CSMTSP Text Searching and Processing - Solutions

 (a) The string-matching automata SMA(a), SMA(aa), SMA(aab), SMA(aaba):

(b) The process of adding a new character τ to the computed automaton SMA(x) ($x \in \Sigma^*, \tau \in \Sigma$) in the on-line algorithm is referred to unwinding the arc $\delta(\tau)$ from the final state computed in the previous step.

1) Let $r := \delta(final_state, \tau)$, this is the state to which the arc we a re about to unwind is pointing. 2) Add a new final state s such $s := \delta(final_state, \tau)$. 3) Now the new final state in $SMA(x\sigma)$ will behave for each symbol in the alphabet as the state r. More formerly,

```
while not end of x do begin

\tau := \text{next symbol of } x \text{ ; } r := \delta(terminal, \tau) \text{ ;}

add new state s to Q ; \delta(terminal, \tau) := s ;

for all \sigma in\Sigma do \delta(s, \sigma) := \delta(r, \sigma) ;

terminal := s ;

end;
```

(c) Backward arcs are arcs in the automaton that do not point to the initial state. There are two backward arcs in SMA(aaba): node 2 to node 2 with symbol a on the arc and node 4 to 2 with symbol a on the arc.

(d) Recall that each state of the automaton SMA(x) is identified with a prefix of x. A backward edge is of the form $(u, \tau, v\tau)$ where u and v are prefixes of x and $\tau \in \Sigma$, a symbol such that $u \neq v\tau$ and $v\tau$ is the longest suffix of $u\tau$ that is a prefix of x. Note that $u\tau$ is not a prefix of x.

Let $p(u, v, \tau) = |u| - |v|$ (a period of u). We now prove that each period of the prefixes $p, 1 \le p \le |x|$ corresponds to at most one backward arc. Thus there are at most |x| such edges.

Suppose that two backward edges $(u, \tau, v\tau)$ and $(u', \tau', v'\tau')$ have the same period $p = p(u, v, \tau) = p(u', v', \tau')$ then $v\tau = v'\tau'$. Otherwise if $v\tau$ is say a proper prefix of $v'\tau'$ then $v\tau$ would also occur at position p like v' so $u\tau$ would also be a prefix of x. This is a contradiction, hence $v = v', \tau = \tau'$ and u = u'. Hence SMA(x)has no more than |x| backward arcs.

2. (a) The periods and borders of the string aaabaaaabaaaabaaaa are:

 $\begin{array}{l} p_0=5, b_0=\texttt{aaabaaaabaaaa}\\ p_1=10, b_1=\texttt{aaabaaaa}\\ p_2=15, b_2=\texttt{aaa}\\ p_3=16, b_3=\texttt{aa}\\ p_4=17, b_4=\texttt{a}\\ p_5=18, b_5=\epsilon \end{array}$

(b) Recall that a border of x is a both prefix and a suffix of x. Let b₁ be a border of x and b₂ be a border of b₁. Then by definition, b₂ is a prefix of b₁. By transitivity of the notion of a prefix, b₂ is then also a prefix of x. Similarly, b₂ is a suffix of b₁, hence a suffix of x. Thus b₂ is both a prefix and a suffix of x, which implies that b₂ is also border of x.

Let border(x) be the longest proper border of x. The string x of length n has at most n borders starting from ϵ to border(x). By using the induction principle on the above remark, we know that $b_0 = border(x)$ is the largest proper border of x. Let b_1 be the next largest proper border of x. We now from the above that b_1 is in turn a border of b_0 . Hence the recurrence $b_i = border(b_{i-1})$ for all $i \in \{0, \ldots, k\}$, where $b_k = \epsilon, 1 \leq k \leq n$, implies a mapping of the borders such that $b_0 = \epsilon \subset border(x[1]) \subset \ldots \subset$ border(x[n]) = border(x[n-1]). The inclusion operator is defined as "border of" which implies that any border of x is either $b_0 = border(x)$ or a border of b_0 .

