Tutorial Week 2

Definition 1. For a string w, an integer p with 0 is a**period**of <math>w if for all defined positions i and i + p in w, we have w[i] = w[i + p] (here by w[i] we refer to the symbol in position i of w, thus i < |w|). A string u is a **border** of w if u is both a prefix and a suffix of w, but $u \ne w$.

Definition 2. For two strings u and v, we say that u is a **conjugate** of v, if there exist two strings x and y such that u = xy and v = yx.

Exercise 1. For the following list of strings, give the list of all their conjugates, and the full lists of their borders and their periods.

	conjugates	borders	periods
ababab			
aaaaaa			
abcacb			
abaaba			

Solution:

	conjugates	borders	periods
ababab	$\{ababab,\ bababa\}$	$\{\varepsilon, ab, abab\}$	$\{2, 4, 6\}$
aaaaaa	$\{aaaaaaa\}$	$\begin{cases} \varepsilon, a, aa, aaa, aaaa, \\ aaaaa \end{cases}$	$\{1, 2, 3, 4, 5, 6\}$
abcacb	{abcacb bcacba cacbab acbabc cbabca babcac}	$\{\varepsilon\}$	{6}
abaaba	$egin{array}{c} \{abaaba\ baabaa\ aabaab \} \end{array}$	$\{\varepsilon, a, aba\}$	$\{3, 5, 6\}$

Proposition 2. Two strings u and v are conjugate if and only if there exists a string z such that uz = zv

Proof. Let us first assume that u and v are conjugate. Then there exist two strings x and y such that u = xy and v = yx. It is straightforward that taking z = x, the result follows, uz = xyx = zv.

For the other direction, we assume that uz = zv and we want to prove that u and v are conjugate. For this, observe first that u and v have the same length. Furthermore, by comparing the lengths of v and z, we note that there must exist an integer k > 0 such that $|z| < |u^k| \le |u| + |z|$.

Since uz = zv, by considering the string $u^{k+1}z$ we have the following situation:

$$u^{k+1}z = u^k uz = u^k zv = u^{k-1} uzv = u^{k-1} zv^2 = \dots = zv^{k+1}$$

But, since $|u^{k+1}| > |z|+|u| < |v^{k+1}|$, we conclude from the above equality that u^{k+1} and v^{k+1} have an overlap of at least |v| positions, or, in other words, u is a factor of vv and v is a factor of uu. However, any of these implies that there exist some strings x and y such that u = xy and v = yx, and our conclusion follows.

Figure 1: $u\{u,v\}^k$ and $v\{u,v\}^\ell$ are in a perfect alignment, and $u = t^k$

Lemma 3 (Fine and Wilf – Periodicity Lemma). If a string can be written as either $u\{u, v\}^k$ and $v\{u, v\}^{\ell}$, respectively, for some positive integers $k, \ell > 0$, such that its length is at least |u|+|v|, then the string is gcd(|u|, |v|)-periodic.

Proof. A string is of the form $u\{u, v\}^k$ (or form $v\{u, v\}^{\ell}$) if it starts with u (resp. v) and it consists only of concatenations of occurrences of u or v.

Let us denote such a string by w. We shall prove our result by induction on the length of |u| + |v|.

If |u| = |v| since w has both u and v as prefixes, it follows that u = v, and the conclusion follows. This also includes our base step when |u| = |v| = 1.

Therefore, let us assume without loss of generality that $1 \leq |u| < |v|$ and that the condition is true for any string having a decomposition as ours involving some strings whose total length is less than |u| + |v|. We immediately have that u is a prefix of v. Furthermore, since $w = v\{u, v\}^{\ell}$, its prefix must be vu (see Figure 1).

Since u is a prefix of v, we can denote v = ux, for some non-empty string x. But, in this case we note that, in fact, one can express the suffix of w of length |w| - |u| in terms of x and u; that is this suffix is of both form $u\{u, x\}^r$ and $x\{u, x\}^s$, for some integers $r \ge k$ and $s \ge \ell$. However, according to our induction, we know that this suffix must be gcd(|u|, |x|)-periodic.

