CSMTSP Text Searching and Processing - Solutions

1. (a) See last pages.

(b) The Aho-Corasick is a deterministic finite automaton together
with a failure function (link), it is defined by a six-tuple (Q, X, g, f, qo, F')
where:

1. @ is a set of states.

2. Y is a finite input alphabet.

3. g:Q xX — QU{fail} is the forward transition.
4. f:Q — Q is the failure transition (link).

5. qo is the initial state.

6. F is a set of final states and is a subset of Q.

The failure link has the following property:

Suppose that in the transition graph of the g function, state g;
represents the string s; and state g; represents the string s;.
Then, f(g;) = ¢; if and only if s; is the longest proper suffix
of s; that is also a prefix of some keyword.

(c) The search procedure of the AC automaton is defined by the fol-
lowing procedure for moving from one state to another according
to the current symbol being read from the text. Let p € Q be
a state of the automaton, f be the failure link and § € X be a
symbol of the alphabet.

Next_State(p, 9)

if g(p,0) is defined then return g(p,)

else if f(p) is defined then return Next_State(f(p),J)
else return ¢p (initial state)

(d) Preprocessing the AC automaton for a set of strings X has a time
and space complexity of O(|X|log|X|). The time complexity for
the search procedure on a text of length n is O(nlog|X|). The
maximal time spent on a single symbol of the text during the
search procedure is O(max{|z| : z € X}).

2.

()

Assume that a mismatch occurs between the character z[i] = §
of the pattern and the character ¢[pos + i — 1] = 7 of the text
during an iteration of the Boyer-Moore algorithm at position pos.
Then, t[j+1...7 —i+m] =z[i + 1...m] = u and t[j] # z[i].
The good-suffix rule consists in aligning the suffix u of x with
its rightmost occurrence in z that is preceeded by a character
different from z[i]. For example,

t =...aababa...
z=..bababa
r=..cababa..

If no such rightmost occurrence of u exists then the shift consists
in aligning the longest suffix v of v with a matching prefix of z.
For example,

t =..aababda...
z=..bababa
T =... ba...

The table D is defined as follows:

Dli]=d(z[i+1...m]), for i =0,...,m, where d(u) = min{|z| >
0|(z suffix of uz) or (Tuz suffix of z and 7u not suffix of z, for 7 €
)}

The bad-character rule consists in aligning the text character ¢[j]
with it’s rightmost occurrence in the pattern z. For example,

t =.acdefyg..
x=..bcdefyg

T =...a ...contains no a

If ¢[j] does not appear in the pattern z then the left end of the
pattern is alighned with the next character to the right of ¢[j],
i.e. ¢[j + 1] For example,

t =.acdefg..
x=..bcdefyg

T = ...contains no a

procedure Compute_ DA(z: string, m integer);
begin
for all 6 € ¥ do DA[)] =m ;

(b)

bf for i := 1 to m — 1 do DA[z[i]] = m — i;
end

procedure BM(z,t: strings, m,n: integers);

begin
pos = 1;
while pos <n —m + 1 do begin
1:=m;

while 7 > 0 and z[i] = t[pos+i—1]doi:=i—1;

bf if i = 0 then writeln(’z occurs in ¢ at position’, pos) ;

pos := pos + max(D[i], DA[t[pos + i — 1]] — m + i);

end

end
The worst case running time of the BM algorithm is O(nm),
for example: pattern £ = aaaaaaa and text ¢ = a”. The best
case running time of the BM algorithm is O(n/m), for example:
pattern x = aaaaaab and text ¢t = a™.

If the table R_next is given then the table D can be implemented
in the following way:

for j =1 tom —1 do begin

i := R_next[j] ;
Dli]:=j ;
end

end

procedure Compute KMP _next(z: string, m: integer);
begin
KMP next[l] :==0;j :=0;
for 7 := 1 to m do begin
while j > 0 and z[i] # z[j] do j := KM P _next[j] ;
J=7+1;
if i =m or z[i + 1] # z[j] then KMP next[i + 1] :=j
else KM P _next[i + 1] := KM P _next[j] ;
end
end

KMP_next table for the pattern x = ababbabaab.

(c)

11213456789 |10]11
T albjlalb|b|la|b|a]a
KMPnext |O]1|0]1(3|]0|1(0]|4] 1 3

The search procedure of the KMP algorithm is the same as the
one for the MP algorithm except that we use the table KMP_next
for the shift instead of MP next.

procedure KMP(z,¢: strings, m,n: integers);
begin
1:=1;5:=1;
while 7 <n do begin
while (i =m + 1) or (i > 0 and z[i] # t[j]) do
i := KM P _next|i]
end
=1+ 1;5:=5+1;

bf if i = m + 1 then writeln(’z occurs in ¢ at position’, j —i + 1) ;

end
end

See last pages.

