
Random Automata

Cyril Nicaud

LIGM – Université Gustave Eiffel & CNRS

GASCOM 2024

Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is
contained in another string T

▶ Both can be solved using a computer

▶ Only PATTERN-MATCHING can be solved using an
automaton

→ Problems that fall within automata theory possess many beneficial
properties

Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is
contained in another string T

▶ Both can be solved using a computer

▶ Only PATTERN-MATCHING can be solved using an
automaton

→ Problems that fall within automata theory possess many beneficial
properties

Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is
contained in another string T

▶ Both can be solved using a computer

▶ Only PATTERN-MATCHING can be solved using an
automaton

→ Problems that fall within automata theory possess many beneficial
properties

Deterministic and complete automata

A (deterministic and complete) automaton is a directed graph s.t.:

▶ vertices are called “states”, edges are called “transitions”

▶ for each state and for each letter a of a fixed alphabet A, there is
exactly one outgoing transition labeled by a

▶ there is a distinguished initial state

1

2 3

45

6

7
a

b

a

b
a

b

b

a

a, b

a

b

a, b

For every word u ∈ A∗, δu is the map from the set of states to itself,
obtained by following the path labeled by u.

Deterministic and complete automata

A (deterministic and complete) automaton is a directed graph s.t.:

▶ One transition p
a−→ q outgoing from every state p for each letter a

▶ A distinguished initial state

▶ A set of final states

1

2 3

45

6

7
a

b

a

b
a

b

b

a

a, b

a

b

a, b

blabla white

▶ A word is recognized if it labels a path from the initial state to a
final state in the automaton A

▶ The language recognized by A is the set L(A) of recognized words

Deterministic and complete automata

A (deterministic and complete) automaton is a directed graph s.t.:

▶ One transition p
a−→ q outgoing from every state p for each letter a

▶ A distinguished initial state

▶ A set of final states

1

2 3

45

6

7
a

b

a

b
a

b

b

a

a, b

a

b

a, b

blabla whitebaa ∈ L(A)

▶ A word is recognized if it labels a path from the initial state to a
final state in the automaton A

▶ The language recognized by A is the set L(A) of recognized words

Deterministic and complete automata

A (deterministic and complete) automaton is a directed graph s.t.:

▶ One transition p
a−→ q outgoing from every state p for each letter a

▶ A distinguished initial state

▶ A set of final states

1

2 3

45

6

7
a

b

a

b
a

b

b

a

a, b

a

b

a, b

blabla whitebab /∈ L(A)

▶ A word is recognized if it labels a path from the initial state to a
final state in the automaton A

▶ The language recognized by A is the set L(A) of recognized words

Accessible states, accessible automata

▶ State 6 and state 7 are useless (not accessible from the initial
state)

1

2 3

45

6

7
a

b

a

b
a

b

b

a

a, b

a

b

a, b

▶ An automaton is accessible when all its states are accessible

Can we design an efficient algorithm to generate accessible au-
tomata with n states uniformly at random?

Question

Korshunov’s idea

▶ Consider automata where each state, except possibly the initial
one, has an incoming transition

▶ This is a necessary condition for accessibility

▶ It’s a surjection from the set of “arrows” (transition or initial →)
onto the set of states

1

1

2

2

3

3

1

2

3

1 2 3

a

b

a

b

a

b

a

b

a

b a

b

Korshunov’s idea

▶ Consider automata where each state, except possibly the initial
one, has an incoming transition

▶ This is a necessary condition for accessibility

▶ It’s a surjection from the set of “arrows” (transition or initial →)
onto the set of states

1

1

2

2

3

3

1

2

3

1 2 3

a

b

a

b

a

b

a

b

a

b a

b

Korshunov’s idea

▶ Consider automata where each state, except possibly the initial
one, has an incoming transition

▶ This is a necessary condition for accessibility

▶ It’s a surjection from the set of “arrows” (transition or initial →)
onto the set of states

1

1

2

2

3

3

1

2

3

1 2 3

a

b

a

b

a

b

a

b

a

b a

b

Korshunov’s idea

▶ Consider automata where each state, except possibly the initial
one, has an incoming transition

▶ This is a necessary condition for accessibility

▶ It’s a surjection from the set of “arrows” (transition or initial →)
onto the set of states

