Tutorial Week 4

Exercise 1. The following algorithm calculates the table of prefizes of a
string = of length m. The value of position s in the table of prefives of x is
given by the longest common prefix of x and its suffix starting at position s.

Algorithm 1 Compute table of prefixes(string x; integer m)

1: pref[0] =m

2:.9g=0

3 f=1

4: fori=1tom—1do

5. if i < g and pref[i — f] # g — i then
6 pref[i| = min(pref[i — f],g — )

7. else

8: g = max(g,1)

9: f=i

10: while g < m and z[g] == z[g — f] do
11: g=g+1

12: end while

13: prefi] =g — f

14:  end if

15: end for

16: return pref

For each string, fill up the values in the following table of prefizes.

strings 0111234 |5|6]7[8|9]10

ababa

abcacabb

abcacababce

abacabacab

What is the complexity of the algorithm?

Solution:
strings 0111213[4|5]|6]7]8|9
ababa 5103011
abcacabb 810[0(1]0]2|0/0
abcacababe | 10 |0 |0 |1 |0 |2 3101
abacabacab | 10 |0 |1 [0 6|0 |10 |2




The algorithm runs in time ©(m) with less than 2m comparisons between
the letters of the string x. [ |

Exercise 2. Consider the Boyer-Moore search algorithm, that finds a pat-
tern x of length m in a text y of length n (one of the standard benchmark for
the practical string search literature). This algorithm uses two ingredients:
bad character heuristics and (strong) good suffix heuristics.

Algorithm 2 BM(string z,y; integer m, n)
1: pos=10
2: while pos <n —m do
3: t=m-—1

4:  while i > 0 and z[i]| == y[pos + i| do

5: 1=1—1

6: end while

7. if i == —1 then

8: output: z ‘occurs in’ y ‘at position’ pos

9: pos = pos + period(z)

10:  else

11: pos = pos + max(d[i], DA[y[pos +i]] —m + i+ 1)
12:  end if

13: end while

The following algorithm implements the bad-character rule. Basically,
this returns for each symbol of the alphabet, the length of the shift, consid-
ering the last occurrence.

Algorithm 3 Compute DA (string x; integer m)

for all o in ¥ do
DAlo] =m

end for

for i =0tom—2do
DA[z[i]]=m—1—1

end for

return DA

Fill up the bad-character table for each of the following patterns ababa,
abcacabb, abcacababe, and abacabacab.



DA[i] albl|c
ababa

abcacabb

abcacababe

abacabacab

In the Boyer-Moore algorithm one also needs a displacement table. To
compute this table for a given string (aka. the pattern) one needs to make
use of the table of suffizes of the string, which is computed analogous to the
table of prefixes for that string. Fill in the table of suffixes associated to each
of the patterns ababa, abcacabb, abcacababe, and abacabacab.

suffif] |0|1|2[3|4|5]|6|7|8|9
ababa

abcacabb

abcacababe

abacabacab

a) What is the worst case running time of the algorithm when the pattern
1s not present in the text.

b) What is the worst case running time of the algorithm when the pattern
1s present in the text.

c) Considering the pattern x = aba and the text y = abcacacabac, and the
displacement table associated to the pattern.

0(1]2

suff ]
di] |2 ]2]1

Run the Boyer-Moore algorithm and fill up the values of the following
table, including repeats (even if you repeat values, you need to see how pos
and i increase and decrease, respectively).

pos
;
Solution:
DA[i] al|b|c
ababa 21115
abcacabb 21113
abcacababe | 2 | 1|5
abacabacab | 1 | 4 | 2




suff ] 0[1(2|3]4|5(6|7|8]9
ababa 110[3/0]|5
abcacabb |01 ]0]0|0|0 1|8
abcacababec |00 |3 |10[1]0(0|0|0]|10
abacabacab |0 |2 [0[0|0|6|0|0|0]10

a) The worst case running time of the algorithm when the pattern is not
present in the text is O(n + m).

b) The worst case running time of the algorithm when the pattern is present
in the text is O(mn).

c¢) Considering the pattern z = aba and the text y = abcacacabac, fill up the
values of the following table, considering the following displacement table
associated to the pattern.

=l =)

suff 7]
di] |2]2|1

Furthermore, one needs also the bad-character table DA for aba.

DAli] |a | b |c
aba | 2|13

Now we can go through the algorithm and fill up the table.

pos [0 3|3 |8 |5|7|7|7| 719
v | 2212|1210 —-1]-1

Exercise 3. Construct for each of the following strings, their corresponding
string matching automaton: ababa, abcacabb, abcacababe, abacabacab. Give
the table of transitions. How many backward arcs has each automaton?

Solution: In this solution each state is represented by the corresponding
prefix of the string, while the final state is underlined. An easy way to find
out the number of backward arcs, is go through the transition table and
count in each column how many expressesstates not longer

states | €/0 | a | ab | aba | abab | ababa
a a a | aba a ababa a
b 0 ab| O abab 0 abab




The automaton has 4 backward arcs.

states | €¢/0 | a | ab | abc | abca | abcac | abcaca | abcacab | abcacabb
a a a a | abca a abcaca a a 0
b 0 ab| O 0 ab 0 abcacab | abcacabb 0
c 0 0 | abc 0 abcac 0 0 abe 0
The automaton has 7 backward arcs.
states | ¢/0 | a | ab | abc | abca | abcac | abcaca | abcacab | abcacaba | abcacabab | abcacababe
a a a a | abca a abcaca a abcacaba a a abca
b 0 ab| O 0 ab 0 abcacab 0 abcacabab 0 0
c 0 0 | abc 0 abcac 0 0 abc 0 abcacababce 0
The automaton has 9 backward arcs.
states | €/0 | a | ab | aba | abac | abaca | abacab | abacaba | abacabac | abacabaca | abacabacab
a a a | aba a abaca a abacaba a abacabaca a abacaba
b 0 ab| 0O ab 0 abacab 0 ab 0 abacabacab 0
c 0 0 0 abac 0 0 0 abacabac 0 0 0
The automaton has 8 backward arcs. [ ]




