
CSMTSP Text Searching and Processing - Solutions1. (a) The string-matching automata SMA(a), SMA(aa), SMA(aab),SMA(aaba):
(b) The process of adding a new character � to the computed au-tomaton SMA(x) (x 2 ��; � 2 �) in the on-line algorithm isreferred to unwinding the arc �(�) from the �nal state computedin the previous step.1) Let r := �(final state; �), this is the state to which the arc wea re about to unwind is pointing. 2) Add a new �nal state s suchs := �(final state; �). 3) Now the new �nal state in SMA(x�)will behave for each symbol in the alphabet as the state r.More formerly,while not end of x do begin� := next symbol of x ; r := �(terminal; �) ;add new state s to Q ; �(terminal; �) := s ;for all �in� do �(s; �) := �(r; �) ;terminal := s ;end;(c) Backward arcs are arcs in the automaton that do not point to theinitial state. There are two backward arcs in SMA(aaba): node 2to node 2 with symbol a on the arc and node 4 to 2 with symbola on the arc. 1



(d) Recall that each state of the automaton SMA(x) is identi�edwith a pre�x of x. A backward edge is of the form (u; �; v�)where u and v are pre�xes of x and � 2 �, a symbol such thatu 6= v� and v� is the longest su�x of u� that is a pre�x of x.Note that u� is not a pre�x of x.Let p(u; v; �) = juj � jvj (a period of u). We now prove that eachperiod of the pre�xes p; 1 � p � jxj corresponds to at most onebackward arc. Thus there are at most jxj such edges.Suppose that two backward edges (u; �; v�) and (u0; � 0; v0� 0) havethe same period p = p(u; v; �) = p(u0; v0; � 0) then v� = v0� 0.Otherwise if v� is say a proper pre�x of v0� 0 then v� would alsooccur at position p like v0 so u� would also be a pre�x of x. This isa contradiction, hence v = v0; � = � 0 and u = u0. Hence SMA(x)has no more than jxj backward arcs.2. (a) The periods and borders of the string aaabaaaabaaaabaaaa are:p0 = 5; b0 = aaabaaaabaaaap1 = 10; b1 = aaabaaaap2 = 15; b2 = aaap3 = 16; b3 = aap4 = 17; b4 = ap5 = 18; b5 = �(b) Recall that a border of x is a both pre�x and a su�x of x. Letb1 be a border of x and b2 be a border of b1. Then by de�nition,b2 is a pre�x of b1. By transitivity of the notion of a pre�x, b2 isthen also a pre�x of x. Similarly, b2 is a su�x of b1, hence a su�xof x. Thus b2 is both a pre�x and a su�x of x, which impliesthat b2 is also border of x.Let border(x) be the longest proper border of x. The string x oflength n has at most n borders starting from � to border(x). Byusing the induction principle on the above remark, we know thatb0 = border(x) is the largest proper border of x. Let b1 be thenext largest proper border of x. We now from the above that b1is in turn a border of b0. Hence the recurrence bi = border(bi�1)for all i 2 f0; : : : ; kg, where bk = �; 1 � k � n, implies a map-ping of the borders such that b0 = � � border(x[1]) � : : : �border(x[n]) = border(x[n � 1]). The inclusion operator is de-2