1

1

2

2

3

3

1

2

3

1 2 3

a

b

a

b

a

b

a

b

a

b a

b

Korshunov’s idea

▶ Consider automata where each state, except possibly the initial
one, has an incoming transition

▶ This is a necessary condition for accessibility

▶ It’s a surjection from the set of “arrows” (transition or initial →)
onto the set of states

1

1

2

2

3

3

1

2

3

1 2 3

a

b

a

b

a

b

a

b

a

b a

b

Korshunov’s theorem

An asymptotically constant proportion of surjections of [kn+ 1]
onto [n] produces accessible automata (≈ 74.5% for k = 2)

Theorem [Korshunov 1978]

We can generate such surjections :

▶ using the recursive method : precomputation in Θ(n2) and
generation in Θ(n) arithmetic operations [N. 2000]

▶ using Boltzmann sampler : Θ(n3/2) time for exact sampling
[Bassino, N. 2006]

▶ Mixed method in Θ(n) [Bassino, Sportiello, 2013]

⇒ This yields efficient algorithm to generate uniform accessible
n-state automata using a simple rejection algorithm

Korshunov’s theorem

An asymptotically constant proportion of surjections of [kn+ 1]
onto [n] produces accessible automata (≈ 74.5% for k = 2)

Theorem [Korshunov 1978]

We can generate such surjections :

▶ using the recursive method : precomputation in Θ(n2) and
generation in Θ(n) arithmetic operations [N. 2000]

▶ using Boltzmann sampler : Θ(n3/2) time for exact sampling
[Bassino, N. 2006]

▶ Mixed method in Θ(n) [Bassino, Sportiello, 2013]

⇒ This yields efficient algorithm to generate uniform accessible
n-state automata using a simple rejection algorithm

Remark: no symmetry

1

2 3

45
a

b

a

b
a

b

b

a

a, b

4

3 2

15
a

b

a

b
a

b

b

a

a, b

▶ Changing state labels doesn’t change the recognized language

▶ Each state is uniquely identified by its minlex shortest word that
labels a path from the initial state

▶ There are n! different ways to label the states (no symmetry)

▶ not true for non-accessible automata

So we could have worked on partitions instead of surjections

Counting accessible automata

the number of n-state accessible automata is asymptotically
equivalent to

Ek · n! ·
{
kn + 1

n

}
· 2n

Theorem [Korshunov 1978]

▶
{
n
k

}
is the number of partitions of [n] into k parts, the Stirling

numbers of the second kind:
{
n
k

}
=

{
n−1
k−1

}
+ k

{
n−1
k

}

We have the asymptotic equivalent for fixed k{
kn

n

}
∼ αk · βn

k · n(k−1)n−1/2

Theorem [Good 1961]

Proof. Saddle point method

Regular languages

▶ The alphabet is Σ, e.g. Σ = {a, b}
▶ A language is a subset of Σ∗

▶ concatenation: u · v = u0 · · ·uℓ−1 · v0 · · · vm−1, extended to
languages K · L = {u · v : u ∈ K, v ∈ L}

▶ Kleene star: concatenations of an arbitrary number of words

L⋆ = {ε} ∪ L ∪ L · L ∪ L · L · L ∪ . . .

The set R of regular languages is inductively defined by ∅, {ε} and {a}
are in R for a ∈ Σ and closed by union, concatenation and Kleene star

A language is recognized by an automaton iff it is regular

Kleene’s Theorem

Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

a · b · (a + a · c)⋆ + ε

The Glushkov automaton of a regular expression is obtained by:

▶ Distinguishing the letters a1 · b2 · (a3 + a4 · c5)⋆ + ε

▶ Use an initial state q0 and one state by letter

q0 a1 b2

a3

a4

c5

Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

a · b · (a + a · c)⋆ + ε

The Glushkov automaton of a regular expression is obtained by:

▶ Distinguishing the letters a1 · b2 · (a3 + a4 · c5)⋆ + ε

▶ Use an initial state q0 and one state by letter

▶ Add q0
α−→ α if α starts a word of the language

q0 a1 b2

a3

a4

c5
a1

Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

a · b · (a + a · c)⋆ + ε

The Glushkov automaton of a regular expression is obtained by:

