
Tutorial Week 4

Exercise 1. The following algorithm calculates the table of prefixes of a
string x of length m. The value of position s in the table of prefixes of x is
given by the longest common prefix of x and its suffix starting at position s.

Algorithm 1 Compute table of prefixes(string x; integer m)

1: pref[0] = m
2: g = 0
3: f = 1
4: for i = 1 to m− 1 do
5: if i < g and pref[i− f ] 6= g − i then
6: pref[i] = min(pref [i− f ], g − i)
7: else
8: g = max(g, i)
9: f = i

10: while g < m and x[g] == x[g − f ] do
11: g = g + 1
12: end while
13: pref[i] = g − f
14: end if
15: end for
16: return pref

For each string, fill up the values in the following table of prefixes.

strings 0 1 2 3 4 5 6 7 8 9 10

ababa

abcacabb

abcacababc

abacabacab

What is the complexity of the algorithm?

Solution:

strings 0 1 2 3 4 5 6 7 8 9

ababa 5 0 3 0 1

abcacabb 8 0 0 1 0 2 0 0

abcacababc 10 0 0 1 0 2 0 3 0 1

abacabacab 10 0 1 0 6 0 1 0 2 0

1



The algorithm runs in time Θ(m) with less than 2m comparisons between
the letters of the string x.

Exercise 2. Consider the Boyer-Moore search algorithm, that finds a pat-
tern x of length m in a text y of length n (one of the standard benchmark for
the practical string search literature). This algorithm uses two ingredients:
bad character heuristics and (strong) good suffix heuristics.

Algorithm 2 BM(string x, y; integer m,n)

1: pos = 0
2: while pos ≤ n−m do
3: i = m− 1
4: while i ≥ 0 and x[i] == y[pos + i] do
5: i = i− 1
6: end while
7: if i == −1 then
8: output: x ‘occurs in’ y ‘at position’ pos
9: pos = pos + period(x)

10: else
11: pos = pos + max(d[i], DA[y[pos + i]]−m+ i+ 1)
12: end if
13: end while

The following algorithm implements the bad-character rule. Basically,
this returns for each symbol of the alphabet, the length of the shift, consid-
ering the last occurrence.

Algorithm 3 Compute DA(string x; integer m)

1: for all σ in Σ do
2: DA[σ] = m
3: end for
4: for i = 0 to m− 2 do
5: DA[x[i]] = m− i− 1
6: end for
7: return DA

Fill up the bad-character table for each of the following patterns ababa,
abcacabb, abcacababc, and abacabacab.

2



DA[i] a b c

ababa

abcacabb

abcacababc

abacabacab

In the Boyer-Moore algorithm one also needs a displacement table. To
compute this table for a given string (aka. the pattern) one needs to make
use of the table of suffixes of the string, which is computed analogous to the
table of prefixes for that string. Fill in the table of suffixes associated to each
of the patterns ababa, abcacabb, abcacababc, and abacabacab.

suff[i] 0 1 2 3 4 5 6 7 8 9

ababa

abcacabb

abcacababc

abacabacab

a) What is the worst case running time of the algorithm when the pattern
is not present in the text.
b) What is the worst case running time of the algorithm when the pattern
is present in the text.
c) Considering the pattern x = aba and the text y = abcacacabac, and the
displacement table associated to the pattern.

0 1 2

suff[i]

d[i] 2 2 1

Run the Boyer-Moore algorithm and fill up the values of the following
table, including repeats (even if you repeat values, you need to see how pos
and i increase and decrease, respectively).

pos

i

Solution:

DA[i] a b c

ababa 2 1 5

abcacabb 2 1 3

abcacababc 2 1 5

abacabacab 1 4 2

3



suff[i] 0 1 2 3 4 5 6 7 8 9

ababa 1 0 3 0 5

abcacabb 0 1 0 0 0 0 1 8

abcacababc 0 0 3 0 1 0 0 0 0 10

abacabacab 0 2 0 0 0 6 0 0 0 10

a) The worst case running time of the algorithm when the pattern is not
present in the text is O(n+m).
b) The worst case running time of the algorithm when the pattern is present
in the text is O(mn).
c) Considering the pattern x = aba and the text y = abcacacabac, fill up the
values of the following table, considering the following displacement table
associated to the pattern.

0 1 2

suff[i] 1 0 3

d[i] 2 2 1

Furthermore, one needs also the bad-character table DA for aba.

DA[i] a b c

aba 2 1 3

Now we can go through the algorithm and fill up the table.

pos 0 3 3 5 5 7 7 7 7 9

i 2 2 1 2 1 2 1 0 −1 −1

Exercise 3. Construct for each of the following strings, their corresponding
string matching automaton: ababa, abcacabb, abcacababc, abacabacab. Give
the table of transitions. How many backward arcs has each automaton?

Solution: In this solution each state is represented by the corresponding
prefix of the string, while the final state is underlined. An easy way to find
out the number of backward arcs, is go through the transition table and
count in each column how many expressesstates not longer

states ε/0 a ab aba abab ababa

a a a aba a ababa a

b 0 ab 0 abab 0 abab

4



The automaton has 4 backward arcs.

states ε/0 a ab abc abca abcac abcaca abcacab abcacabb

a a a a abca a abcaca a a 0

b 0 ab 0 0 ab 0 abcacab abcacabb 0

c 0 0 abc 0 abcac 0 0 abc 0

The automaton has 7 backward arcs.

states ε/0 a ab abc abca abcac abcaca abcacab abcacaba abcacabab abcacababc

a a a a abca a abcaca a abcacaba a a abca

b 0 ab 0 0 ab 0 abcacab 0 abcacabab 0 0

c 0 0 abc 0 abcac 0 0 abc 0 abcacababc 0

The automaton has 9 backward arcs.

states ε/0 a ab aba abac abaca abacab abacaba abacabac abacabaca abacabacab

a a a aba a abaca a abacaba a abacabaca a abacaba

b 0 ab 0 ab 0 abacab 0 ab 0 abacabacab 0

c 0 0 0 abac 0 0 0 abacabac 0 0 0

The automaton has 8 backward arcs.

5


