
Chapter 1

Pattern Matching and Text

Compression Algorithms

Maxime Crochemore

King’s College London, UK and Université Paris-Est, France

Thierry Lecroq

University of Rouen, France

1.1 Processing Texts Efficiently . 4
1.2 String-Matching Algorithms . 5

1.2.1 Karp–Rabin Algorithm . 5
1.2.2 Knuth–Morris–Pratt Algorithm . 7
1.2.3 Boyer-Moore Algorithm . 8
1.2.4 Quick Search Algorithm . 14
1.2.5 Experimental Results . 14
1.2.6 Aho-Corasick Algorithm . 15

1.3 Two-Dimensional Pattern Matching Algorithms . 20
1.3.1 Zhu–Takaoka Algorithm . 20
1.3.2 Bird/Baker Algorithm . 22

1.4 Suffix Trees . 24
1.4.1 McCreight Algorithm . 28

1.5 Suffix Arrays . 31
1.5.1 Kärkkäinen–Sanders Algorithm . 32
1.5.2 Substring Search . 36
1.5.3 Longest Common Prefixes . 36
1.5.4 Substring Search with the Length of the Common Prefixes 38

1.6 Alignment . 39
1.6.1 Global alignment . 40
1.6.2 Local alignment . 43
1.6.3 Longest Common Subsequence of Two Strings 46
1.6.4 Reducing the Space: Hirschberg Algorithm . 47

1.7 Approximate String Matching . 48
1.7.1 Shift-Or Algorithm . 49
1.7.2 String Matching with k Mismatches . 51
1.7.3 String Matching with k Differences . 51
1.7.4 Wu–Manber Algorithm . 54

1.8 Text Compression . 55
1.8.1 Huffman Coding . 56

1.8.1.1 Encoding . 57
1.8.1.2 Decoding . 60

1.8.2 Lempel–Ziv–Welsh (LZW) Compression . 62
1.8.2.1 Compression Method . 62
1.8.2.2 Decompression Method . 63

3

4 Book title goes here

1.8.2.3 Implementation . 64
1.8.3 Mixing several methods . 65

1.8.3.1 Run Length Encoding . 66
1.8.3.2 Move To Front . 66
1.8.3.3 Integrated example . 66

1.9 Research Issues and Summary . 68
Defining Terms . 70

1.1 Processing Texts Efficiently

The present chapter describes a few standard algorithms used for process-
ing texts. They apply, for example, to the manipulation of texts (text edi-
tors), to the storage of textual data (text compression), and to data retrieval
systems. The algorithms of this chapter are interesting in different respects.
First, they are basic components used in the implementations of practical soft-
ware. Second, they introduce programming methods that serve as paradigms
in other fields of computer science (system or software design). Third, they
play an important role in theoretical computer science by providing challeng-
ing problems.

Although data are stored in various ways, text remains the main form of
exchanging information. This is particularly evident in literature or linguistics
where data are composed of huge corpora and dictionaries. This applies as well
to computer science where a large amount of data are stored in linear files.
And this is also the case in molecular biology where biological molecules can
often be approximated as sequences of nucleotides or amino acids. Moreover,
the quantity of available data in these fields tends to double every 18 months.
This is the reason why algorithms should be efficient even if the speed of
computers increases at a steady pace.

Pattern matching is the problem of locating a specific pattern inside raw
data. The pattern is usually a collection of strings described in some formal
language. Two kinds of textual patterns are presented: single strings and ap-
proximated strings. Two algorithms for matching patterns in images that are
extensions of string-matching algorithms are also presented.

In several applications, texts need to be structured before being searched.
Even if no further information is known about their syntactic structure, it is
possible and indeed extremely efficient to build a data structure that supports
searches. From among several existing data structures equivalent to represent
indexes, suffix trees and suffix arrays are presented, along with their construc-
tion algorithms.

The comparison of strings is implicit in the approximate pattern searching
problem. Since it is sometimes required to compare just two strings (files or
molecular sequences) the basic method based on longest common subsequences
is introduced.

Finally, the chapter contains two classical text compression algorithms.

Pattern Matching and Text Compression Algorithms 5

BF(x, m, y, n)

1 ⊲ Searching
2 for j ← 0 to n−m
3 do i← 0
4 while i < m and x[i] = y[i + j]
5 do i← i + 1
6 if i ≥ m
7 then Output(j)

FIGURE 1.1: The brute force string-matching algorithm.

Variants of these algorithms are implemented in practical compression soft-
ware, in which they are often combined together or with other elementary
methods. An example of mixing different methods is presented there.

The efficiency of algorithms is evaluated by their running times, and some-
times by the amount of memory space they require at run time as well.

1.2 String-Matching Algorithms

String matching is the problem of finding one, or more generally, all the
occurrences of a pattern in a text. The pattern and the text are both strings
built over a finite alphabet (a finite set of symbols). Each algorithm of this
section outputs all occurrences of the pattern in the text. The pattern is
denoted by x = x[0 . . m− 1]; its length is equal to m. The text is denoted by
y = y[0 . . n − 1]; its length is equal to n. The alphabet is denoted by Σ and
its size is equal to σ.

String-matching algorithms of the present section work as follows: they
first align the left ends of the pattern and the text, then compare the aligned
symbols of the text and the pattern—this specific work is called an attempt
or a scan—and after a whole match of the pattern or after a mismatch they
shift the pattern to the right. They repeat the same procedure again until the
right end of the pattern goes beyond the right end of the text. This is called
the scan and shift mechanism. Each attempt is associated with the position j
in the text, when the pattern is aligned with y[j . . j + m− 1].

The brute force algorithm consists in checking, at all positions in the text
between 0 and n − m, whether an occurrence of the pattern starts there or
not. Then, after each attempt, it shifts the pattern exactly one position to the
right. This is the simplest algorithm, which is described in Fig. 1.1.

The time complexity of the brute force algorithm is O(mn) in the worst
case but its behavior in practice is often linear on specific data.

6 Book title goes here

ReHash(a, b, h)

1 return ((h− a× d) << 1) + b

FIGURE 1.2: Function ReHash.

1.2.1 Karp–Rabin Algorithm

Hashing provides a simple method for avoiding a quadratic number of
symbol comparisons in most practical situations. Instead of checking at each
position of the text whether the pattern occurs, it seems to be more efficient to
check only if the portion of the text aligned with the pattern “looks like” the
pattern. In order to check the resemblance between these portions a hashing
function is used. To be helpful for the string-matching problem the hashing
function should have the following properties:

• efficiently computable,

• highly discriminating for strings,

• hash(y[j + 1 . . j + m]) must be easily computable from hash(y[j . . j +
m− 1]):
hash(y[j + 1 . . j + m]) = ReHash(y[j], y[j + m], hash(y[j . . j + m− 1])).

For a word w of length k, its symbols can be considered as digits, and function
hash(w) is defined by

hash(w[0 . . k − 1]) = (w[0]× 2k−1 + w[1]× 2k−2 + · · ·+ w[k − 1]) mod q

where q is a large number. Then, ReHash has a simple expression

ReHash(a, b, h) = ((h− a× d)× 2 + b) mod q

where d = 2k−1 where q is the computer word-size (see Fig. 1.2).
During the search for the pattern x, hash(x) is compared with hash(y[j −

m + 1 . . j]) for m− 1 ≤ j ≤ n− 1. If an equality is found, it is still necessary
to check the equality x = y[j −m + 1 . . j] symbol by symbol.

In the algorithms of Fig. 1.2 and Fig. 1.3 all multiplications by 2 are
implemented by shifts (operator <<). Furthermore, the computation of the
modulus function is avoided by using the implicit modular arithmetic given
by the hardware that forgets carries in integer operations. Thus, q is chosen
as the maximum value of an integer of the system.

The worst-case time complexity of the Karp–Rabin algorithm is quadratic
(as it is for the brute force algorithm) but its expected running time is O(m+
n).

Example 1.1: Let x = ing. Then hash(x) = 105×22+110×2+103 = 743
(symbols are assimilated with their ASCII codes).

Pattern Matching and Text Compression Algorithms 7

KR(x, m, y, n)

1 ⊲ Preprocessing
2 d← 1
3 for i← 1 to m− 1
4 do d← d << 1
5 hx ← 0
6 hy ← 0
7 for i← 0 to m− 1
8 do hx ← (hx << 1) + x[i]
9 hy ← (hy << 1) + y[i]

10 ⊲ Searching
11 if hx = hy and x = y[0 . .m− 1]
12 then Output(0)
13 j ← m
14 while j < n
15 do hy ← ReHash(y[j −m], y[j], hy)
16 if hx = hy and x = y[j −m + 1 . . j]
17 then Output(j −m + 1)
18 j ← j + 1

FIGURE 1.3: The Karp–Rabin string-matching algorithm.

y = s t r i n g m a t c h i n g

hash = 806 797 776 743 678 585 443 746 719 766 709 736 743

1.2.2 Knuth–Morris–Pratt Algorithm

This section presents the first discovered linear-time string-matching al-
gorithm. Its design follows a tight analysis of the brute force algorithm, and
especially of the way this latter algorithm wastes the information gathered
during the scan of the text.