▶ Distinguishing the letters a1 · b2 · (a3 + a4 · c5)⋆ + ε

▶ Use an initial state q0 and one state by letter

▶ Add α
β−→ β if αβ is a factor of a word of the language

q0 a1 b2

a3

a4

c5
a1 b2

a3

a4

a3

a4 c5

a4

a3

Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

a · b · (a + a · c)⋆ + ε

The Glushkov automaton of a regular expression is obtained by:

▶ Distinguishing the letters a1 · b2 · (a3 + a4 · c5)⋆ + ε

▶ Use an initial state q0 and one state by letter

▶ α is final if it ends a word of the language

q0 a1 b2

a3

a4

c5
a1 b2

a3

a4

a3

a4 c5

a4

a3

q0 b2

a3

c5

Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

a · b · (a + a · c)⋆ + ε

The Glushkov automaton of a regular expression is obtained by:

▶ Distinguishing the letters a1 · b2 · (a3 + a4 · c5)⋆ + ε

▶ Use an initial state q0 and one state by letter

▶ remove the letter indices

q0 b2

a3

c5a1

a4

a b

a

a

a

a c

a

a

Non-deterministic automata

q0 b2

a3

c5a1

a4

a b

a

a

a

a c

a

a

▶ This automaton is neither deterministic nor complete

▶ A word u is accepted by such an automaton if there is a path
from an initial state to a final state labeled by u

Non-deterministic automata and deterministic automata recog-
nize the same languages (regular languages)

Theorem

Non-deterministic automata

q0 b2

a3

c5a1

a4

a b

a

a

a

a c

a

a
a b

a

▶ This automaton is neither deterministic nor complete

▶ A word u is accepted by such an automaton if there is a path
from an initial state to a final state labeled by u

Non-deterministic automata and deterministic automata recog-
nize the same languages (regular languages)

Theorem

Non-deterministic automata

q0 b2

a3

c5a1

a4

a b

a

a

a

a c

a

a
a b

a

▶ This automaton is neither deterministic nor complete

▶ A word u is accepted by such an automaton if there is a path
from an initial state to a final state labeled by u

Non-deterministic automata and deterministic automata recog-
nize the same languages (regular languages)

Theorem

Back to Glushkov automaton

q0 b2

a3

c5a1

a4

a b

a

a

a

a c

a

a

a · b · (a + a · c)⋆ + ε

A regular expression and its Glushkov automaton describe the
same language

Theorem [Glushkov 1961]

It has up to a quadratic number of transitions

Average case analysis of Glushkov’s construction

▶ A regular expression can be seen as a tree, i.e. for
a · b · (a + a · c)⋆ + ε

+

• ε

b •

⋆

+

a •

a c

In expectation, the Glushkov automaton of a size-n regular ex-
pression taken uniformly at random has O(n) transitions

Theorem [N. 2009]

→ followed by several results on other similar constructions

Wait a minute . . .

(a + b)⋆ is an absorbing pattern for the union + on Σ = {a, b}:

E + (a + b)⋆ ≡ (a + b)⋆ + E ≡ (a + b)⋆

The expected size of a random regular expression after applying
the bottom-up simplification algorithm is bounded by a constant

Theorem [Koechlin, N., Rotondo 2021]

▶ Works for many kind of expression, when there is an absorbing
pattern

▶ Works in very general uniform settings

→ Uniform random expressions induce a degenerate distribution on
regular languages

→ What about the languages recognized by random automata?

Wait a minute . . .

(a + b)⋆ is an absorbing pattern for the union + on Σ = {a, b}:

E + (a + b)⋆ ≡ (a + b)⋆ + E ≡ (a + b)⋆

The expected size of a random regular expression after applying
the bottom-up simplification algorithm is bounded by a constant

Theorem [Koechlin, N., Rotondo 2021]

▶ Works for many kind of expression, when there is an absorbing
pattern

▶ Works in very general uniform settings

→ Uniform random expressions induce a degenerate distribution on
regular languages

→ What about the languages recognized by random automata?

Wait a minute . . .

