
40 Tools

Table of prefixes

Let x be a string of length m ≥ 1. We define the table

pref : {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}

by

pref [k] = |lcp(x, x[k . . m− 1])|

for k = 0, 1, . . . ,m− 1, where lcp(u,v) is the longest common prefix

of strings u and v.
The table pref is called the table of prefixes for the string x. It

memorizes the prefixes of x that occur inside the string itself. We note
that pref [0] = |x|. The following example shows the table of prefixes for
the string x = abbabaabbabaaaabbabbaa.

k 0 1 2 3 4 5 6 7 8 9 10 11
x[k] a b b a b a a b b a b a

pref [k] 22 0 0 2 0 1 7 0 0 2 0 1

k 12 13 14 15 16 17 18 19 20 21
x[k] a a a b b a b b a a

pref [k] 1 1 5 0 0 4 0 0 1 1

Some string matching algorithms (see Chapter 3) use the table suff which
is nothing but the analogue of the table of prefixes obtained by consid-
ering the reverse of the string x.

The method for computing pref that is presented below proceeds by
determining pref [i] by increasing values of the position i on x. A naive
method would consist in evaluating each value pref [i] independently of
the previous values by direct comparisons; but it would then lead to a
quadratic-time computation, in the case where x is the power of a single
letter, for example. The utilization of already computed values yields a
linear-time algorithm. For that, we introduce, the index i being fixed,
two values g and f that constitute the key elements of the method. They
satisfy the relations

g = max{j + pref [j] : 0 < j < i} (1.5)

and

f ∈ {j : 0 < j < i and j + pref [j] = g} . (1.6)

We note that g and f are defined when i > 1. The string x[f . . g − 1]
is then a prefix of x, thus also a border of x[0 . . g − 1]. It is the empty
string when f = g. We can note, moreover, that if g < i we have then
g = i−1, and that on the contrary, by definition of f , we have f < i ≤ g.

The following lemma provides the justification for the correctness of
the function Prefixes.

1.6 Borders and prefixes tables 41

a b b a b a a b b a b a a a a b b a b b a a

a b b a a b b a

a b a b a b a b

Figure 1.16 Illustration of the function Prefixes. The framed factors

x[6 . . 12] and x[14 . . 18], and the gray factors x[9 . . 10] and x[17 . . 20] are pre-

fixes of string x = abbabaabbabaaaabbabbaa. For i = 9, we have f = 6 and

g = 13. The situation at this position is the same that at position 3 = 9 − 6.

We have pref [9] = pref [3] = 2 which means that ab, of length 2, is the longest

factor at position 9 that is a prefix of x. For i = 17, we have f = 14 and g = 19.

As pref [17 − 14] = 2 ≥ 19 − 17, we deduce that string ab = x[i . . g − 1] is a

prefix of x. Letters of x and x[i . . m− 1] have to be compared from respective

positions 2 and g for determining pref [i] = 4.

Lemma 1.25

If i < g, we have the relation

pref [i] =







pref [i− f] if pref [i− f] < g − i ,

g − i if pref [i− f] > g − i ,

g − i + ℓ otherwise ,

where ℓ = |lcp(x[g − i . . m− 1], x[g . . m− 1])|.

Proof Let us set u = x[f . . g − 1]. The string u is a prefix of x by the
definition of f and g. Let us also set k = pref [i−f]. By the definition of
pref , the string x[i−f . . i−f +k−1] is a prefix of x but x[i−f . . i−f +k]
is not.

In the case where pref [i−f] < g−i, an occurrence of x[i−f . . i−f+k]
starts at the position i−f on u—thus also at the position i on x—which
shows that x[i − f . . i − f + k − 1] is the longest prefix of x starting at
position i. Therefore, we get pref [i] = k = pref [i− f].

In the case where pref [i− f] > g − i, x[0 . . g − i− 1] = x[i− f . . g −
f − 1] = x[i . . g − 1], and x[g − i] = x[g − f] 6= x[g]. We have thus
pref [i] = g − i.

In the case where pref [i− f] = g− i, we have x[g− i] 6= x[g− f] and
x[g−f] 6= x[g], therefore we cannot decide on the result of the comparison
between x[g − i] and x[g]. Extra letter comparisons are necessary and
we conclude that pref [i] = g − i + ℓ.

In the computation of pref , we initialize the variable g to 0 to simplify
the writing of the code of the function Prefixes, and we leave f initially
undefined. The first step of the computation consists thus in determining
pref [1] by letter comparisons. The utility of the above statement comes
for computing next values. An illustration of how the function works
is given in Figure 1.16. A schema showing the correspondence between
the variables of the function and the notation used in the statement of
Lemma 1.25 and its proof is given in Figure 1.17.