Let us look more closely at the brute force algorithm. It is possible to
improve the length of shifts and simultaneously remember some portions of
the text that match the pattern. This saves comparisons between characters
of the text and of the pattern, and consequently increases the speed of the
search.

Consider an attempt at position j, that is, when the pattern x[0 . . m− 1]
is aligned with the segment y[j . . j + m− 1] of the text. Assume that the first
mismatch (during a left to right scan) occurs between symbols x[i] and y[i+j]
for 0 ≤ i < m. Then, x[0 . . i−1] = y[j . . i+j−1] = u and a = x[i] 6= y[i+j] = b.
When shifting, it is reasonable to expect that a prefix v of the pattern matches
some suffix of the portion u of the text. Moreover, if one wants to avoid
another immediate mismatch, the letter following the prefix v in the pattern

8 Book title goes here

x

x

y

c

a

b

6=

6=

j i + j

u

u

v

FIGURE 1.4: Shift in the Knuth–Morris–Pratt algorithm (v suffix of u).

must be different from a. (Indeed, it should be expected that v matches a suffix
of ub, but elaborating along this idea goes beyond the scope of the chapter.)
The longest such prefix v is called the border of u (it occurs at both ends
of u). This introduces the notation: let next[i] be the length of the longest
(proper) border of x[0 . . i − 1] followed by a character c different from x[i].
Then, after a shift, the comparisons can resume between characters x[next[i]]
and y[i+ j] without missing any occurrence of x in y and having to backtrack
on the text (see Fig. 1.4).

Example 1.2: Here

y = . . . a b a b a a b
x = a b a b a b a
x = a b a b a b a

Compared symbols are underlined. Note that the empty string is the suitable
border of ababa. Other borders of ababa are aba and a.

The Knuth–Morris–Pratt algorithm is displayed in Fig. 1.5. The table next

it uses is computed in O(m) time before the search phase, applying the same
searching algorithm to the pattern itself, as if y = x (see Fig. 1.6). The worst-
case running time of the algorithm is O(m + n) and it requires O(m) extra
space. These quantities are independent of the size of the underlying alphabet.

1.2.3 Boyer–Moore Algorithm

The Boyer–Moore algorithm is considered as the most efficient string-
matching algorithm in usual applications. A simplified version of it, or the
entire algorithm, is often implemented in text editors for the search and sub-
stitute commands.

The algorithm scans the characters of the pattern from right to left begin-
ning with the rightmost symbol. In case of a mismatch (or a complete match
of the whole pattern) it uses two precomputed functions to shift the pattern
to the right. These two shift functions are called the bad-character shift and
the good-suffix shift. They are based on the following observations.

Pattern Matching and Text Compression Algorithms 9

KMP(x, m, y, n)

1 ⊲ Preprocessing
2 next← PreKMP(x, m)
3 ⊲ Searching
4 i← 0
5 j ← 0
6 while j < n
7 do while i > −1 and x[i] 6= y[j]
8 do i← next[i]
9 i← i + 1

10 j ← j + 1
11 if i ≥ m
12 then output(j − i)
13 i← next[i]

FIGURE 1.5: The Knuth–Morris–Pratt string-matching algorithm.

PreKMP(x, m)

1 i← −1
2 j ← 0
3 next[0]← −1
4 while j < m
5 do while i > −1 and x[i] 6= x[j]
6 do i← next[i]
7 i← i + 1
8 j ← j + 1
9 if x[i] = x[j]

10 then next[j]← next[i]
11 else next[j]← i
12 return next

FIGURE 1.6: Preprocessing phase of the Knuth–Morris–Pratt algorithm:
computing next.

10 Book title goes here

x

x

y

c

a

b

6=

6=

u

u

u

shift

FIGURE 1.7: The good-suffix shift, when u reappears preceded by a char-
acter different from a.

x

x

y

6=
a

b

u

u

v

shift

FIGURE 1.8: The good-suffix shift, when the situation of Fig. 1.7 does not
happen. Only a suffix of u reappears as a prefix of x.

Assume that a mismatch occurs between the character x[i] = a of the
pattern and the character y[i+j] = b of the text during an attempt at position
j. Then, x[i + 1 . .m − 1] = y[i + j + 1 . . j + m − 1] = u and x[i] 6= y[i + j].
The good-suffix shift consists in aligning the segment y[i+ j +1 . . j +m− 1]
with its rightmost occurrence in x that is preceded by a character different
from x[i] (see Fig. 1.7). If there exists no such segment, the shift consists in
aligning the longest suffix v of y[i + j + 1 . . j + m− 1] with a matching prefix
of x (see Fig. 1.8).

Example 1.3: Here

y = . . . a b b a a b b a b b a . . .
x = a b b a a b b a b b a
x = a b b a a b b a b b a

The shift is driven by the suffix abba of x found in the text. After the shift,
the segment abba in the middle of y matches a segment of x as in Fig. 1.7.
The same mismatch does not recur.

Example 1.4: Here

y = . . . a b b a a b b a b b a b b a . .
x = b b a b b a b b a
x = b b a b b a b b a

Pattern Matching and Text Compression Algorithms 11

x

x

y

b

a

b

6=

contains no b

u

u

shift

FIGURE 1.9: The bad-character shift, b appears in x.

x

x

y

a

b

6=

contains no b

u

u

shift

FIGURE 1.10: The bad-character shift, b does not appear in x (except
possibly at m− 1).

The segment abba found in y partially matches a prefix of x after the shift,
as in Fig. 1.8.

The bad-character shift consists in aligning the text character y[i+ j] with
its rightmost occurrence in x[0 . . m−2] (see Fig. 1.9). If y[i+j] does not appear
in the pattern x, no occurrence of x in y can overlap the symbol y[i + j], then
the left end of the pattern is aligned with the character at position i + j + 1
(see Fig. 1.10).

Example 1.5: Here

y = a b c d
x = c d a h g f e b c d
x = c d a h g f e b c d

The shift aligns the symbol a in x with the mismatch symbol a in the text
y (Fig. 1.9.).

Example 1.6: Here

y = a b c d
x = c d h g f e b c d
x = c d h g f e b c d

The shift positions the left end of x right after the symbol a of y (Fig. 1.10.).

12 Book title goes here

BM(x, m, y, n)

1 ⊲ Preprocessing
2 gs← PreGS(x, m)
3 bc← PreBC(x, m)
4 ⊲ Preprocessing
5 j ← 0
6 while j ≤ n−m
7 do i← m− 1
8 while i ≥ 0 and x[i] = y[i + j]
9 do i← i− 1

10 if i < 0
11 then Output(j)
12 j ← max{gs[i + 1], bc[y[i + j]−m + i + 1]}

FIGURE 1.11: The Boyer–Moore string-matching algorithm.

PreBC(x, m)

1 for a← firstLetter to lastLetter
2 do bc[a]← m
3 for i← 0 to m− 2
4 do bc[x[i]]← m− 1− i
5 return bc

FIGURE 1.12: Computation of the bad-character shift.

The Boyer–Moore algorithm is shown in Fig. 1.11. For shifting the pattern,
it applies the maximum between the bad-character shift and the good-suffix
shift. More formally, the two shift functions are defined as follows. The bad-
character shift is stored in a table bc of size σ and the good-suffix shift is
stored in a table gs of size m + 1. For a ∈ Σ

bc[a] =

{

min{i | 1 ≤ i < m and x[m− 1− i] = a} if a appears in x,

m otherwise.

Let us define two conditions,

{

cond1(i, s) : for each k such that i < k < m, s ≥ k or x[k − s] = x[k],

cond2(i, s) : if s < i then x[i− s] 6= x[i].

Then, for 0 ≤ i < m,

gs[i + 1] = min{s > 0 | cond1(i, s) and cond2(i, s) hold}

and gs[0] is defined as the length of the smallest period of x.
To compute the table gs, a table suff is used. This table can be defined as

Pattern Matching and Text Compression Algorithms 13

Suffixes(x, m)

1 suff[m− 1]← m
2 g ← m− 1
3 for i← m− 2 downto 0
4 do if i > g and suff[i + m− 1− f] 6= i− g
5 then suff[i]← min{suff[i + m− 1− f], i− g}
6 else if i < g
7 then g ← i
8 f ← i
9 while g ≥ 0 and x[g] = x[g + m− 1− f]

10 do g ← g − 1
11 suff[i]← f − g
12 return suff

FIGURE 1.13: Computation of the table suff.

PreGS(x, m)

1 gs← Suffixes(x, m)
2 for i← 0 to m− 1
3 do gs[i]← m
4 j ← 0
5 for i← m− 1 downto −1
6 do if i = −1 or suff[i] = i + 1
7 then while j < m− 1− i
8 do if gs[j] = m
9 then gs[j]← m− 1− i

10 j ← j + 1
11 for i← 0 to m− 2
12 do gs[m− 1− suff[i]]← m− 1− i
13 return gs

FIGURE 1.14: Computation of the good-suffix shift.