(a + b)⋆ is an absorbing pattern for the union + on Σ = {a, b}:

E + (a + b)⋆ ≡ (a + b)⋆ + E ≡ (a + b)⋆

The expected size of a random regular expression after applying
the bottom-up simplification algorithm is bounded by a constant

Theorem [Koechlin, N., Rotondo 2021]

▶ Works for many kind of expression, when there is an absorbing
pattern

▶ Works in very general uniform settings

→ Uniform random expressions induce a degenerate distribution on
regular languages

→ What about the languages recognized by random automata?

Exercice: multiples of 6 in binary

We take Σ = {0, 1} and L6 is the language of the binary
representations of multiples of 6 and ε:

L6 = {ε, 0, 110, 0110, 1100, . . .}

▶ adding a 0 on the right = multiply by 2

▶ adding a 1 on the right = multiply by 2 and add 1

0

0
1

1
2

0

3

1 1

0
4

0 0 5

1

01

1

Exercice: multiples of 6 in binary

We take Σ = {0, 1} and L6 is the language of the binary
representations of multiples of 6 and ε:

L6 = {ε, 0, 110, 0110, 1100, . . .}

▶ adding a 0 on the right = multiply by 2

▶ adding a 1 on the right = multiply by 2 and add 1

0

0
1

1
2

0

3

1 1

0
4

0 0 5

1

01

1

Equivalent states

0

0
1

1
2

0

3

1 1

0
4

0 0 5

1

01

1

▶ State 1 and state 4 have the same “future”

▶ We can merge them without changing the recognized language

▶ Same for state 2 and state 5

Two states are equivalent when, placing the initial state on either of
them, we recognize the same language

Minimal automaton

If we merge equivalent states, we obtain the minimal automaton

0

0
1

1
2

0

3

1 1

0
4

0 0 5

1

01

1

0

0
1, 4

1
2, 5

0

0

3

1 1

0

1

The minimal automaton is the smallest deterministic and com-
plete automaton that recognizes L(A). It is unique up to the
labels of the states.

Theorem

State complexity

The minimal automaton is the smallest deterministic and com-
plete automaton that recognizes L(A). It is unique up to the
labels of the states.

Theorem

There is a bijection between regular languages and their (normalized)
minimal automata.

The state complexity of a regular language is the number of states of
its minimal automaton.

Moore’s state minimization algorithm

▶ The algorithm computes the minimal automaton of an
automaton by approaching the state equivalence

▶ Two states p and q are i-equivalent, p ∼i q, if they recognize the
same words of length at most i

▶ ∼0 is easily computed

▶ ∼i+1 is computed from ∼i in linear time

▶ ∼n is the equivalence of states

Moore’s state minimization algorithm computes the minimal au-
tomaton of L(A) in O(n2) time

Theorem [Moore 1956]

▶ There is a O(n log n) time algorithm [Hopcroft 1971]

Average case analysis

The average running time of Moore’s state minimization algo-
rithm is O(n log n)

Theorem [Bassino, David, N. 2009]

▶ The result is very robust on the shape of the automata

▶ For uniform random automata (not necessarily connected) it is
O(n log log n) [David 2010]

▶ The algorithm is used in practice (Hopcroft’s algorithm is way
more complicated to implement)

→ Is it good news, or is it because the distribution on regular
languages is degenerated too?

Average case analysis

The average running time of Moore’s state minimization algo-
rithm is O(n log n)

Theorem [Bassino, David, N. 2009]

▶ The result is very robust on the shape of the automata

▶ For uniform random automata (not necessarily connected) it is
O(n log log n) [David 2010]

▶ The algorithm is used in practice (Hopcroft’s algorithm is way
more complicated to implement)

→ Is it good news, or is it because the distribution on regular
languages is degenerated too?

Proportion of minimal automata

The probability that an accessible automaton taken uniformly
at random is minimal tends to a positive constant if k = 2 and
to 1 if k ≥ 3.

Theorem (Bassino, David, Sportiello 12)

p

q

r

s

M -Pattern for k = 2

p

q

r

s

t

M -Pattern for k = 3

p q

Unlikely for k = 2

Quite wrong justification (for uniform and independent p
α−→):(

n

4

)
1

n4
∼ 1

4!

(
n

5

)
1

n6
= O

(
1

n

) (
n

2

)
1

n4
= O

(
1

n2

)

Proportion of minimal automata

The probability that an accessible automaton taken uniformly
at random is minimal tends to a positive constant if k = 2 and
to 1 if k ≥ 3.

