CSMTSP: Past Exam QQuestions

James . Reid

Algorithms Design Group, Dept. of Computer Science,
King’s College London, e-mail: reidjf@dcs.kcl.ac.uk

March 3, 1998

The following is a list of past exam questions taken from the course
Combinatorial Algorithms on Words (CSAC31) (1995-1997). Please note
that these questions merely reflect the common syllabus between the two
courses, they do NOT reflect the overall syllabus of the CSMTSP course.

One item in the list is equivalent to one question in the exam.

1. Describe in pseudo-code the Boyer-Moore (BM) algorithm. Give an
example demonstrating the basic strategies employed by the BM al-
gorithm.

Describe in pseudo-code the construction of the KMP_next array
and the Knuth-Morris-Pratt (KMP) algorithm.

Compute the KMP_next array of the string abaabacabaabababa.
Construct the suffix tree for the string 01010101011%. Show the

suffix tree in each step of the construction: the skeleton tree and
the refinement steps.

Construct the dictionary matching automaton using failure links
for the strings

ababab, abaaaba, ababaabababab, abaaaabababa

Describe in pseudo-code the construction of the KMP_next array
used in the Knuth-Morris-Pratt (KMP) pattern matching algo-
rithm.

Design a String Matching Automaton SM A(abbababababb).



(c)

Does the above String Matching Automaton depend on the al-
phabet 7 Justify your answer.

Construct the suffix tree for the string aabaabba$. Show the suffix
tree in each step of the construction: the skeleton tree and the
refinement steps.

Analyse the above construction, showing the space and time re-
quirements.

Give an example of the "match shift”: good suffix rule used by the
Boyer-Moore (BM) string matching algorithm. Describe using
pseudo-code the construction of the good suffix table D.

Give an example of the ”occurrence shift”: bad character rule
used by the Boyer-Moore (BM) string matching algorithm. De-
scribe using pseudo-code the construction of the bad-character

table DA.

Describe the Boyer-Moore (BM) algorithm using pseudo-code.
State it’s "worst-case” time complexity.



