
CSMTSP Text Sear
hing and Pro
essing - Solutions
1. (a) See last pages.(b) The Aho-Corasi
k is a deterministi
 �nite automaton togetherwith a failure fun
tion (link), it is de�ned by a six-tuple (Q;�; g; f; q0; F )where:1. Q is a set of states.2. � is a �nite input alphabet.3. g : Q� �! Q [ ffailg is the forward transition.4. f : Q! Q is the failure transition (link).5. q0 is the initial state.6. F is a set of �nal states and is a subset of Q.The failure link has the following property:Suppose that in the transition graph of the g fun
tion, state qirepresents the string si and state qj represents the string sj.Then, f(qi) = qj if and only if sj is the longest proper suÆxof si that is also a pre�x of some keyword.(
) The sear
h pro
edure of the AC automaton is de�ned by the fol-lowing pro
edure for moving from one state to another a

ordingto the 
urrent symbol being read from the text. Let p 2 Q bea state of the automaton, f be the failure link and Æ 2 � be asymbol of the alphabet.Next State(p; Æ)if g(p; Æ) is de�ned then return g(p; Æ)else if f(p) is de�ned then return Next State(f(p); Æ)else return q0 (initial state)(d) Prepro
essing the AC automaton for a set of strings X has a timeand spa
e 
omplexity of O(jXj log j�j). The time 
omplexity forthe sear
h pro
edure on a text of length n is O(n log j�j). Themaximal time spent on a single symbol of the text during thesear
h pro
edure is O(maxfjxj : x 2 Xg).1



2. (a) Assume that a mismat
h o

urs between the 
hara
ter x[i℄ = Æof the pattern and the 
hara
ter t[pos + i � 1℄ = � of the textduring an iteration of the Boyer-Moore algorithm at position pos.Then, t[j + 1 : : : j � i +m℄ = x[i + 1 : : : m℄ = u and t[j℄ 6= x[i℄.The good-suÆx rule 
onsists in aligning the suÆx u of x withits rightmost o

urren
e in x that is pre
eeded by a 
hara
terdi�erent from x[i℄. For example,t =...a a b a b a ...x =...b a b a b ax =...
 a b a b a ...If no su
h rightmost o

urren
e of u exists then the shift 
onsistsin aligning the longest suÆx v of u with a mat
hing pre�x of x.For example, t =...a a b a b a ...x =...b a b a b ax =... b a ...The table D is de�ned as follows:D[i℄ = d(x[i+1 : : : m℄), for i = 0; : : : ;m, where d(u) = minfjzj >0j(x suÆx of uz) or (�uz suÆx of x and �u not suÆx of x; for � 2�)g.(b) The bad-
hara
ter rule 
onsists in aligning the text 
hara
ter t[j℄with it's rightmost o

urren
e in the pattern x. For example,t =...a 
 d e f g ...x =...b 
 d e f gx =...a ...
ontains no a...If t[j℄ does not appear in the pattern x then the left end of thepattern is alighned with the next 
hara
ter to the right of t[j℄,i.e. t[j + 1℄ For example,t =...a 
 d e f g ...x =...b 
 d e f gx = ...
ontains no a...pro
edure Compute DA(x: string, m integer);beginfor all Æ 2 � do DA[Æ℄ = m ;2



bf for i := 1 to m� 1 do DA[x[i℄℄ = m� i;end(
) pro
edure BM(x; t: strings, m;n: integers);beginpos := 1;while pos � n�m+ 1 do begini := m ;while i > 0 and x[i℄ = t[pos+ i� 1℄ do i := i� 1 ;bf if i = 0 then writeln('x o

urs in t at position', pos) ;pos := pos+max(D[i℄;DA[t[pos+ i� 1℄℄�m+ i);endendThe worst 
ase running time of the BM algorithm is O(nm),for example: pattern x = aaaaaaa and text t = an. The best
ase running time of the BM algorithm is O(n=m), for example:pattern x = aaaaaab and text t = an.(d) If the table R next is given then the table D 
an be implementedin the following way:for j = 1 to m� 1 do begini := R next[j℄ ;D[i℄ := j ;endend3. (a) pro
edure Compute KMP next(x: string, m: integer);beginKMP next[1℄ := 0; j := 0 ;for i := 1 to m do beginwhile j > 0 and x[i℄ 6= x[j℄ do j := KMP next[j℄ ;j := j + 1 ;if i = m or x[i+ 1℄ 6= x[j℄ then KMP next[i+ 1℄ := jelse KMP next[i+ 1℄ := KMP next[j℄ ;endend(b) KMP next table for the pattern x = ababbabaab.3



