CSMTSP Text Searching and Processing - Solutions

1. (a)

(b)

The string-matching automata SM A(a), SM A(aa), SM A(aab),
SM A(aaba):

The process of adding a new character 7 to the computed au-
tomaton SMA(x) (x € ¥*,7 € X) in the on-line algorithm is
referred to unwinding the arc §(7) from the final state computed
in the previous step.

1) Let r := 0(final_state, T), this is the state to which the arc we
a re about to unwind is pointing. 2) Add a new final state s such
s := §(final_state, 7). 3) Now the new final state in SMA(z0)
will behave for each symbol in the alphabet as the state r.

More formerly,

while not end of # do begin
7 := next symbol of x ; r = d(terminal, 7) ;
add new state s to @ ; d(terminal, ) := s ;
for all oinY do §(s,0) :=46(r,0) ;
terminal ;= s ;

end;

Backward arcs are arcs in the automaton that do not point to the
initial state. There are two backward arcs in SMA(aaba): node 2
to node 2 with symbol a on the arc and node 4 to 2 with symbol
a on the arc.



(d)

Recall that each state of the automaton SMA(z) is identified
with a prefix of . A backward edge is of the form (u,r,v7)
where u and v are prefixes of x and 7 € X, a symbol such that
u # vt and vt is the longest suffix of ur that is a prefix of z.
Note that ur is not a prefix of =z.

Let p(u, v, 7) = |u| — |v| (a period of u). We now prove that each
period of the prefixes p,1 < p < |z| corresponds to at most one
backward arc. Thus there are at most |z| such edges.

Suppose that two backward edges (u, T, v7) and (u', 7/, v'7’) have
the same period p = p(u,v,7) = p(u',v',7") then vr = v'7'.
Otherwise if v7 is say a proper prefix of v'7/ then vr would also
occur at position p like v’ so ur would also be a prefix of z. This is
a contradiction, hence v = v, 7 = 7" and v = v/. Hence SMA(z)
has no more than |z| backward arcs.

The periods and borders of the string aaabaaaabaaaabaaaa are:

po = 5, by = aaabaaaabaaaa
p1 = 10, by = aaabaaaa

py = 15,b; = aaa

p3 = 16,03 = aa

Pa = 177 b4 = a

Ps = 187 b5 =€

Recall that a border of z is a both prefix and a suffix of z. Let
b1 be a border of  and by be a border of b;. Then by definition,
by is a prefix of by. By transitivity of the notion of a prefix, bs is
then also a prefix of . Similarly, b, is a suffix of by, hence a suffix
of . Thus by is both a prefix and a suffix of x, which implies
that by is also border of z.

Let border(z) be the longest proper border of z. The string « of
length n has at most n borders starting from € to border(z). By
using the induction principle on the above remark, we know that
bop = border(z) is the largest proper border of x. Let b; be the
next largest proper border of z. We now from the above that by
is in turn a border of by. Hence the recurrence b; = border(b;_1)
for all i € {0,...,k}, where by = ¢,1 < k < n, implies a map-
ping of the borders such that by = ¢ C border(z[l]) C ... C
border(z[n]) = border(z[n — 1]). The inclusion operator is de-



fined as ”border of” which implies that any border of x is either
bg = border(x) or a border of by.

procedure COMPUTE_BORDERS(z : string ;m : integer) ;
begin
Border[0] :== -1 ;
for 1 := 1 to m do begin
j:= Border[i — 1] ;
while 7 > 0 and z[i] # 2[j + 1] do j := Border[j] ;
Border[i] ;=741 ;
end ;
end ;

Output of above algorithm for aaabaaabaaaa:
Border[0:12] =[-1,0,1,2,0,1,2,3,4,5,6,7, 3]

The asymptotic cost of a binary search for the string z of length
n in the list L of k lexicographically sorted strings y; is O(n log k)
time. A ”worst-case” example could be the search of x = bbb---b
in the list L = (aaa---a,aaa---b,aaa---bb,... bbb---b).