42 Tools

u a u b

g − f f i g

Figure 1.17 Variables i, f , and g of the function Prefixes. The main loop

has for invariants: u = lcp(x, x[f . . m− 1]) and thus a 6= b with a, b ∈ A, then

f < i when f is defined. The schema corresponds to the situation in which

i < g.

Prefixes(x,m)

1 pref [0]← m

2 g ← 0
3 for i← 1 to m− 1 do

4 if i < g and pref [i− f] 6= g − i then

5 pref [i]← min{pref [i− f], g − i}
6 else (g, f)← (max{g, i}, i)
7 while g < m and x[g] = x[g − f] do

8 g ← g + 1
9 pref [i]← g − f

10 return pref

Proposition 1.26

The function Prefixes applied to a string x and to its length m produces

the table of prefixes for x.

Proof We can verify that the variables f and g satisfy the relations (1.5)
and (1.6) at each step of the execution of the loop.

We note then that, for i fixed satisfying the condition i < g, the
function applies the relation stated in Lemma 1.25, which produces
a correct computation. It remains thus to check that the computa-
tion is correct when i ≥ g. But in this situation, lines 6–8 compute
|lcp(x, x[i . . m− 1])| = |x[f . . g − 1]| = g − f which is, by definition, the
value of pref [i].

Therefore, the function produces the table pref .

Proposition 1.27

The execution of the operation Prefixes(x,m) runs in time Θ(m). Less

than 2m comparisons between letters of the string x are performed.

Proof Comparisons between letters are performed in line 7. Every
comparison between equal letters increments the variable g. As the value
of g never decreases and that it varies from 0 to at most m, there are
at most m positive comparisons. Each negative comparison leads to the
next step of the loop. Then there are at most m− 1 of them. Thus less
than 2m comparisons on the overall.

The previous argument also shows that the total time of all the ex-
ecutions of the loop of lines 7–8 is Θ(m). The other instructions of the

1.6 Borders and prefixes tables 43

a b b a b a a b b a b a a a a b b a b b a a

Figure 1.18 Relations between borders and prefixes. Considering the string

x = abbabaabbabaaaabbabbaa, we have the equality pref [9] = 2 but border[9+
2−1] = 5 6= 2. We also have both border[15] = 2 and pref [15−2+1] = 5 6= 2.

loop 3–9 take a constant time for each value of i giving again a global
time Θ(m) for their execution and that of the function.

The bound of 2m on the number of comparisons performed by the
function Prefixes is relatively tight. For instance, we get 2m− 3 com-
parisons for a string of the form am−1b with m ≥ 2, a, b ∈ A, and
a 6= b. Indeed, it takes m− 1 comparisons to compute pref [1], then one
comparison for each of the m− 2 values pref [i] with 1 < i < m.

Relation between borders and prefixes

The tables border and pref , whose computation is described above, both
memorize occurrences of prefixes of x. We explicit here a relation be-
tween these two tables.

The relation is not immediate for the reason that follows, which is
illustrated in Figure 1.18. When pref [i] = ℓ, the factor u = x[i . . i+ℓ−1]
is a prefix of x but it is not necessarily the border of x[0 . . i+ℓ−1] because
this border can be longer than u. In the same way, when border[j] = ℓ,
the factor v = x[j− ℓ+1 . . j] is a prefix of x but it is not necessarily the
longest prefix of x occurring at position j − ℓ + 1.

The proposition that follows shows how the table border is expressed
using the table pref . One can deduce from the statement an algorithm
for computing the table border knowing the table pref .

Proposition 1.28

Let x ∈ A+ and j be a position on x. Then:

border[j] =

{

0 if I = ∅ ,

j −min I + 1 otherwise ,

where I = {i : 0 < i ≤ j and i + pref [i]− 1 ≥ j}.

Proof We first note that, for 0 < i ≤ j, i ∈ I if and only if x[i . . j] �pref

x. Indeed, if i ∈ I, we have x[i . . j] �pref x[i . . i+pref [i]−1] �pref x, thus
x[i . . j] �pref x. Conversely, if x[i . . j] �pref x, we deduce, by definition
of pref [i], pref [i] ≥ j− i + 1. And thus i + pref [i]− 1 ≥ j. Which shows
that i ∈ I. We also note that border[j] = 0 if and only if I = ∅.

It follows that if border[j] 6= 0 (thus border[j] > 0) and k = j −
border[j] + 1, we have k ≤ j and x[k . . j] �pref x. No factor x[i . . j],
i < k, satisfies the relation x[i . . j] �pref x by definition of border[j].
Thus k = min I by the first remark, and border[j] = j− k + 1 as stated.

