Tutorial Week 2

Definition 1. For a string w, an integer p with 0 is a**period**of <math>w if for all defined positions i and i + p in w, we have w[i] = w[i + p] (here by w[i] we refer to the symbol in position i of w, thus i < |w|). A string u is a **border** of w if u is both a prefix and a suffix of w, but $u \ne w$.

Definition 2. For two strings u and v, we say that u is a **conjugate** of v, if there exist two strings x and y such that u = xy and v = yx.

Exercise 1. For the following list of strings, give the list of all their conjugates, and the full lists of their borders and their periods.

	conjugates	borders	periods
ababab			
aaaaaa			
abcacb			
abaaba			

Proposition 2. Two strings u and v are conjugate if and only if there exists a string z such that uz = zv

Lemma 3 (Fine and Wilf – Periodicity Lemma). If a string can be written as either $u\{u,v\}^k$ and $v\{u,v\}^{\ell}$, respectively, for some positive integers $k, \ell > 0$, such that its length is at least |u|+|v|, then the string is gcd(|u|, |v|)-periodic.

Proposition 4. If w is a primitive string, then w occurs as a factor of ww only as a prefix or as a suffix (prove using Lemma 3).

Proposition 5. If for strings u and v we have $u^k = v^{\ell}$, for some integers $k, \ell > 0$, then u and v are powers of the same string (prove using Lemma 3).

Exercise 6. Use the rolling hash technique to find the representation of all factors of length 5 in base 7 modulo 9, for each of the following strings: 1234560123, 2312132132, and 5534555345. Finding only the correct value is NOT enough.