Tutorial Week 3

Definition 1. A string is a border of another string, if the two are different
and the former occurs both as a prefiz and as a suffiz for the later. For a
string w, an integer p with 0 < p < |w| is a period of w if w has a border
of length |w| — p.

Exercise 1. Consider the following algorithm calculating the length of the
longest borders of all prefixes of a string x of length m.

Algorithm 1 Compute borders(string z; integer m)
1: MP_next[0] = —1
2: fori=0tom—1do
j = MP_nextl[i].
while 5 > 0 and z[i] # z[j] do
j = M P _next|j]
end while
MP nextli+1]=j+1
8: end for
9: return M P _next

Fill up the values in the following table of borders of prefizes, for each of
the strings.

strings 0(1(2(3[4|5]6|7]8]|9]10
ababa

abcacabb

abcacababe

abacabacab

What is the complexity of the algorithm?

Exercise 2. Consider the Morris-Pratt search algorithm, that finds a pat-
tern x of length m in o text y of length n. Consider for this, the pattern
x = aba and the text y = abcacacabac.

Algorithm 2 MP(string z,y; integer m, n)
1:1=0,7=0
2: while 7 < n do

3: while (i ==m) or (i > 0 and z[i] # y[j]) do
4 i = M P_next]i]

5: end while

6: 1=1+1

o Jg=3+1

8 if ¢ == m then

9 output: z ‘occurs in’ y ‘at position’ j — 1
10: end if

11: end while

a) Complete the following table concerning the Preprocessing phase.

strings 0| 1|23
x[i] a
MPnewt

b) Complete the following table concerning the Searching phase.

1011121314567 [8]9]10

1

c) What is the actual value that the algorithm will return?
d) What is the search phase complexity?

Exercise 3. Consider the following algorithm calculating the length of the
longest borders of all prefixes of a string x of length m, followed by a char-
acter different from the one following the prefir, and —1 otherwise.

Algorithm 3 Compute KM P_next(string x; integer m)
1: k=0
2: j = KMP next]0] = —1
3: fori=0tom—1do

4: if z[i] == z[k] then

5: K MP next[i| = KM P_next[k]
6: else

7 KMP next[i]| = k

8: do k = KM P _next[k]

9: while k& > 0 and x[i] #= x[k]
10: end if

11: k=k+1

12: end for

13: KMP _nextim| =k
14: return KM P _next

Fill up the values in the following K M P_next table, for each string.

strings 0111234 |5|6]7[8|9]10

ababa

abcacabb

abcacababe

abacabacab

What is the complexity of the algorithm?