Theorem (Bassino, David, Sportiello 12)

p

q

r

s

M -Pattern for k = 2

p

q

r

s

t

M -Pattern for k = 3

p q

Unlikely for k = 2

Quite wrong justification (for uniform and independent p
α−→):(

n

4

)
1

n4
∼ 1

4!

(
n

5

)
1

n6
= O

(
1

n

) (
n

2

)
1

n4
= O

(
1

n2

)

Proportion of minimal automata

The probability that an accessible automaton taken uniformly
at random is minimal tends to a positive constant if k = 2 and
to 1 if k ≥ 3.

Theorem (Bassino, David, Sportiello 2012)

→ The induced distribution on regular languages is not degenerated

Random (non-accessible) automata

For given n and A, we consider the uniform distribution on all
deterministic automata with n states on the alphabet A.

Probabilistic Settings

▶ 1 is the initial state

▶ There are exactly nkn such automata, with k = |A|
▶ It is the same as choosing the image of every state by every letter

uniformly and independently in Q

→ Are there many accessible states?

Experiments – number of accessible states

states

accessible

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

Experiments – number of accessible states

accessible

hits

10 20 30 40 50 60 70 80 90 100

100

200

300

400

500

600

700

800

The number of accessible states

Let Cn be the number of accessible states in a uniform random
automaton with n states. Then E[Cn] ∼ ωk n, where ωk is the
unique positive root of the equation x = 1 − e−kx.

Moreover, Cn is asymptotically Gaussian, with standard devia-
tion equivalent to σk

√
n.

Theorem

▶ Probabilistic proof [Grusho 1973]

▶ Combinatorial proof, with a local limit [Carayol & N. 2012]

▶ Large deviations [Berend & Kontorovich 2016]

▶ Refined probabilistic study [Cai, Devroye 2017]

Random automata vs random digraphs

For A = {a, b}.

▶ Random automata: each state has 2 outgoing transitions

▶ Random digraph (Erdős-Rényi): each edge has probability 2
n

▶ Let ω be the unique positive real solution of 1 − x = e−2x

(ω ≈ 0.79)

strongly

connected

79% 21%

Random automaton

strongly

connected

63% 16% 21%

Random digraph [Karp 1990]

Another random generation algorithm

Is there an efficient algorithm to generate random accessible
automata uniformly at random from this result?

Question

▶ Idea: extract the accessible part from a random automaton

▶ Two accessible automata of the same size are generated with the
same probability

1

5 3

42

6

a

b

a, b

a

b

a

b

b

a

a, b
1

3 2

4

a

b

a, b

a

b

a, b

Each accessible automaton with 4 states is obtained from exactly(
5
3

)
62×2 automata, as 1 is the initial state

Another random generation algorithm

Is there an efficient algorithm to generate random accessible
automata uniformly at random from this result?

Question

▶ Idea: extract the accessible part from a random automaton

▶ Two accessible automata of the same size are generated with the
same probability

1

5 3

42

6

a

b

a, b

a

b

a

b

b

a

a, b
1

3 2

4

a

b

a, b

a

b

a, b

Each accessible automaton with 4 states is obtained from exactly(
5
3

)
62×2 automata, as 1 is the initial state

Random generation of accessible automata

The expected number of accessible states in a uniform random
automaton with n states is asymptotically ∼ ωk n, with a stan-
dard deviation ∼ σk

√
n.

Theorem

▶ Compute ωk

▶ Repeat
▶ A = accessible(random automaton(n/ωk))

▶ Until |A| = n

▶ Return A

Average running time: O(n3/2)

Random generation of accessible automata

The expected number of accessible states in a uniform random
automaton with n states is asymptotically ∼ ωk n, with a stan-
dard deviation ∼ σk

√
n.

Theorem

▶ Compute αk

▶ Repeat
▶ A = accessible(random automaton(n/αk))

▶ Until |A| = n± 1%

▶ Return A

Average running time: O(n)

Synchronizing automata

▶ An automaton is synchronizing when there exists a word that
brings every state to one and the same state

▶ Such a word is a synchronizing word

1

2 3

45
a

b

a

b

a

b

b

a

a

b

{1, 2, 3, 4, 5}

{2, 4, 5}

{3, 4}

{4}

a

b

a

▶ aaaa is a synchronizing word

▶ aba is a smaller synchronizing word

Synchronizing automata

▶ An automaton is synchronizing when there exists a word that
brings every state to one and the same state

▶ Such a word is a synchronizing word

1

2 3

45

a

b

a, b

a, b

a, b

a, b

▶ This automaton is not synchronizing.