14 Book title goes here

follows: for i = 0, 1, . . . , m− 1,

suff[i] = longest common suffix between x[0 . . i] and x .

It is computed in linear time and space by the function Suffixes (see
Fig. 1.13).

Tables bc and gs can be precomputed in time O(m + σ) before the search
phase and require an extra space in O(m+σ) (see Fig. 1.12 and Fig. 1.14). The
worst-case running time of the algorithm is quadratic. However, on large al-
phabets (relative to the length of the pattern) the algorithm is extremely fast.
Slight modifications of the strategy yield linear-time algorithms (see the bibli-
ographic notes). When searching for am in (am−1b)⌊n/m⌋ the algorithm makes
only O(n/m) comparisons, which is the absolute minimum for any string-
matching algorithm in the model where the pattern only is preprocessed.

1.2.4 Quick Search Algorithm

The bad-character shift used in the Boyer–Moore algorithm is not very
efficient for small alphabets, but when the alphabet is large compared with
the length of the pattern, as it is often the case with the ASCII table and
ordinary searches made under a text editor, it becomes very useful. Using it
alone produces a practically very efficient algorithm that is described now.

After an attempt where x is aligned with y[j . . j + m − 1], the length of
the shift is at least equal to one. Thus, the character y[j + m] is necessarily
involved in the next attempt, and thus can be used for the bad-character shift
of the current attempt. In the present algorithm, the bad-character shift is
slightly modified to take into account the observation as follows (a ∈ Σ):

bc[a] = 1 +

{

min{i | 0 ≤ i < m and x[m− 1− i] = a} if a appears in x,

m otherwise.

Indeed, the comparisons between text and pattern characters during each
attempt can be done in any order. The algorithm of Fig. 1.15 performs the
comparisons from left to right. It is called Quick Search after its inventor and
has a quadratic worst-case time complexity but good practical behavior.

Example 1.7: Here

y = s t r i n g - m a t c h i n g
x = i n g
x = i n g

x = i n g
x = i n g
x = i n g

The Quick Search algorithm makes only nine comparisons to find the two
occurrences of ing inside the text of length 15.

Pattern Matching and Text Compression Algorithms 15

QS(x, m, y, n)

1 ⊲ Preprocessing
2 for a← firstLetter to lastLetter
3 do bc[a]← m + 1
4 for i← 0 to m− 1
5 do bc[x[i]]← m− i
6 ⊲ Searching
7 j ← 0
8 while j ≤ n−m
9 do i← 0

10 while i ≥ 0 and x[i] = y[i + j]
11 do i← i + 1
12 if i ≥ m
13 then Output(j)
14 j ← bc[y[j + m]]

FIGURE 1.15: The Quick Search string-matching algorithm.

1.2.5 Experimental Results

Fig. 1.16 and Fig. 1.17 present the running times of three string-matching
algorithms: the Boyer–Moore algorithm (BM), the Quick Search algorithm
(QS), and the Backward Oracle Matching algorithm (BOM). The Backward
Oracle Matching algorithm can be viewed as a variation of the Boyer–Moore
algorithm where factors (segments) rather than suffixes of the pattern are
recognized. The BOM algorithm uses a data structure to store all the factors
of the reversed pattern: a factor oracle but a suffix automaton or a suffix tree
(see section 1.4) can also be used.

Tests have been performed on various types of texts. Fig. 1.16 shows the
results when the text is a DNA sequence on the four-letter alphabet of nu-
cleotides A, C, G, T. In Fig. 1.17 English text is considered.

For each pattern length, a large number of searches with random patterns
were run. The average time according to the length is shown in the two figures.
The running times of both preprocessing and searching phases are added. The
three algorithms are implemented in a homogeneous way in order to keep the
comparison significant.

For the genome, as expected, the QS algorithm is the best for short pat-
terns. But for long patterns it is eventually less efficient than the BM algo-
rithm. In this latter case, the BOM algorithm achieves the best results. For
rather large alphabets the three algorithms have similar behaviors; however,
the QS is always faster.

16 Book title goes here

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140

time

m

BM
BOM

QS

FIGURE 1.16: Running times for a DNA sequence.

0

5

10

15

20

0 20 40 60 80 100 120

time

m

BM
BOM

QS

FIGURE 1.17: Running times for an English text.

Pattern Matching and Text Compression Algorithms 17

PreAC(X, k)

1 Create a new node root
2 ⊲ creates a loop on the root of the trie
3 for a ∈ Σ
4 do child(root, a)← root
5 ⊲ enters each pattern in the trie
6 for i← 0 to k − 1
7 do Enter(X [i], root)
8 ⊲ completes the trie with failure links
9 Complete(root)

10 return root

FIGURE 1.18: Preprocessing phase of the Aho–Corasick algorithm.

1.2.6 Aho–Corasick Algorithm

The UNIX operating system provides standard text (or file) facilities.
Among them is the series of grep commands that locate patterns in files.
The algorithm underlying the fgrep command of UNIX is described in this
section. It searches files for a finite set of strings, and can, for instance, output
lines containing at least one of the strings.

If one is interested in searching for all occurrences of all patterns taken
from a finite set of patterns, a first solution consists in repeating some string-
matching algorithm for each pattern. If the set contains k patterns, this search
runs in time O(kn). The solution described in the present section and de-
signed by Aho and Corasick runs in time O(n log σ). The algorithm is a direct
extension of the Knuth–Morris–Pratt algorithm, and the running time is in-
dependent of the number of patterns.

Let X = {x0, x1, . . . , xk−1} be the set of patterns, and let |X | = |x0| +
|x1|+ · · ·+ |xk−1| be the total size of the set X . The Aho–Corasick algorithm
first builds a trie T (X), a digital tree recognizing the patterns of X . The trie
T (X) is a tree in which edges are labeled by letters and in which branches spell
the patterns of X . A node p in the trie T (X) is identified with the unique word
w spelled by the path of T (X) from its root to p. The root itself is identified
with the empty word ε. Notice that if w is a node in T (X) then w is a prefix
of some xi ∈ X . If w is a node in T (X) and a ∈ Σ then child(w, a) is equal to
wa if wa is a node in T (X); it is equal to undefined otherwise.

The function PreAC in Fig. 1.18 returns the trie of all patterns. During
the second phase, where patterns are entered in the trie, the algorithm initial-
izes an output function out. It associates the singleton {xi} with the nodes xi

(0 ≤ i < k), and associates the empty set with all other nodes of T (X) (see
Fig. 1.19).

Finally, the last phase of function PreAC (Fig. 1.18) consists in building
the failure link of each node of the trie, and simultaneously completing the
output function. This is done by the function Complete in Fig. 1.20. The

18 Book title goes here

Enter(x, root)

1 r ← root
2 i← 0
3 ⊲ follows the existing edges
4 while i < |x| and child(r, x[i]) 6= undefined and child(r, x[i]) 6= root
5 do r ← child(r, x[i])
6 i← i + 1
7 ⊲ creates new edges
8 while i < |x|
9 do Create a new node s

10 child(r, x[i])← s
11 r ← s
12 i← i + 1
13 out(r)← {x}

FIGURE 1.19: Construction of the trie.

Complete(root)

1 q ← empty queue
2 ℓ← list of the edges (root, a, p) for any character a ∈ Σ

and any node p 6= root
3 while the list ℓ is not empty
4 do (r, a, p)← First(ℓ)
5 ℓ← Next(ℓ)
6 Enqueue(q, p)
7 fail(p)← root
8 while the queue q is not empty
9 do r ← Dequeue(q)

10 ℓ← list of the edges (root, a, p) for any character a ∈ Σ
and any node p

11 while the list ℓ is not empty
12 do (r, a, p)← First(ℓ)
13 ℓ← Next(ℓ)
14 Enqueue(q, p)
15 s← fail(r)
16 while child(s, a) = undefined
17 do s← fail(s)
18 fail(p)← child(s, a)
19 out(p)← out(p) ∪ out(child(s, a))

FIGURE 1.20: Completion of the output function and construction of failure
links.

Pattern Matching and Text Compression Algorithms 19

failure function fail is defined on nodes as follows (w is a node):

fail(w) = u where u is the longest proper suffix of w that belongs to T (X) .

Computation of failure links is done during a breadth-first traversal of T (X).
Completion of the output function is done while computing the failure function
fail using the following rule:

if fail(w) = u then out(w) = out(w) ∪ out(u) .

Example 1.8: Here X = {search, ear, arch, chart}

ε s se sea sear searc search
s e a r c h

e ea ear

e a r

a ar arc arch

a
r c h

c ch cha char chart

c

h a r t

c 6∈ {s, e, a, c}

nodes ε s se sea sear searc search e ea ear

fail ε ε e ea ear arc arch ε a ar

nodes a ar arc arch c ch cha char chart
fail ε ε c ch ε ε a ar ε

nodes sear search ear arch chart

out ear {search, arch} ear arch chart

To stop going back with failure links during the computation of the failure
links, and also to overpass text characters for which no transition is defined
from the root, a loop is added on the root of the trie for these symbols. This
is done at the first phase of function PreAC.