) The delay on a two-letter alphabet is constant. The delay on a

three-letter alphabet is O(logm).

The Hamming distance of a two strings z and y is the number
of mismatches allowed between the two. For example, if z =
abedefgh and y = bbcaefdh then the Hamming distance of z and
1y is 3 since we have 3 mismatches occurring at position 1, 4 and
7.

The Levenshtein distance is an edit distance that allows insertion,
deletion and substitutions of one character at a time each having
a unit cost. For example, if £ = abacadba and y = bedadaba
then z and y have a Levenshtein distance of 4. Since we have a
mismatch (substitution) at position 1, an insertion at position 2,
another mismatch at position 5, and a deletion at position 7 as
illustrated below.

123456789
a bacadba
bc bada ba

(b)

Build a (n + 1) x (m + 1) table C where we place the string
y at the top and the string x on the left. Initialize all entries
C1i,0] = C[0,5] = 0. Now proceed to compute C([i, j] by taking
the minimum value of:

Cli,1,j — 1] + substitute(z;, y;)

Cli — 1,] + delete(x;)

Cli,j — 1] +insert(y;)

according to the costs of the operations: substitute, delete and
insert.

By using dynamic programming the above procedure can be ex-
tended to that of computing a shortest source-to-sink path in an
edge-weighted grid of a directed acyclic graph once the table C
has been computed. This will result in an optimum edit script
for transforming = into y with a minimum total cost.

Let cost(del) = cost(ins) = 1, and cost(subst) < cost(del) +
cost(ins). Then no edit script will use the substitution operation.
The pairs of matching symbols preserved in an optimal edit script
constitute a longest common subsequence of x and y. If s is
the length of a longest common subsequence between z and y,
then on a minimum edit distance path in the grid C, because no
substitution is made then we either go down of up. This results
in the minimum edit distance e being the sum of the lengths of x
and y minus twice the length of the longest common subsequence
between z and y.

) See last pages.

Let y € ¥* be a string of length n. The suffix trie of y is a digital
search tree representing the suffixes of y. Each node of the trie
is identified with a substring of y, each terminal node (leaf) is
identified with a suffix of y and finally each edge is labelled with
a symbol of y.

The suffix tree Tj, of y is a tree obtained from the suffix trie of y
by deleting all nodes having outdegree 1 which are not terminal
and by labelling the arcs with substrings of y instead of symbols.
The construction of a suffix tree relies on the computation of the
suffix link function Sy and is defined as follows: if a node p is
identified with a substring av,a € ¥,v € ¥* then Sy(p) = ¢
which is the node identified with v.

(c)

Recall that in the construction of a suffix tree we insert suffixes
of decreasing length. By definition, if p is a fork then p has
outdegree two at least or is a terminal node with outdegree one
and represents the head of a suffix. Denote av as the head of at
least two suffixes ending at node p, and let S, (p) = q, where ¢ is
the node identified with v. Then we know that in some previous
iteration the suffix starting with v was inserted in the tree and
since at least two tails split at p then similarly they must be a
split at ¢ or else it is a terminal state with outdegree one.

Let T, be the suffix tree associated with the string y of length
n + 1. Suppose that T}, is a complete binary tree, thus branching
by two at each level. This will maximize the number of internal
nodes in Ty. By proceeding by induction we can see that the two
subtrees of T}, of size (n + 1)/2 also have n/2 internal nodes. i.e.
the sequence: 1,14+2=3,3+4=7,7+8=15,154+16 = 31,...
Hence for a string of length n, there are at least n and at most
2n nodes in the tree.

Main steps:
1. Goto parent r of p
2. Use the suffix link of r
3. Go down the tree by the label of (r,p)

The running time of step 3 above is proportional to the number
of arcs along the path and not to the length of the label.

Figure 1: Question 1. (a) The Aho-Corasick automaton for the strings:
aaababa, aababa, aba, bab. Black nodes are terminal states and failure
links are dotted lines.

Figure 2: Question 3. (d) SM A(ababbabaab)

1

Figure 3: Question 5. (a) The suffix tree associated with the string
aabaabba: black nodes are terminal states, suffix links are dotted lines and
the numbers next to the terminal nodes represent the suffix index in the
string.