The Černý conjecture

A synchronizing automaton with n states admits a synchroniz-
ing word of length at most (n− 1)2.

Conjecture [Černý 1964]

▶ (n− 1)2 is best possible [Černý 1964]

▶ n3 is trivial

▶ better bound of 1
6 (n3 − n) [Frankl 1983] [Pin 1983]

▶ ≈ 0.1664n3 [Szyku la 2017], ≈ 0.1654n3 [Shitov 2019]

▶ the conjecture holds for many families of automata

Pairwise synchronized = synchronizing

Two states p and q are synchronized if there exists a word u such that
δu(p) = δu(q)

If every pair of states is synchronized by a word of length at
most ℓ then A admits a synchronizing word of length at most
(n− 1)ℓ

Lemma

p

q

r

s

t

z

u

u

u

v

v

u · v synchronizes all three states

Synchronization of random automata

Is a random automaton synchronizing with high probability?

Question

For alphabets with at least two letters, deterministic automata
are synchronizing with high probability.

More precisely, a random automaton is not synchronizing with
probability O(1

nk/2).

Theorem (Berlinkov 2016)

Synchronization of random automata

Is a random automaton synchronizing with high probability?

Question

For alphabets with at least two letters, deterministic automata
are synchronizing with high probability.

More precisely, a random automaton is not synchronizing with
probability O(1

nk/2).

Theorem (Berlinkov 2016)

Experiments (Kisielewicz, Kowalski and Szykula 13)

:

The graphic comes from (Kisielewicz, Kowalski and Szykula 13)

Fast synchronization of random automata

What is the length of the shortest synchronizing word of a ran-
dom synchronizing automaton?

Question

With at least two letters, with high probability a random au-
tomaton is synchronized by a word of length O(n log3 n).

Theorem (N. 2016)

→ The Černý conjecture holds with high probability

Fast synchronization of random automata

What is the length of the shortest synchronizing word of a ran-
dom synchronizing automaton?

Question

With at least two letters, with high probability a random au-
tomaton is synchronized by a word of length O(n log3 n).

Theorem (N. 2016)

→ The Černý conjecture holds with high probability

Proof idea 1/2

If we only consider the action of letter a it is a random mapping

2

6

7

4

9

1

512

8

3

1110

▶ The cyclic part has size ≈
√
n

▶ The height is ≈
√
n

▶ Hence u = a
√
n maps the n states to a set of size ≈

√
n

Proof idea 2/2

If we only consider the action of letter a it is a random mapping

2

6

7

4

9

1

512

8

3

1110

▶ u = a
√
n maps the n states to a set of size ≈

√
n

▶ From the a-cyclic part Ca generate the b-transitions

▶ ba
√
n is a (non-uniform) random mapping on Ca

▶ hence v = a
√
n(ba

√
n)n

1/4

maps the n states to a set of size ≈ n1/4

. . . continue until the image has size ≈ n1/8 then pairwise-synchronize
the states with high probability

A better result

With high probability a random automaton is synchronized by
a word of length O(

√
n log n).

Theorem (Chapuy, Perarnau 2023)

▶ A random mapping is synchronizing iff it is a rooted tree

▶ It happens with probability 1
n , by Cayley formula

▶ The action of the words of length (1 + ϵ) log2 n behave as
independent uniform random mappings

▶ There are sufficiently many of them to get the result (second
moment method)

→ the technical details are complicated

A simpler proof

With high probability at least 1 − ϵ a random automaton is
synchronized by a word of length O(ϵ−1

√
n log n).

Theorem (Martinsson 2023)

▶ v = a
√
n(ba

√
n)logn maps the n states to a set of size ≈

√
n/ log n

▶ States are pairwise synchronized by words of length O(log n)
with high probability

Open question: probabilistic lower bound?

That’s all

1

2 3

45

6

7
a

b

a

b
a

b

b

a

a, b

a

b

a, b

Thank you!