1 2 3 4 5 6 7 8 9 10 11x a b a b b a b a a bKMP next 0 1 0 1 3 0 1 0 4 1 3(
) The sear
h pro
edure of the KMP algorithm is the same as theone for the MP algorithm ex
ept that we use the table KMP nextfor the shift instead of MP next.pro
edure KMP(x; t: strings, m;n: integers);begini := 1; j := 1 ;while j � n do beginwhile (i = m+ 1) or (i > 0 and x[i℄ 6= t[j℄) doi := KMP next[i℄endi := i+ 1; j := j + 1 ;bf if i = m+ 1 then writeln('x o

urs in t at position', j � i+ 1) ;endend(d) See last pages.(e) The delay on a two-letter alphabet is 
onstant. The delay on athree-letter alphabet is O(logm).4. (a) The Hamming distan
e of a two strings x and y is the numberof mismat
hes allowed between the two. For example, if x =ab
defgh and y = bb
aefdh then the Hamming distan
e of x andy is 3 sin
e we have 3 mismat
hes o

urring at position 1, 4 and7.The Levenshtein distan
e is an edit distan
e that allows insertion,deletion and substitutions of one 
hara
ter at a time ea
h havinga unit 
ost. For example, if x = aba
adba and y = b
dadabathen x and y have a Levenshtein distan
e of 4. Sin
e we have amismat
h (substitution) at position 1, an insertion at position 2,another mismat
h at position 5, and a deletion at position 7 asillustrated below. 1 2 3 4 5 6 7 8 9a b a 
 a d b ab 
 b a d a b a4



(b) Build a (n + 1) � (m + 1) table C where we pla
e the stringy at the top and the string x on the left. Initialize all entriesC[i; 0℄ = C[0; j℄ = 0. Now pro
eed to 
ompute C[i; j℄ by takingthe minimum value of:C[i; 1; j � 1℄ + substitute(xi; yj)C[i� 1; j℄ + delete(xi)C[i; j � 1℄ + insert(yj)a

ording to the 
osts of the operations: substitute, delete andinsert.(
) By using dynami
 programming the above pro
edure 
an be ex-tended to that of 
omputing a shortest sour
e-to-sink path in anedge-weighted grid of a dire
ted a
y
li
 graph on
e the table Chas been 
omputed. This will result in an optimum edit s
riptfor transforming x into y with a minimum total 
ost.(d) Let 
ost(del) = 
ost(ins) = 1, and 
ost(subst) � 
ost(del) +
ost(ins). Then no edit s
ript will use the substitution operation.The pairs of mat
hing symbols preserved in an optimal edit s
ript
onstitute a longest 
ommon subsequen
e of x and y. If s isthe length of a longest 
ommon subsequen
e between x and y,then on a minimum edit distan
e path in the grid C, be
ause nosubstitution is made then we either go down of up. This resultsin the minimum edit distan
e e being the sum of the lengths of xand y minus twi
e the length of the longest 
ommon subsequen
ebetween x and y.5. (a) See last pages.(b) Let y 2 �� be a string of length n. The suÆx trie of y is a digitalsear
h tree representing the suÆxes of y. Ea
h node of the trieis identi�ed with a substring of y, ea
h terminal node (leaf) isidenti�ed with a suÆx of y and �nally ea
h edge is labelled witha symbol of y.The suÆx tree Ty of y is a tree obtained from the suÆx trie of yby deleting all nodes having outdegree 1 whi
h are not terminaland by labelling the ar
s with substrings of y instead of symbols.The 
onstru
tion of a suÆx tree relies on the 
omputation of thesuÆx link fun
tion Sy and is de�ned as follows: if a node p isidenti�ed with a substring av; a 2 �; v 2 �� then Sy(p) = qwhi
h is the node identi�ed with v.5



(
) Re
all that in the 
onstru
tion of a suÆx tree we insert suÆxesof de
reasing length. By de�nition, if p is a fork then p hasoutdegree two at least or is a terminal node with outdegree oneand represents the head of a suÆx. Denote av as the head of atleast two suÆxes ending at node p, and let Sy(p) = q, where q isthe node identi�ed with v. Then we know that in some previousiteration the suÆx starting with v was inserted in the tree andsin
e at least two tails split at p then similarly they must be asplit at q or else it is a terminal state with outdegree one.Let Ty be the suÆx tree asso
iated with the string y of lengthn+1. Suppose that Ty is a 
omplete binary tree, thus bran
hingby two at ea
h level. This will maximize the number of internalnodes in Ty. By pro
eeding by indu
tion we 
an see that the twosubtrees of Ty of size (n+ 1)=2 also have n=2 internal nodes. i.e.the sequen
e: 1; 1 + 2 = 3; 3 + 4 = 7; 7 + 8 = 15; 15 + 16 = 31; : : :Hen
e for a string of length n, there are at least n and at most2n nodes in the tree.(d) Main steps:1. Goto parent r of p2. Use the suÆx link of r3. Go down the tree by the label of (r; p)The running time of step 3 above is proportional to the numberof ar
s along the path and not to the length of the label.
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Figure 1: Question 1. (a) The Aho-Corasi
k automaton for the strings:aaababa, aababa, aba, bab. Bla
k nodes are terminal states and failurelinks are dotted lines.
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Figure 2: Question 3. (d) SMA(ababbabaab)
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Figure 3: Question 5. (a) The suÆx tree asso
iated with the stringaabaabba: bla
k nodes are terminal states, suÆx links are dotted lines andthe numbers next to the terminal nodes represent the suÆx index in thestring.
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