Tutorial Week &

Definition 1. The suffix trie of a string is the deterministic automaton
that recognises the set of suffixes of the string and in which two different
paths of same source always have distinct ends. Its computation starts with
the longest suffix (the word itself), and continues by adding the upcoming
suffizes one by one, in decreasing order of their length. However, this can
yield a high complexity for the construction. Thus, to accelerate the process
one adds to the data structure suffix links that, for each fork (node that
has outgoing arc of degree 2, or has a single outgoing arc but it is terminal)
corresponding to some factor av points to the vertex corresponding tov. This
provides us with an algorithm that only depends on the number of vertices
in the tree. To improve though on the running complexity of the creation of
the data structure, one can prune the tree as to compact all non forks in a
single edge, obtaining this was a suffix tree. In the end, as a final speed-up,
one uses instead of actually strings as labels for the edges, only the positions
where these factors occur, together with their lengths.

Exercise 1. Consider the following list of sequences: ababa, abcacabb,
abcacababe, and abacabacab. For each of them, construct the correspond-
ing suffix trie. Next, construct the suffix tree of each string and append the
corresponding suffix links.

What is the complexity of each of the algorithms discussed here?

Solution: The list of ordered suflixes of ababa is:

Rank 4 Suff(ababa)
0 4 a
1 2 aba
2 0 ababa
3 3 ba
4 1 baba

The trie corresponding to the list of suffixes of ababa is depicted next:

@Z@b@a@b@“@

' OO0+ 0

The following picture depicts the suffix tree associated to the string
ababa, together with its corresponding suffix links:

I,—<-\T<Z> (3,2) (E) (1,2) (E)

0,1) 7= ,

I
\

The list of ordered suffixes of abcacabb is:

Rank 4 Suff(abcacabb)
0 abb

abcacabb

acabb

b

bb

bcacabb

cabb

cacabb

N OO WD

The trie corresponding to the list of suffixes of abcacabb is depicted next:

The following picture depicts the suffix tree associated to the string
abcacabb, together with its corresponding suffix links:

'g;)/
(1,1) /\%,1)
o }\5/ (2,6) @
Ty o)
oD v\ ©

(7,1)

2.2)

The list of ordered suflixes of abcacababe is:

Rank Suff (abcacababe)
0 ababc

abc

abcacababc

acababc

babc

be

beacababe

c

cababc

cacababc

0O Ui Wi+
~.

N © —= 00O WO I Ut

Ne)

The trie corresponding to the list of suffixes of abcacababc is depicted next:

OCOZ0)
| @O OO
@&%@4@%%
- %%@@@@@%
%%0
@T%@%
D@ @@ @0

The following picture depicts the suffix tree associated to the string
abcacababe, together with its corresponding suffix links:

3

The list of ordered suffixes of abacabacab is:

Rank ¢ Suff(abacabacab)
0 ab

abacab

abacabacab

acab

acabacab

b

bacab

bacabacab

cab

cabacab

© 00 O U Wi

The trie corresponding to the list of suffixes of abacabacab is depicted next:
(=) : .—&)
4;‘ b /E;\ <:> = ﬁﬂ\ a 25 <:>

@a@c@a@b@

The following picture depicts the suffix tree associated to the string
abacabacab, together with its corresponding suffix links:

To construct a basic Suffix trie we need On? time, where n denotes the
length of the string. When we do it in a smarter way, using suffix links,
we will need O(|Q]) time, where |Q| denotes the number of nodes of our
automaton. The construction of the suffix tree can be accelerated when
using pairs, as at no point there is the need to read the whole sequences,
yielding a running time of O(nlog|A|), where |A| denotes the number of
elements in our alphabet. [|