Since we know that gcd(|u|, |v|) = gcd(|u|, |x|), it follows that both u and x, and therefore v, are all gcd(|u|, |v|)-periodic. Hence, w which consists only of concatenations of u and v must also be gcd(|u|, |v|)-periodic, and our conclusion follows.

For more details on gcd calculations look at the Euclidian Algorithm (http://en.wikipedia.org/wiki/Euclidean_algorithm)

Proposition 4. If w is a primitive string, then w occurs as a factor of ww only as a prefix or as a suffix (prove using Lemma 3).

Proof. Assume towards a contradiction that w has a third occurrence in w. Then there exist non-empty strings u and v such that ww = uwv. It immediately follows that u is a prefix of w, while v is a suffix of w. Furthermore, since 2|w| = |u| + |w| + |v|, we have that w = uv.

Since uvuv = ww = uwv = uuvv, by looking at the factor of length |uv| starting at position |u|, we have uv = vu. By Lemma 3, we get that u and v are both gcd(|u|, |v|)-periodic. Since one is a prefix of the other, it follows that both are powers of the same string, and, moreover, w is also a power of this string. But, since |w| > |u|, |v| we get that w is non-primitive, which is in contradiction with our assumption. The result follows.

Proposition 5. If for strings u and v we have $u^k = v^{\ell}$, for some integers $k, \ell > 0$, then u and v are powers of the same string (prove using Lemma 3).

Proof. Observe that if $\ell = 1$, then either u = v or $v = u^k$, which follows our statement. The same happens when k = 1. If $k, \ell > 1$, then we have that $u^k = v^{\ell}$ is both |u| and |v| periodic, and its length is greater than $\max(|u^2|, |v^2|) \ge |u| + |v|$. Therefore, following Lemma 3, we have that $u^k = v^{\ell}$ is also $\gcd(|u|, |v|)$ -periodic. The later implies that both u and vare $\gcd(|u|, |v|)$ -periodic, and since they align, the conclusion follows. \Box **Exercise 6.** Use the rolling hash technique to find the representation of all factors of length 5 in base 7 modulo 9, for each of the following strings: 1234560123, 2312132132, and 5534555345. Finding only the correct value is NOT enough.

Solution: For 1234560123 we have the following list of factors with the corresponding values:

$$h(12345) =$$

$$(((((((((((1 \cdot 7 + 2) \mod 9) \cdot 7 + 3) \mod 9) \cdot 7 + 4) \mod 9) \cdot 7 + 5) \mod 9) \cdot 7^{0}$$

$$= ((((((0 + 3) \mod 9) \cdot 7 + 4) \mod 9) \cdot 7 + 5) \mod 9 =$$

$$= ((7 \cdot 7) + 5) \mod 9 = 0$$

$$h(23456) = ((h(12345) - 1 \cdot (7^4 \mod 9)) \cdot 7 + 6) \mod 9 =$$
$$= ((0 - 7) \cdot 7 + 6) \mod 9 = -43 \mod 9 = 2$$

$$h(34560) = ((h(23456) - 2 \cdot 7) \cdot 7 + 0) \mod 9 = (-12 \cdot 7 + 0) \mod 9 = 6$$

$$h(45601) = ((h(34560) - 3 \cdot 7) \cdot 7 + 1) \mod 9 = (-15 \cdot 7 + 1) \mod 9 = 4$$

$$h(56012) = ((h(45601) - 4 \cdot 7) \cdot 7 + 2) \mod 9 = (-24 \cdot 7 + 2) \mod 9 = 5$$

$$h(60123) = ((h(56012) - 5 \cdot 7) \cdot 7 + 3) \mod 9 = (-30 \cdot 7 + 3) \mod 9 = 0$$

For 2312132132 we have the following list of values, in the order of the appearance of each factor: $\{0, 4, 0, 6, 1, 5\}$

For 5534555345 we have the following list of values, in the order of the appearance of each factor. Here each hash value is numbered once, at its first occurrence: $\{4, 4, 4, 1, 4\}$. Please observe that while h(55345) always has the same value, we cannot say that the hash-print of both 55345 and 34555 are the same, although their values are equal.