After the preprocessing phase is completed, the searching phase consists
in parsing all the characters of the text y with T (X). This starts at the root
of T (X) and uses failure links whenever a character in y does not match any
label of outgoing edges of the current node. Each time a node with a nonempty
output is encountered, this means that the patterns of the output have been
discovered in the text, ending at the current position. Then, the position is
output.

An implementation of the Aho–Corasick algorithm from the previous dis-
cussion is shown in Fig. 1.21. Note that the algorithm processes the text in an
on-line way, so that the buffer on the text can be limited to only one symbol.
Also note that the instruction r ← fail(r) in Fig. 1.21 is the exact analogue

20 Book title goes here

AC(X, k, y, n)

1 ⊲ Preprocessing
2 r ← PreAC(X, k)
3 ⊲ Searching
4 for j ← 0 to n− 1
5 do while child(r, y[j]) = undefined
6 do r ← fail(r)
7 r ← child(r, y[j])
8 if out(r) 6= ∅
9 then Output((out(r), j))

FIGURE 1.21: The complete Aho–Corasick algorithm.

of instruction i← next[i] in Fig. 1.5. A unified view of both algorithms exists
but is beyond the scope of the chapter.

The entire algorithm runs in time O(|X |+n) if the child function is imple-
mented to run in constant time. This is the case for any fixed alphabet. Oth-
erwise a log σ multiplicative factor comes from access to the children nodes.

1.3 Two-Dimensional Pattern Matching Algorithms

In this section only two-dimensional arrays are considered. Arrays may
be thought of as bit map representations of images, where each cell of arrays
contains the codeword of a pixel. The string-matching problem finds an equiv-
alent formulation in two dimensions (and even in any number of dimensions),
and algorithms of section 1.2 can be extended to operate on arrays.

The problem now is to locate all occurrences of a two-dimensional pat-
tern X = X [0 . .m1 − 1, 0 . .m2 − 1] of size m1 ×m2 inside a two-dimensional
text Y = Y [0 . . n1 − 1, 0 . . n2 − 1] of size n1 × n2. The brute force algorithm
for this problem is given in Fig. 1.22. It consists in checking at all positions
of Y [0 . . n1 − m1, 0 . . n2 − m2] if the pattern occurs. This algorithm has a
quadratic (with respect to the size of the problem) worst-case time complex-
ity in O(m1m2n1n2). In the next sections two more efficient algorithms are
presented. The first one is an extension of the Karp–Rabin algorithm (previous
section). The second one solves the problem in linear time on a fixed alphabet;
it uses both the Aho–Corasick and the Knuth–Morris–Pratt algorithms.

1.3.1 Zhu–Takaoka Algorithm

As for one-dimensional string matching, it is possible to check if the pattern
occurs in the text only if the aligned portion of the text looks like the pattern.

Pattern Matching and Text Compression Algorithms 21

BF2D(X, m1, m2, Y, n1, n2)

1 ⊲ Searching
2 for j1 ← 0 to n1 −m1

3 do for j2 ← 0 to n2 −m2

4 do i← 0
5 while i < m1

and x[i, 0 . .m2 − 1] = y[j1 + i, j2 . . j2 + m2 − 1]
6 do i← i + 1
7 if i ≥ m1

8 then Output(j1, j2)

FIGURE 1.22: The brute force two-dimensional pattern matching algo-
rithm.

To do that, the idea is to use vertically the hash function method proposed
by Karp and Rabin. To initialize the process, the two-dimensional arrays X
and Y are translated into one-dimensional arrays of numbers x and y. The
translation from X to x is done as follows (0 ≤ i < m2):

x[i] = hash(X [0, i]X [1, i] · · ·X [m1 − 1, i])

and the translation from Y to y is done by (0 ≤ i < m2):

y[i] = hash(Y [0, i]Y [1, i] · · ·Y [m1 − 1, i]).

The fingerprint y helps to find occurrences of X starting at row j = 0 in Y .
It is then updated for each new row in the following way (0 ≤ i < m2):

hash(Y [j + 1, i]Y [j + 2, i] · · ·Y [j + m1, i])

= ReHash(Y [j, i], Y [j + m1, i], hash(Y [j, i]Y [j + 1, i] · · ·Y [j + m1 − 1, i]))

(functions hash and ReHash are described in the section on the Karp–Rabin
algorithm).

Example 1.9:

X =

a a a

b b a

a a b

Y =

a b a b a b b

a a a a b b b

b b b a a a b

a a a b b a a

b b a a a b b

a a b a b a a

x = 681 681 680 y = 680 684 680 683 681 685 686

Next value of y is 681 681 681 680 684 683 685 . The occurrence of
x at position 1 on y corresponds to an occurrence of X at position (1, 1) on
Y .

22 Book title goes here

KMP-in-line(X, m1, m2, Y, n1, n2, x, y,next, j1)

1 i2 ← 0
2 j2 ← 0
3 while j2 < n2

4 do while i2 > −1 and x[i2] 6= y[j2]
5 do i2 ← next[i2]
6 i2 ← i2 + 1
7 j2 ← j2 + 1
8 if i2 ≥ m2

9 then Direct-compare(X, m1, m2, Y, n1, n2, j1, j2 − 1)
10 i2 ← next[m2]

FIGURE 1.23: Search for x in y using KMP algorithm.

Direct-compare(X, m1, m2, Y, row, column)

1 j1 ← row−m1 + 1
2 j2 ← column−m2 + 1
3 for i1 ← 0 to m1 − 1
4 do for i2 ← 0 to m2 − 1
5 do if X [i1, i2] 6= Y [i1 + j1, i2 + j2]
6 then return
7 Output(j1, j2)

FIGURE 1.24: Naive check of an occurrence of x in y at position (row,

column).

Since the alphabet of x and y is large, searching for x in y must be done by
a string-matching algorithm for which the running time is independent of the
size of the alphabet: the Knuth–Morris–Pratt suits this application perfectly.
Its adaptation is shown in Fig. 1.23.

When an occurrence of x is found in y, then one still has to check if an
occurrence of X starts in Y at the corresponding position. This is done naively
by the procedure of Fig. 1.24.

The Zhu–Takaoka algorithm as explained above is displayed in Fig. 1.25.
The search for the pattern is performed row by row starting at row 0 and
ending at row n1 −m1.

1.3.2 Bird/Baker Algorithm

The algorithm designed independently by Bird and Baker for the two-
dimensional pattern matching problem combines the use of the Aho–Corasick
algorithm and the Knuth–Morris–Pratt (KMP) algorithm. The pattern X is
divided into its m1 rows R0 = X [0, 0 . .m2−1] to Rm1−1 = x[m1−1, 0 . .m2−
1]. The rows are preprocessed into a trie as in the Aho–Corasick algorithm
described earlier.

Pattern Matching and Text Compression Algorithms 23

ZT(X, m1, m2, Y, n1, n2)

1 ⊲ Preprocessing
2 ⊲ Computes x
3 for i2 ← 0 to m2 − 1
4 do x[i2]← 0
5 for i1 ← 0 to m1 − 1
6 do x[i2]← (x[i2] << 1) + X [i1, i2]
7 ⊲ Computes the first value of y
8 for j2 ← 0 to n2 − 1
9 do y[j2]← 0

10 for j1 ← 0 to m1 − 1
11 do y[j2]← (y[j2] << 1) + Y [j1, j2]
12 d← 1
13 for i← 1 to m1 − 1
14 do d← d << 1
15 next← PreKMP(X ′, m2)
16 ⊲ Searching
17 j1 ← m1 − 1
18 while j1 < n1

19 do KMP-in-line(X, m1, m2, Y, n1, n2, x, y,next, j2)
20 if j1 < n1 − 1
21 then for j2 ← 0 to n2 − 1
22 do y[j2]← ReHash(Y [j1 −m1 + 1, j2],

Y [j1 + 1, j2], y[j2])
23 j1 ← j1 + 1

FIGURE 1.25: The Zhu-Takaoka two-dimensional pattern matching algo-
rithm.

24 Book title goes here

Pre-KMP-for-B(X, m1, m2)

1 i← 0
2 next[0]← −1
3 j ← −1
4 while i < m1

5 do while j > −1 and X [i, 0 . .m2 − 1] 6= X [j, 0 . .m2 − 1]
6 do j ← next[j]
7 i← i + 1
8 j ← j + 1
9 if X [i, 0 . .m2 − 1] 6= X [j, 0 . .m2 − 1]

10 then next[i]← next[j]
11 else next[i]← j
12 return next

FIGURE 1.26: Computes the function next for rows of X .

