Tutorial Week 5

Definition 1. The Dictionary Matching Automaton, $\mathcal{D}(X)$, it accepts the language A^*X , where X is a set of patterns, and is defined by:

- set of states is Pref(X); initial state is the empty string;
- set of terminal states is $\operatorname{Pref}(X) \cap A^*X$
- arcs are of the form (u, a, h(ua)), where h(ua) is the longest suffix of ua that belongs to $\operatorname{Pref}(X)$

The trie, $\mathcal{T}(X)$, associated to the set X is the digital tree whose branches are labelled by strings of X (it contains only forward arcs). $\mathcal{T}(X)$ is the basis of the Dictionary Matching Automaton, $\mathcal{D}(X)$.

Exercise 1. Consider now the following sets of patterns: $X_1 = \{aa, abab, abaab, abba\};$ $X_2 = \{aab, abb, aaba, abab\}.$

For each of the sets do the following:

a) Draw their corresponding tries.

b) Give the failure table of each trie; what is that and how do you obtain it?

c) Draw their corresponding representation of the Dictionary Matching Automaton, including its failure links and final states.

Exercise 2. Consider now the set of patterns $X = \{aa, abab, abaab, abba\}$ (this is X_1 from the previous exercise) and the text y = abababaababbaaabbabaa.Fill up the following table, corresponding to the searching phase (use of the optimised failure function - note that this might generate several states for one value of j). Please underline all final states.

j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
y[j]		a	b	a	b	a	b	a	a	b	a	b	b	a	a	a	b	b	a	b	a
state	0																				