Assume that ¢ > r and that ¢ < lep(y1, y;).

Then let uw =y [1---1], o =wp[l+ 1], 7 = y[l +1]. Then ur is
a prefix of  and ¢ < 7. This implies that y; < & < yg.

Now assume that ¢ > r and that ¢ > lep(yr, vi).

In this case, we have that ¢ # 7 and ¢ < 7 which implies that
hn <z <y.

Running a binary search for a sting  of length n by using the
longest common prefixes of the k sorted strings y’s would take
O(n +log k) time.

At each step in the algorithm of part c¢) one uses three longest
common prefixes, namely lep(z, y1), lep(x, yx) and lep(yr, y;). Since
i=|(k+1)/2], we will need to preprocess log k longest common
prefixes among the y’s and two ones on z.



4.

(a)

(b)

The expanded suffix tree associated with the string abaababa$:

The expanded suffix tree associated with the string abaababa$:

Given a string @ of length n, the expanded suffix tree of & may
contain in the "worst case” #(n?) internal nodes. If the symbols
in z are all different e.g.: ©* = abcdef...$, then we have n arcs
each having n,n — 1,...,1 nodes. In the other extreme case, an
expanded suffix tree of  may contain exactly n—1 internal nodes.
For example, the expanded suffix tree of # = aaa...$ consists of
one arc with n — 1 outgoing leaves.

A compact suffix tree is an expanded suffix tree which has had
every sequence of arcs formed by nodes with only one child into
a single arc and label that arc with a substring. Let T, be the
compact suffix tree associated to the string x of length n 4 1.
Suppose that T, is a complete binary tree, thus branching by two
at each level. This will maximize the number of internal nodes in
T,.. By proceeding by induction we can see that the two subtrees
of T, of size (n + 1)/2 also have n/2 internal nodes. i.e. the
sequence: 1,14+2=3,34+4=7,74+8=15,15+16 =31, ...



(d)

(i) Suppose that w is not a primitive, then w = v* for some
k # 1 then ww = v** which is clearly not a square. Hence w
must a primitive string. We can see this by sliding two copies
of the string w from right to left until we have a match. A
match will only occur when w and w are aligned. If w was
not a primitive then a match would occur earlier.

(ii) If a square ww starts at position ¢ in & then clearly by the
above result, the suffix tree T, will have a leaf ¢ followed by a
leaf i + |w]| since w is a primitive i.e. the arc going to the leaf
i+ |w| will be labelled with w. For example in the diagram,
we can see that a square ww = abab starts at position 4 with
consecutive leaves 4 and 6 defining this square.

The Hamming distance of a two strings « and y is the number of
mismatches allowed between the two. The Levenstein distance is
an edit distance that allows insertion, deletion and substitutions
of one character at a time each having a unit cost.

Build a (n 4+ 1) x (m + 1) table C' where we place the string
y at the top and the string = on the left. Initialize all entries
C[i,0] = C[0, 5] = 0. Now proceed to compute CTi, j] by taking
the minimum value of:

Cli, 1, j — 1] 4 substitute(z;, y;)

Cli — 1, j] + delete(z;)

Cli, j— 1] + insert(y;)

according to the costs of the operations: substitute, delete and
insert.

By using dynamic programing the above procedure can be ex-
tended to that of computing a shortest source-to-sink path in an
edge-weighted grid of a directed acyclic graph once the table C
has been computed. This will result in an optimum edit script
for transforming 2 into y with a minimum total cost.

Let cost(del) = cost(ins) = 1, and cost(subst) < cost(del) +
cost(ins). Then no edit script will use the substitution operation.
The pairs of matching symbols preserved in an optimal edit script
constitute a longest common subsequence of z and y. If s is
the length of a longest common subsequence between z and y,
then on a minimum edit distance path in the grid C', because no
substitution is made then we either go down of up. This results



in the minimum edit distance e being the sum of the lengths of z
and y minus twice the length of the longest common subsequence
between x and y.