Example 1.10: Pattern X and the trie of its rows:

X =

b a a

a b b

b a a

ε a ab abb
a b b

b ba baa
b a a

c 6∈ {a,b}

The search proceeds as follows. The text is read from the upper left corner
to the bottom right corner, row by row. When reading the character Y [j1, j2]
the algorithm checks whether the portion Y [j1, j2−m2 +1 . . j2] = R matches
any of R0, . . . , Rm1−1 using the Aho–Corasick machine. An additional one-
dimensional array a of size n1 is used as follows: a[j2] = k means that the
k − 1 first rows R0, . . . , Rk−2 of the pattern match, respectively, the portions
of the text: Y [j1−k+1, j2−m2 +1 . . j2], . . . , Y [j1−1, j2−m2 +1 . . j2]. Then,
if R = Rk−1, a[j2] is incremented to k + 1. If not, a[j2] is set to s + 1 where s
is the maximum i such that

R0 · · ·Ri = Rk−s+1 · · ·Rk−2R .

The value s is computed using the KMP algorithm vertically (in columns). If
there exists no such s, a[j2] is set to 0. Finally, if at some point a[j2] = m1 an
occurrence of the pattern appears at position (j1−m1 +1, j2−m2 +1) in the
text.

The Bird/Baker algorithm is presented in Figs. 1.26 and 1.27. It runs in
time O((n1n2 + m1m2) log σ).

Pattern Matching and Text Compression Algorithms 25

B(X, m1, m2, Y, n1, n2)

1 ⊲ Preprocessing
2 for i← 0 to m2 − 1
3 do a[i]← 0
4 root← PreAC(m1)
5 next← Pre-KMP-for-B(X, m1, m2)
6 for j1 ← 0 to n1 − 1
7 do r ← root
8 for j2 ← 0 to n2 − 1
9 do while child(r, Y [j1, j2]) = undefined

10 do r ← fail(r)
11 r ← child(r, Y [j1, j2])
12 if out(r) 6= ∅
13 then k ← a[j2]
14 while k > 0 and X [k, 0 . .m2 − 1] = out(r)
15 do k ← next[k]
16 a[j2]← k + 1
17 if k ≥ m1 − 1
18 then Output(j1 −m1 + 1, j2 −m2 + 1)
19 else a[j2]← 0

FIGURE 1.27: The Bird/Baker two-dimensional pattern matching algo-
rithm.

1.4 Suffix Trees

The suffix tree S(y) of a string y is a trie (as described earlier) containing
all the suffixes of the string, and having the properties described subsequently.
This data structure serves as an index on the string: it provides a direct access
to all segments of the string, and gives the positions of all their occurrences
in the string.

Once the suffix tree of a text y is built, searching for x in y remains to
spell x along a branch of the tree. If this walk is successful the positions of
the pattern can be output. Otherwise, x does not occur in y.

Any kind of trie that represents the suffixes of a string can be used to
search it. But the suffix tree has additional features which imply that its size
is linear. The suffix tree of y is defined by the following properties:

• All branches of S(y) are labeled by all suffixes of y.

• Edges of S(y) are labeled by strings.

• Internal nodes of S(y) have at least two children (when y is not empty).

• Edges outgoing an internal node are labeled by segments starting with
different letters.

26 Book title goes here

Suffix-tree(y, n)

1 T−1 ← one node tree
2 for j ← 0 to n− 1
3 do Tj ← Insert(Tj−1, y[j . . n− 1])
4 return Tn−1

FIGURE 1.28: Construction of a suffix tree for y.

Insert(Tj−1, y[j . . n− 1])

1 locate the node h associated with headj in Tj−1, possibly breaking an edge
2 add a new edge labeled tailj from h to a new leaf representing y[j . . n− 1]
3 return the modified tree

FIGURE 1.29: Insertion of a new suffix in the tree.

• The preceding segments are represented by their starting positions on y
and their lengths.

Moreover, it is assumed that y ends with a symbol occurring nowhere else
in it (the dollar sign is used in examples). This avoids marking nodes, and
implies that S(y) has exactly n leaves (number of nonempty suffixes). The
other properties then imply that the total size of S(y) is O(n), which makes
it possible to design a linear-time construction of the trie. The algorithm
described in the present section has this time complexity provided the alphabet
is fixed, or with an additional multiplicative factor log σ otherwise.

The algorithm inserts all nonempty suffixes of y in the data structure from
the longest to the shortest suffix, as shown in Fig. 1.28. Two definitions to
explain how the algorithm works are introduced:

• headj is the longest prefix of y[j . . n−1] which is also a prefix of y[i . . n−
1] for some i < j.

• tailj is the word such that y[j . . n− 1] = headjtailj .

The strategy to insert the ith suffix in the tree is based on these definitions
and described in Fig. 1.29.

The second step of the insertion (Fig. 1.29) is clearly performed in constant
time. Thus, finding the node h is critical for the overall performance of the
algorithm. A brute-force method to find it consists in spelling the current suffix
y[j . . n − 1] from the root of the tree, giving an O(|headj |) time complexity
for the insertion at step j, and an O(n2) running time to build S(y). Adding
short-cut links leads to an overall O(n) time complexity, although there is no
guarantee that insertion at step j is realized in constant time.

Example 1.11: The different tries during the construction of the suffix
tree of y = CAGATAGAG. Leaves are black and labeled by the position of the
suffix they represent. Plain arrows are labeled by pairs: the pair (j, ℓ) stands

Pattern Matching and Text Compression Algorithms 27

for the segment y[j . . j + ℓ− 1]. Dashed arrows represent the nontrivial suffix
links.

0,10 0,10 1,9 0,10
1,9

2,8

0 0 1 0 1 2

0,10

1,1

2,8 4,6

2,8 0,10

1,1

2,8

4,6

2,8
4,6

0 1 3 2 0 1 3 2 4

0,10

1,1

2,2

4,6
8,2

4,6

2,8
4,6 0,10

1,1

2,2

4,6
8,2

4,6

2,2

4,6 8,2

4,6

0 1 5 3 2 4 0 1 5 3 2 6 4

0,10

1,1

2,1

3,1

4,6 8,2

9,1

4,6

2,2

4,6
8,2

4,6

0 1 5 7 3 2 6 4

28 Book title goes here

0,10

1,1

2,1

3,1

4,6 8,2

9,1

4,6

2,1

3,1

4,6 8,2

9,1

4,6

0 1 5 7 3 2 6 8 4

0,10

1,1

2,1

3,1

4,6 8,2

9,1

4,6

2,1

3,1

4,6 8,2

9,1

4,6 9,1

0 1 5 7 3 2 6 8 4 10

1.4.1 McCreight Algorithm

The key to get an efficient construction of the suffix tree S(y) is to add
links between nodes of the tree: they are called suffix links. Their definition
relies on the relationship between headj−1 and headj : if headj−1 is of the form
az (a ∈ Σ, z ∈ Σ∗), then z is a prefix of headj . In the suffix tree the node
associated with z is linked to the node associated with az. The suffix link
creates a shortcut in the tree that helps with finding the next head efficiently.
The insertion of the next suffix, namely, headjtailj , in the tree reduces to the
insertion of tailj from the node associated with headj .

The following property is an invariant of the construction: in Tj, only the
node h associated with headj can fail to have a valid suffix link. This effectively
happens when h has just been created at step j. The procedure to find the
next head at step j is composed of two main phases:

A Rescanning: Assume that headj−1 = az (a ∈ Σ, z ∈ Σ∗) and let d′ be
the associated node. If the suffix link on d′ is defined, it leads to a node
d from which the second step starts. Otherwise, the suffix link on d′ is
found by rescanning as follows. Let c′ be the parent of d′, and let (j, ℓ)

Pattern Matching and Text Compression Algorithms 29

M(y, n)

1 root← Init(y, n)
2 head← root
3 tail← child(root, y[0])
4 n← n− 1
5 while n > 0
6 do if head = root ⊲ Phase A (rescanning)
7 then d← root
8 (j, ℓ)← label(tail)
9 γ ← (j + 1, ℓ− 1)

10 else γ ← label(tail)
11 if link(head) 6= undefined
12 then d← link(head)
13 else (j, ℓ)← label(head)
14 if parent(head) = root
15 then d← Rescan(root, j + 1, ℓ− 1))
16 else d← Rescan(link(parent(head)), j, ℓ))
17 link(head)← d
18 (head, γ)← Scan(d, γ) ⊲ Phase B (scanning)
19 create a new node tail
20 parent(tail)← head
21 label(tail)← γ
22 (j, ℓ)← γ
23 child(head, y[j])← tail
24 n← n− 1
25 return root

FIGURE 1.30: Suffix tree construction.

