible part from a random automaton

▶ Two accessible automata of the same size are generated with the
same probability
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Each accessible automaton with 4 states is obtained from exactly(
5
3

)
62×2 automata, as 1 is the initial state
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Random generation of accessible automata

The expected number of accessible states in a uniform random
automaton with n states is asymptotically ∼ ωk n, with a stan-
dard deviation ∼ σk

√
n.

Theorem

▶ Compute ωk

▶ Repeat
▶ A = accessible(random automaton(n/ωk))

▶ Until |A| = n

▶ Return A

Average running time: O(n3/2)



Random generation of accessible automata

The expected number of accessible states in a uniform random
automaton with n states is asymptotically ∼ ωk n, with a stan-
dard deviation ∼ σk

√
n.

Theorem

▶ Compute αk

▶ Repeat
▶ A = accessible(random automaton(n/αk))

▶ Until |A| = n± 1%

▶ Return A

Average running time: O(n)



Synchronizing automata

▶ An automaton is synchronizing when there exists a word that
brings every state to one and the same state

▶ Such a word is a synchronizing word
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▶ aaaa is a synchronizing word

▶ aba is a smaller synchronizing word



Synchronizing automata

▶ An automaton is synchronizing when there exists a word that
brings every state to one and the same state

▶ Such a word is a synchronizing word
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▶ This automaton is not synchronizing.



The Černý conjecture

A synchronizing automaton with n states admits a synchroniz-
ing word of length at most (n− 1)2.

Conjecture [Černý 1964]

▶ (n− 1)2 is best possible [Černý 1964]

▶ n3 is trivial

▶ better bound of 1
6 (n3 − n) [Frankl 1983] [Pin 1983]

▶ ≈ 0.1664n3 [Szyku la 2017], ≈ 0.1654n3 [Shitov 2019]

▶ the conjecture holds for many families of automata



Pairwise synchronized = synchronizing

Two states p and q are synchronized if there exists a word u such that
δu(p) = δu(q)

If every pair of states is synchronized by a word of length at
most ℓ then A admits a synchronizing word of length at most
(n− 1)ℓ

Lemma

p

q

r

s

t

z

u

u

u

v

v

u · v synchronizes all three states



Synchronization of random automata

Is a random automaton synchronizing with high probability?

Question

For alphabets with at least two letters, deterministic automata
are synchronizing with high probability.

More precisely, a random automaton is not synchronizing with
probability O( 1

nk/2 ).

Theorem (Berlinkov 2016)
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Experiments (Kisielewicz, Kowalski and Szykula 13)

:

The graphic comes from (Kisielewicz, Kowalski and Szykula 13)



Fast synchronization of random automata

What is the length of the shortest synchronizing word of a ran-
dom synchronizing automaton?

Question

With at least two letters, with high probability a random au-
tomaton is synchronized by a word of length O(n log3 n).

Theorem (N. 2016)

→ The Černý conjecture holds with high probability
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tomaton is synchronized by a word of length O(n log3 n).

Theorem (N. 2016)

→ The Černý conjecture holds with high probability



Proof idea 1/2

If we only consider the action of letter a it is a random mapping
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▶ The cyclic part has size ≈
√
n

▶ The height is ≈
√
n

▶ Hence u = a
√
n maps the n states to a set of size ≈

√
n



Proof idea 2/2

If we only consider the action of letter a it is a random mapping
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▶ u = a
√
n maps the n states to a set of size ≈

√
n

▶ From the a-cyclic part Ca generate the b-transitions

▶ ba
√
n is a (non-uniform) random mapping on Ca

▶ hence v = a
√
n(ba

√
n)n

1/4

maps the n states to a set of size ≈ n1/4

. . . continue until the image has size ≈ n1/8 then pairwise-synchronize
the states with high probability



A better result

With high probability a random automaton is synchronized by
a word of length O(

√
n log n).

Theorem (Chapuy, Perarnau 2023)

▶ A random mapping is synchronizing iff it is a rooted tree

▶ It happens with probability 1
n , by Cayley formula

▶ The action of the words of length (1 + ϵ) log2 n behave as
independent uniform random mappings

▶ There are sufficiently many of them to get the result (second
moment method)

→ the technical details are complicated



A simpler proof

With high probability at least 1 − ϵ a random automaton is
synchronized by a word of length O(ϵ−1

√
n log n).

Theorem (Martinsson 2023)

▶ v = a
√
n(ba

√
n)logn maps the n states to a set of size ≈

√
n/ log n

▶ States are pairwise synchronized by words of length O(log n)
with high probability

Open question: probabilistic lower bound?



That’s all
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Thank you!