�ned as "border of" which implies that any border of x is eitherb0 = border(x) or a border of b0.(c) procedure COMPUTE BORDERS(x : string ;m : integer) ;beginBorder[0] := �1 ;for i := 1 to m do beginj := Border[i� 1] ;while j � 0 and x[i] 6= x[j + 1] do j := Border[j] ;Border[i] := j + 1 ;end ;end ;(d) Output of above algorithm for aaabaaabaaaa:Border[0 : 12] = [�1; 0; 1; 2; 0; 1; 2; 3; 4; 5; 6; 7; 3]3. (a) The asymptotic cost of a binary search for the string x of lengthn in the list L of k lexicographically sorted strings yi is O(n log k)time. A "worst-case" example could be the search of x = bbb � � �bin the list L = (aaa � � �a; aaa � � �b; aaa � � �bb; : : : ; bbb � � �b).(b) Assume that ` > r and that ` < lcp(y1; yi).Then let u = y1[1 � � � l], � = y1[l + 1]; � = yi[l + 1]. Then u� isa pre�x of x and � < � . This implies that yi < x < yk.Now assume that ` > r and that ` > lcp(y1; yi).In this case, we have that � 6= � and � < � which implies thaty1 < x < yi.(c) Running a binary search for a sting x of length n by using thelongest common pre�xes of the k sorted strings y's would takeO(n+ log k) time.(d) At each step in the algorithm of part c) one uses three longestcommon pre�xes, namely lcp(x; y1), lcp(x; yk) and lcp(y1; yi). Sincei = b(k+ 1)=2c, we will need to preprocess log k longest commonpre�xes among the y's and two ones on x.3



4. (a) The expanded su�x tree associated with the string abaababa$:
The expanded su�x tree associated with the string abaababa$:

(b) Given a string x of length n, the expanded su�x tree of x maycontain in the "worst case" �(n2) internal nodes. If the symbolsin x are all di�erent e.g.: x = abcdef : : :$, then we have n arcseach having n; n � 1; : : : ; 1 nodes. In the other extreme case, anexpanded su�x tree of xmay contain exactly n�1 internal nodes.For example, the expanded su�x tree of x = aaa : : :$ consists ofone arc with n� 1 outgoing leaves.(c) A compact su�x tree is an expanded su�x tree which has hadevery sequence of arcs formed by nodes with only one child intoa single arc and label that arc with a substring. Let Tx be thecompact su�x tree associated to the string x of length n + 1.Suppose that Tx is a complete binary tree, thus branching by twoat each level. This will maximize the number of internal nodes inTx. By proceeding by induction we can see that the two subtreesof Tx of size (n + 1)=2 also have n=2 internal nodes. i.e. thesequence: 1; 1 + 2 = 3; 3 + 4 = 7; 7 + 8 = 15; 15 + 16 = 31; : : :4



(d) (i) Suppose that w is not a primitive, then w = vk for somek 6= 1 then ww = v2k which is clearly not a square. Hence wmust a primitive string. We can see this by sliding two copiesof the string w from right to left until we have a match. Amatch will only occur when w and w are aligned. If w wasnot a primitive then a match would occur earlier.(ii) If a square ww starts at position i in x then clearly by theabove result, the su�x tree Tx will have a leaf i followed by aleaf i+ jwj since w is a primitive i.e. the arc going to the leafi+ jwj will be labelled with w. For example in the diagram,we can see that a square ww = abab starts at position 4 withconsecutive leaves 4 and 6 de�ning this square.5. (a) The Hamming distance of a two strings x and y is the number ofmismatches allowed between the two. The Levenstein distance isan edit distance that allows insertion, deletion and substitutionsof one character at a time each having a unit cost.(b) Build a (n + 1) � (m + 1) table C where we place the stringy at the top and the string x on the left. Initialize all entriesC[i; 0] = C[0; j] = 0. Now proceed to compute C[i; j] by takingthe minimum value of:C[i; 1; j� 1] + substitute(xi; yj)C[i� 1; j] + delete(xi)C[i; j� 1] + insert(yj)according to the costs of the operations: substitute, delete andinsert.(c) By using dynamic programing the above procedure can be ex-tended to that of computing a shortest source-to-sink path in anedge-weighted grid of a directed acyclic graph once the table Chas been computed. This will result in an optimum edit scriptfor transforming x into y with a minimum total cost.(d) Let cost(del) = cost(ins) = 1, and cost(subst) � cost(del) +cost(ins). Then no edit script will use the substitution operation.The pairs of matching symbols preserved in an optimal edit scriptconstitute a longest common subsequence of x and y. If s isthe length of a longest common subsequence between x and y,then on a minimum edit distance path in the grid C, because nosubstitution is made then we either go down of up. This results5



in the minimum edit distance e being the sum of the lengths of xand y minus twice the length of the longest common subsequencebetween x and y.

6