30 Book title goes here

Init(y, n)

1 create a new node root
2 create a new node c
3 parent(root)← undefined
4 parent(c)← root
5 child(root, y[0])← c
6 label(root)← undefined
7 label(c)← (0, n)
8 return root

FIGURE 1.31: Initialization procedure.

be the label of edge (c′, d′). For the ease of the description, assume that
az = av(y[j . . j+ℓ−1]) (it may happen that az = y[j . . j+ℓ−1]). There
is a suffix link defined on c′ and going to some node c associated with v.
The crucial observation here is that y[j . . j + ℓ− 1] is the prefix of the
label of some branch starting at node c. Then, the algorithm rescans
y[j . . j + ℓ− 1] in the tree: let e be the child of c along that branch, and
let (k, m) be the label of edge (c, e). If m < ℓ, then a recursive rescan
of q = y[j + m . . j + ℓ − 1] starts from node e. If m > ℓ, the edge (c, e)
is broken to insert a new node d; labels are updated correspondingly. If
m = ℓ, d is simply set to e. If the suffix link of d′ is currently undefined,
it is set to d.

B Scanning: A downward search starts from d to find the node h associated
with headj . The search is dictated by the characters of tailj−1 one at a
time from left to right. If necessary a new internal node is created at the
end of the scanning.

After the two phases A and B are executed, the node associated with the new
head is known, and the tail of the current suffix can be inserted in the tree.

To analyze the time complexity of the entire algorithm one mainly has to
evaluate the total time of all scannings, and the total time of all rescannings.
Assume that the alphabet is fixed, so that branching from a node to one of
its children can be implemented to take constant time. Thus, the time spent
for all scannings is linear because each letter of y is scanned only once. The
same holds true for rescannings because each step downward (through node
e) increases strictly the position of the segment of y considered there, and this
position never decreases.

An implementation of McCreight’s algorithm is shown in Fig. 1.30. The
next figures (Figs. 1.31–1.34) give the procedures used by the algorithm, es-
pecially procedures Rescan and Scan.

The following notation will be used:

• parent(c) is the parent node of the node c,

Pattern Matching and Text Compression Algorithms 31

Rescan(c, j, ℓ)

1 (k, m)← label(child(c, y[j]))
2 while ℓ > 0 and ℓ ≥ m
3 do c← child(c, y[j])
4 ℓ← ℓ−m
5 j ← j + m
6 (k, m)← label(child(c, y[j]))
7 if ℓ > 0
8 then return Break-edge(child(c, y[j]), ℓ)
9 else return c

FIGURE 1.32: The crucial rescan operation.

Break-edge(c, k)

1 create a new node g
2 parent(g)← parent(c)
3 (j, ℓ)← label(c)
4 child(parent(c), y[j])← g
5 label(g)← (j, k)
6 parent(c)← g
7 label(c)← (j + k, ℓ− k)
8 child(g, y[j + k])← c
9 link(g)← undefined

10 return g

FIGURE 1.33: Breaking an edge.

• label(c) is the pair (i, l) if the edge from the parent node of c to c itself
is associated with the factor y[i . . i + l − 1],

• child(c, a) is the only node that can be reached from the node c with the
character a,

• link(c) is the suffix node of the node c.

1.5 Suffix Arrays

Suffix trees are very powerful however they are very space consuming. In
most cases they can be replaced by suffix arrays that are more space eco-
nomical. The technique involves binary search in the sorted list of the text
suffixes. In this section, we show how to lexicographically sort the suffixes of
a string y of length n. The resulting permutation, as an array, constitutes the

32 Book title goes here

Scan(d, γ)

1 (j, ℓ)← γ
2 while child(d, y[j]) 6= undefined
3 do g ← child(d, y[j])
4 k ← 1
5 (s, lg)← label(g)
6 s← s + 1
7 ℓ← ℓ− 1
8 j ← j + 1
9 while k < lg and y[j] = y[s]

10 do j ← j + 1
11 s← s + 1
12 k ← k + 1
13 ℓ← ℓ− 1
14 if k < lg
15 then return (Break-edge(g, k), (j, ℓ))
16 d← g
17 return (d, (j, ℓ))

FIGURE 1.34: The scan operation.

suffix array of the string. It is usually enhanced with the LCP array described
further in the section to get an efficient string searching algorithm.

The goal of the sorting is to compute a permutation p of the indices on y
that satisfies the condition

y[p[0] . . n− 1] < y[p[1] . . n− 1] < · · · < y[p[n− 1] . . n− 1]. (1.1)

Note that the inequalities are strict since two suffixes occurring at distinct
positions cannot be identical.

The implementation of a standard lexicographic sorting method (repeated
radix sort), leads to an algorithm whose execution time is O(n2) since the
sum of the lengths of the suffixes of y is quadratic.

Actually, the ordering is not entirely sufficient to get an efficient search.
The precomputation and the utilization of common prefixes to the suffixes are
extra elements that make the technique very efficient. The search for a string
of length m in a string length n then takes O(m + log n) time.

To describe the sorting algorithm, for u ∈ Σ∗, we denote by

firstk(u) =

{

u if |u| ≤ k,

u[0 . . k − 1] otherwise,

the beginning of order k of the string u.

Pattern Matching and Text Compression Algorithms 33

1.5.1 Kärkkäinen–Sanders Algorithm

In this section, the alphabet of y is assumed to be a bounded segment of
integers, as it can be considered in most real applications. With this condition,
not only letters can be sorted in linear time but suffixes of y as well.

The present algorithm for sorting the suffixes proceeds in four steps as
follows, where k is an appropriate non-negative integer.

Step 1 Positions i on the input string y are sorted for two third of them,
namely for i = 3k or i = 3k + 1, according to first3(y[i . . n− 1]).
Let t[i] be the rank of i in the sorted list.

Step 2 Suffixes of the 2/3-shorter word z = t[0]t[3] · · · t[3k] · · · t[1]t[4] · · · t[3k+
1] · · · are recursively sorted.
Let s[i] be the rank of suffix at position i on y in the sorted list of them
derived from the sorted list of suffixes of z.

Step 3 Suffixes y[j . . n − 1], for j of the form 3k + 2, are sorted using the
table s.

Step 4 The final step consists in merging the ordered lists obtained at the
second and third steps.

A careful implementation of the algorithm leads to a linear running time.
It relies on the following elements. The first step can be executed in linear
time by using a mere radix sort. Since the order of suffixes y[j + 1 . . n − 1]
is already known from s, the third step can be done in linear time by just
radix sorting pairs (y[j], s[j +1]). Comparing suffixes at positions i (i = 3k or
i = 3k + 1 for the first list) and j (j = 3k + 2 for the second list) remains to
compare pairs of the form (y[i], s[i + 1]) and (y[j], s[j + 1]) if i = 3k or pairs
of the form (y[i]y[i + 1], s[i + 2]) and (y[j]y[j + 1], s[j + 2]) if i = 3k + 1. This
is done in constant time and then the merge at the fourth step can thus be
realized in linear time.

An example of a run of the algorithm is shown in Figure 1.35: (1) String
y = abaaabaaabb and its two sets of positions P01 and P2. (2) Step 1. Strings
first3(y[i . . n − 1]) for i ∈ P01 and their ranks: t[i] is the rank of i in the
sorted list. (3) Step 2. Positions in P01 sorted according to their associated
suffixes in z, resulting in L01 and the table of ranks s. (4) Step 3. Positions j
in P2 sorted according to pairs (y[j], s[j +1]) resulting in L2. (5) Step 4. Pairs
used for comparing positions when merging the sorted lists L01 and L2. (6)
Permutation p corresponding to the sorted suffixes of y.

The algorithm Skew-suffix-sort (Fig. 1.36) describes the method pre-
sented above in a more precise way. To shorten the presentation of the algo-
rithm, the definition of s (see Line 11) is extended to positions n and n + 1
that are considered Lines 12 and 13 (call to Comp, Fig. 1.37).

The recursivity of the algorithm (Line 8) yields the recurrence relation
T (n) = T (2n/3) + O(n), for n > 3, and T (n) = O(1), for n ≤ 3, because
all other lines execute in constant time, i.e. O(n) time. The recurrence has

34 Book title goes here

(1)

i 0 1 2 3 4 5 6 7 8 9 10
y[i] a b a a a b a a a b b

P01 = {0, 1, 3, 4, 6, 7, 9, 10} and P2 = {2, 5, 8}

(2)

i mod 3 = 0 i mod 3 = 1
i 0 3 6 9 1 4 7 10
first3(y[i . . n−1]) aba aab aaa bb baa aba aab b
t[i] 2 1 0 5 4 2 1 3

(3)
z = 2 1 0 5 4 2 1 3 and L01 = (6, 3, 7, 0, 4, 10, 1, 9)

s[i] 3 1 0 7 6 4 2 5

(4)

j mod 3 = 2
j 2 5 8
(y[j], s[j + 1]) (a, 1) (b, 0) (a, 7)

L2 = (2, 8, 5)

(5)

i mod 3 = 0 or 1
i 6 3 7 0 4 10 1 9
(y[i]y[i + 1], s[i + 2]) (aa, 7) (ab, 0)(b,−1)(ba, 1)
(y[i], s[i + 1]) (a, 2) (a, 4) (a, 6) (b, 5)

j mod 3 = 2
j 2 8 5
(y[j]y[j + 1], s[j + 2]) (aa, 4)(ab, 5)(ba, 2)
(y[j], s[j + 1]) (a, 1) (a, 7) (b, 0)

(6)
i 0 1 2 3 4 5 6 7 8 9 10

p[i] 2 6 3 7 0 4 8 10 1 5 9

FIGURE 1.35: Building the Suffix Array of y = abaaabaaabb.