(c) procedure COMPUTE_BORDERS(x : string ; m : integer) ; begin

 $\begin{array}{l} Border[0] \coloneqq -1 \ ;\\ \textbf{for } i \coloneqq 1 \ \textbf{to } m \ \textbf{do begin}\\ j \coloneqq Border[i-1] \ ;\\ \textbf{while } j \ge 0 \ \textbf{and} \ x[i] \ne x[j+1] \ \textbf{do } j \coloneqq Border[j] \ ;\\ Border[i] \coloneqq j+1 \ ;\\ \textbf{end} \ ;\\ \end{array}$

- (d) Output of above algorithm for aaabaaabaaaa: Border[0:12] = [-1,0,1,2,0,1,2,3,4,5,6,7,3]
- 3. (a) The asymptotic cost of a binary search for the string x of length n in the list L of k lexicographically sorted strings y_i is O(n log k) time. A "worst-case" example could be the search of x = bbb ···b in the list L = (aaa ···a, aaa ···b, aaa ···bb, ..., bbb ···b).
 - (b) Assume that $\ell > r$ and that $\ell < lcp(y_1, y_i)$. Then let $u = y_1[1 \cdots l]$, $\sigma = y_1[l+1]$, $\tau = y_i[l+1]$. Then $u\tau$ is a prefix of x and $\sigma < \tau$. This implies that $y_i < x < y_k$. Now assume that $\ell > r$ and that $\ell > lcp(y_1, y_i)$. In this case, we have that $\sigma \neq \tau$ and $\sigma < \tau$ which implies that $y_1 < x < y_i$.
 - (c) Running a binary search for a sting x of length n by using the longest common prefixes of the k sorted strings y's would take $O(n + \log k)$ time.
 - (d) At each step in the algorithm of part c) one uses three longest common prefixes, namely $lcp(x, y_1)$, $lcp(x, y_k)$ and $lcp(y_1, y_i)$. Since $i = \lfloor (k+1)/2 \rfloor$, we will need to preprocess log k longest common prefixes among the y's and two ones on x.

4. (a) The expanded suffix tree associated with the string abaababa\$:

The expanded suffix tree associated with the string abaababa\$:

- (b) Given a string x of length n, the expanded suffix tree of x may contain in the "worst case" θ(n²) internal nodes. If the symbols in x are all different e.g.: x = abcdef...\$, then we have n arcs each having n, n 1,..., 1 nodes. In the other extreme case, an expanded suffix tree of x may contain exactly n-1 internal nodes. For example, the expanded suffix tree of x = aaa...\$ consists of one arc with n 1 outgoing leaves.
- (c) A compact suffix tree is an expanded suffix tree which has had every sequence of arcs formed by nodes with only one child into a single arc and label that arc with a substring. Let T_x be the compact suffix tree associated to the string x of length n + 1. Suppose that T_x is a complete binary tree, thus branching by two at each level. This will maximize the number of internal nodes in T_x . By proceeding by induction we can see that the two subtrees of T_x of size (n + 1)/2 also have n/2 internal nodes. i.e. the sequence: $1, 1 + 2 = 3, 3 + 4 = 7, 7 + 8 = 15, 15 + 16 = 31, \ldots$

- (d) (i) Suppose that w is not a primitive, then w = v^k for some k ≠ 1 then ww = v^{2k} which is clearly not a square. Hence w must a primitive string. We can see this by sliding two copies of the string w from right to left until we have a match. A match will only occur when w and w are aligned. If w was not a primitive then a match would occur earlier.
 - (ii) If a square ww starts at position i in x then clearly by the above result, the suffix tree T_x will have a leaf i followed by a leaf i + |w| since w is a primitive i.e. the arc going to the leaf i + |w| will be labelled with w. For example in the diagram, we can see that a square ww = abab starts at position 4 with consecutive leaves 4 and 6 defining this square.
- 5. (a) The Hamming distance of a two strings x and y is the number of mismatches allowed between the two. The Levenstein distance is an edit distance that allows insertion, deletion and substitutions of one character at a time each having a unit cost.
 - (b) Build a (n + 1) × (m + 1) table C where we place the string y at the top and the string x on the left. Initialize all entries C[i,0] = C[0,j] = 0. Now proceed to compute C[i,j] by taking the minimum value of:

 $C[i, 1, j - 1] + substitute(x_i, y_j)$ $C[i - 1, j] + delete(x_i)$ $C[i, j - 1] + insert(y_j)$

according to the costs of the operations: substitute, delete and insert.

- (c) By using dynamic programing the above procedure can be extended to that of computing a shortest source-to-sink path in an edge-weighted grid of a directed acyclic graph once the table Chas been computed. This will result in an optimum edit script for transforming x into y with a minimum total cost.
- (d) Let cost(del) = cost(ins) = 1, and $cost(subst) \leq cost(del) + cost(ins)$. Then no edit script will use the substitution operation. The pairs of matching symbols preserved in an optimal edit script constitute a longest common subsequence of x and y. If s is the length of a longest common subsequence between x and y, then on a minimum edit distance path in the grid C, because no substitution is made then we either go down of up. This results

in the minimum edit distance e being the sum of the lengths of x and y minus twice the length of the longest common subsequence between x and y.