Pattern Matching and Text Compression Algorithms 35

Skew-suffix-sort(y, n)

1 if n ≤ 3
2 then return permutation of the sorted suffix of y
3 else P01 ← {i | 0 ≤ i < n and (i mod 3 = 0 or i mod 3 = 1)}
4 if n mod 3 = 0
5 then P01 ← P01 ∪ {n}
6 t← table of ranks of positions i in P01 according to

first3(y[i . . n− 1])
7 z ← t[0]t[3] · · · t[3k] · · · t[1]t[4] · · · t[3k + 1] · · ·
8 q ← Skew-suffix-sort(z, ⌊2n/3⌋+ 1)
9 L01 ← (3q[j] if 0 ≤ q[j] ≤ ⌊n/3⌋+ 1, 3q[j] + 1 otherwise

with j = 0, 1, . . . , |z| − 1)
10 s← table of ranks of positions in L01

11 (s[n], s[n + 1])← (−1,−1)
12 L2 ← list of positions j = 3k + 2, 3k + 2 < n

sorted according to (y[j], s[j + 1])
13 L← merge of L01 and L2 using Comp()
14 p← permutation of positions on y corresponding to L
15 return p

FIGURE 1.36: Linear time suffix array construction on a bounded alphabet.

Comp(i, j)

1 if i mod 3 = 0
2 then if (y[i], s[i + 1]) < (y[j], s[j + 1])
3 then return −1
4 else return 1
5 else if (y[i . . i + 1], s[i + 2]) < (y[j . . j + 1], s[j + 2])
6 then return −1
7 else return 1

FIGURE 1.37: Constant time comparison of y[i . . n − 1] and y[j . . n − 1]
during the merge.

36 Book title goes here

Binary-Search(y, n, p, x, m)

1 ℓ← −1
2 r ← n
3 while ℓ + 1 < r
4 do i← ⌊(ℓ + r)/2⌋
5 k ← |lcp(x, y[p[i] . . n− 1])|
6 if k = m
7 then return i
8 elseif x ≤ y[p[i] . . n− 1]
9 then r ← i

10 else ℓ← i
11 return (ℓ, r)

FIGURE 1.38: Binary search of x is the suffix array of y.

solution T (n) = O(n), Algorithm Skew-suffix-sort computes the suffix
array of a string of length n in time O(n).

1.5.2 Substring Search

Searching for a pattern x of length m in the string y using its suffix array
can be done by a simple binary search (see Fig. 1.38). It returns:

• (−1, 0) if x < y[p[0] . . n− 1];

• (n− 1, n) if x > y[p[n− 1] . . n− 1];

• i if x is a prefix of x[p[i] . . n− 1];

• (i, i + 1) if y[p[i] . . n− 1] < x < y[p[i + 1] . . n− 1].

The loop line 3 iterates at most log n times and each test line 8 can perform
at most m character comparisons. Thus the time complexity of algorithm is
O(m× log n).

1.5.3 Longest Common Prefixes

In this section the second element that constitutes a suffix array is de-
scribed: the array LCP storing the maximal lengths of prefixes common to
suffixes in the sorted list. We first introduce the following notation for two
strings u, v ∈ Σ∗:

lcp(u, v) = longest common prefix of u and v.

We start by the first half of the array LCP storing the maximal lengths of
prefixes common to consecutive suffixes in the sorted list. It is defined as
follows, for 1 ≤ i ≤ n− 1:

LCP[i] = lcp(y[p[i− 1] . . n− 1], y[p[i] . . n− 1]).

Pattern Matching and Text Compression Algorithms 37

Def-half-LCP(y, n, p)

1 for i← 0 to n− 1
2 do Rank[p[i]]← i
3 ℓ← 0
4 for j ← 0 to n− 1
5 do ℓ← max{0, ℓ− 1}
6 i← Rank[j]
7 if i 6= 0
8 then j′ ← p[i− 1]
9 while j + ℓ < n and j′ + ℓ < n

and y[j + ℓ] = y[j′ + ℓ]
10 do ℓ← ℓ + 1
11 else ℓ← 0
12 LCP[i]← ℓ
13 return LCP

FIGURE 1.39: Linear computation of the first LCP values.

A direct computation using letter by letter comparisons leads to an exe-
cution time in O(n2) since the sum of lengths of the suffixes is quadratic.

We describe an algorithm that performs the computation in linear time.
Indeed, the suffixes of y are not independent of each other. This dependence
allows to reduce the computation time by the mean of a quite simple algo-
rithm, based on the following property: let i, j, i′ be positions on y for which
j = p[i] and j − 1 = p[i′], then LCP[i′]− 1 ≤ LCP[i].

Using this result, in order to compute LCP[i], i.e. the length of the longest
common prefix between y[p[i] . . n−1] and y[p[i−1] . . n−1] when 0 < i ≤ n, one
can start the letter by letter comparison exactly at the position at which stops
the previous computation, the one of LCP[i′]. Knowing that, it is sufficient to
proceed by considering the suffixes from the longest to the shortest, and not
in the lexicographic order that seems more natural. This is what Algorithm
Def-half-LCP (see Fig. 1.39) realizes. It computes the values LCP[i] for
0 ≤ i ≤ n Note that to determine the position i associated with position j,
the algorithm uses the reverse of permutation p which is computed in a first
step (Lines 1–2). This function is represented by the table called Rank since
it indicates the rank of each suffix in the sorted list of suffixes of y.

Applied to string y of length n and to the permutation p of it suffixes,
Algorithm Def-half-LCP computes the LCP array in time O(n).

The number of pairs (ℓ, r) considered by algorithm Binary-Search(y, n, p, x, m)
is bounded by 2n+1 : there are n+1 pairs of the form (i, i+1) that constitute
the leaves a of binary tree thus there are at most n internal nodes. Fig. 1.40
shows an example for a string of length 11. Small numbers close to pairs (ℓ, r)
are i = ⌊(ℓ + r)/2⌋.

38 Book title goes here

(0, 1) (1, 2) (3, 4) (4, 5) (6, 7) (7, 8) (9, 10)(10, 11)

(−1, 0)(0, 2)1 (2, 3) (3, 5)4 (5, 6) (6, 8)7 (8, 9)(9, 11)10

(−1, 2)0 (2, 5)3 (5, 8)6 (8, 11)9

(−1, 5)2 (5, 11)8

(−1, 11)5

FIGURE 1.40: Pairs considered during the binary search in a string of length
11.

Def-LCP(y, ℓ, r,LCP)

1 ⊲ ℓ < r
2 if ℓ + 1 = r
3 then return LCP[r]
4 else i← ⌊(ℓ + r)/2⌋
5 LCP[n + 1 + i]← min{Def-LCP(y, ℓ, i,LCP),

Def-LCP(y, i, r,LCP)}
6 return LCP[n + 1 + i]

FIGURE 1.41: Linear computation of the last LCP values.

It is thus possible to extend array LCP as follows:

LCP[n + 1 + i] = lcp(p[ℓ] . . n− 1], y[p[r] . . n− 1])
where i = ⌊(ℓ + r)/2⌋.

The length of the longest common prefix between y[p[ℓ] . . n − 1] and
y[p[r] . . n − 1] when ℓ < r − 1 is equal to the minimum value among all
LCP[i] where ℓ < i ≤ r. Then these values can be computed by a call to the
algorithm Def-LCP(y, 0, n− 1,LCP) (see Fig. 1.41).

1.5.4 Substring Search with the Length of the Common Pre-
fixes

Let ℓ, r, i be three integers, 0 ≤ ℓ < i < r < n. If y[p[ℓ] . . n − 1] < x <
y[p[r] . . n− 1] let lb = |lcp(x, y[p[ℓ] . . n − 1])| and le = |lcp(x, y[p[r] . . n − 1])|
satisfying lb ≤ le. We then have:

|lcp(y[p[i] . . n−1], y[p[r] . . n−1])| < le implies y[p[i] . . n−1] < x < y[p[r] . . n−1]

and

|lcp(y[p[i] . . n−1], y[p[r] . . n−1])| > le implies y[p[ℓ] . . n−1] < x < y[p[i] . . n−1].

Pattern Matching and Text Compression Algorithms 39

Search(y, n, p,LCP, x, m)

1 (ℓ, lb)← (−1, 0)
2 (r, le)← (n, 0)
3 while ℓ + 1 < r
4 do i← ⌊(ℓ + r)/2⌋
5 if ℓ + 1 = i
6 then g ← LCP[i]
7 else g ← LCP[n + 1 + ⌊(ℓ + i)/2⌋]
8 if i + 1 = r
9 then h← LCP[r]

10 else h← LCP[n + 1 + ⌊(i + r)/2⌋]
11 if lb ≤ h and h < le
12 then (ℓ, lb)← (i, h)
13 elseif lb ≤ le and le < h
14 then (r, le)← (i, h)
15 elseif le ≤ g and g < lb
16 then (r, le)← (i, g)
17 elseif le ≤ lb and lb < g
18 then (ℓ, lb)← (i, g)
19 else ℓ← max{lb, le}
20 ℓ← ℓ + |lcp(x[ℓ . . m− 1], y[p[i] + [ℓ . . n− 1])|
21 if ℓ = m
22 then return i
23 elseif x < y[p[i] . . n− 1]
24 then (r, le)← (i, ℓ)
25 else (ℓ, lb)← (i, ℓ)
26 return (ℓ, r)

FIGURE 1.42: Search for x in the suffix array of y using the length of the
common prefixes.

The search can then now be done in O(m + log n) with the algorithm
Search(y, n, p,LCP, x, m) (see Fig. 1.42).

1.6 Alignment

Alignments are used to compare strings. They are widely used in compu-
tational molecular biology. They constitute a mean to visualize resemblance
between strings. They are based on notions of distance or similarity. Their
computation is usually done by dynamic programming. A typical example of
this method is the computation of the longest common subsequence of two
strings. The reduction of the memory space presented on it can be applied to
similar problems. Three different kinds of alignment of two strings x and y are

40 Book title goes here

considered: global alignment (that consider the whole strings x and y), local
alignment (that enable to find the segment of x that is closer to a segment of
y) and the longest common subsequence of x and y.

An alignment of two strings x and y of length m and n respectively
consists in aligning their symbols on vertical lines. Formally an alignment of
two strings x, y ∈ Σ∗ is a word w on the alphabet (Σ∪{ε})×(Σ∪{ε})\({(ε, ε)}
(ε is the empty word) whose projection on the first component is x and whose
projection of the second component is y.

Thus an alignment w = (x0, y0)(x1, y1) · · · (xp−1, yp−1) of length p is such
that x = x0x1 · · ·xp−1 and y = y0y1 · · · yp−1 with xi ∈ Σ∪{ε} and yi ∈ Σ∪{ε}
for 0 ≤ i ≤ p− 1. The alignment is represented as follows

x0 x1 · · · xp−1

y0 y1 · · · yp−1

with the symbol − instead of the symbol ε.
Example 1.12:

A C G − − A
A T G C T A

is an alignment of ACGA and ATGCTA.

1.6.1 Global alignment

A global alignment of two strings x and y can be obtained by computing
the distance between x and y. The notion of distance between two strings is
widely used to compare files. The diff command of UNIX operating system
implements an algorithm based on this notion, in which lines of the files are
treated as symbols. The output of a comparison made by diff gives the mini-
mum number of operations (substitute a symbol, insert a symbol, or delete a
symbol) to transform one file into the other.

Let us define the edit distance between two strings x and y as follows: it is
the minimum number of elementary edit operations than enable to transform
x into y. The elementary edit operations are:

• the substitution of a character of x at a given position by a character of
y,

• the deletion of a character of x at a given position,

• the insertion of a character of y in x at a given position.

A cost is associated to each elementary edit operation. For a, b ∈ Σ:

Pattern Matching and Text Compression Algorithms 41

• Sub(a, b) denotes the cost of the substitution of the character a by the
character b,

• Del(a) denotes the cost of the deletion of the character a,

• Ins(a) denotes the cost of the insertion of the character a.

This means that the costs of the edit operations are independent of the po-
sitions where the operations occur. The edit distance of two strings x and y
can now be defined by

edit(x, y) = min{cost of γ | γ ∈ Γx,y}

where Γx,y is the set of all the sequences of edit operations that transform
x into y, and the cost of an element γ ∈ Γx,y is the sum of the costs of its
elementary edit operations.

In order to compute edit(x, y) for two strings x and y of length m and n
respectively, a two-dimensional table T of m + 1 rows and n + 1 columns is
used such that

T [i, j] = edit(x[i], y[j])

for i = 0, . . . , m−1 and j = 0, . . . , n−1. It follows edit(x, y) = T [m−1, n−1].
The values of the table T can be computed by the following recurrence

formula:

T [−1,−1] = 0 ,

T [i,−1] = T [i− 1,−1] + Del(x[i]) ,

T [−1, j] = T [−1, j − 1] + Ins(y[j]) ,

T [i, j] = min

T [i− 1, j − 1] + Sub(x[i], y[j]) ,

T [i− 1, j] + Del(x[i]) ,

T [i, j − 1] + Ins(y[j]) ,

for i = 0, 1, . . . , m− 1 and j = 0, 1, . . . , n− 1.
The value at position (i, j) in the table T only depends on the values at

the three neighbor positions (i− 1, j − 1), (i− 1, j) and (i, j − 1).
The direct application of the above recurrence formula gives an exponen-

tial time algorithm to compute T [m − 1, n − 1]. However the whole table T
can be computed in quadratic time, technique known as “dynamic program-
ming”. This is a general technique that is used to solve the different kinds of
alignments.

The computation of the table T proceeds in two steps. First it ini-
tializes the first column and first row of T , this is done by a call to a
generic function Margin which is a parameter of the algorithm and that
depends on the kind of alignment that is considered. Second it computes
the remaining values of T , that is done by a call to a generic function
Formula which is a parameter of the algorithm and that depends on the

42 Book title goes here

Generic-DP(x, m, y, n,Margin,Formula)

1 Margin(T, x, m, y, n)
2 for j ← 0 to n− 1
3 do for i← 0 to m− 1
4 do T [i, j]← Formula(T, x, i, y, j)
5 return T

FIGURE 1.43: Computation of the table T by dynamic programming.

Margin-global(T, x, m, y, n)

1 T [−1,−1]← 0
2 for i← 0 to m− 1
3 do T [i,−1]← T [i− 1,−1] + Del(x[i])
4 for j ← 0 to n− 1
5 do T [−1, j]← T [−1, j − 1] + Ins(y[j])

FIGURE 1.44: Margin initialization for the computation of a global align-
ment.

kind of alignment that is considered. Computing a global alignment of x
and y can be done by a call to Generic-DP with the following parame-
ters (x, m, y, n,Margin-global,Formula-global) (see Fig. 1.43, 1.44 and
1.45). The computation of all the values of the table T can thus be done in
quadratic space and time: O(m× n).

An optimal alignment (with minimal cost) can then be produced by a call
to the function

One-alignment(T, x, m − 1, y, n− 1)

(see Fig. 1.46). It consists in tracing back the computation of the values of the
table T from position [m− 1, n− 1] to position [−1,−1]. At each cell [i, j] the
algorithm determines among the three values T [i− 1, j − 1] + Sub(x[i], y[j]),
T [i−1, j]+Del(x[i]) and T [i, j−1]+Ins(y[j])) which has been used to produce
the value of T [i, j]. If T [i − 1, j − 1] + Sub(x[i], y[j]) has been used it adds
(x[i], y[j]) to the optimal alignment and proceeds recursively with the cell at
[i − 1, j − 1]. If T [i − 1, j] + Del(x[i]) has been used it adds (x[i],−) to the
optimal alignment and proceeds recursively with cell at [i−1, j]. If T [i, j−1]+

Formula-global(T, x, i, y, j)

1 return min

T [i− 1, j − 1] + Sub(x[i], y[j])

T [i− 1, j] + Del(x[i])

T [i, j − 1] + Ins(y[j])

FIGURE 1.45: Computation of T [i, j] for a global alignment.

Pattern Matching and Text Compression Algorithms 43

One-alignment(T, x, i, y, j)

1 if i = −1 and j = −1
2 then return (ε, ε)
3 else if i = −1
4 then return One-alignment(T, x,−1, y, j − 1) · (ε, y[j])
5 elseif j = −1
6 then return One-alignment(T, x, i− 1, y,−1) · (x[i], ε)
7 else if T [i, j] = T [i− 1, j − 1] + Sub(x[i], y[j])
8 then return One-alignment(T, x, i− 1, y, j − 1)·

(x[i], y[j])
9 elseif T [i, j] = T [i− 1, j] + Del(x[i])

10 then return One-alignment(T, x, i− 1, y, j)·
(x[i], ε)

11 else return One-alignment(T, x, i, y, j − 1)·
(ε, y[j])

FIGURE 1.46: Recovering an optimal alignment.

Ins(y[j]) has been used it adds (−, y[j]) to the optimal alignment and proceeds
recursively with cell at [i, j− 1]. Recovering all the optimal alignments can be
done by a similar technique.

Example 1.13:

T j -1 0 1 2 3 4 5
i y[j] A T G C T A

-1 x[i] 0 1 2 3 4 5 6

0 A 1 0 1 2 3 4 5

1 C 2 1 1 2 2 3 4

2 G 3 2 2 1 2 3 4

3 A 4 3 3 2 2 3 3

The values of the above table have been obtained with the following unitary
costs: Sub(a, b) = 1 if a 6= b and Sub(a, a) = 0, Del(a) = Ins(a) = 1 for
a, b ∈ Σ.

1.6.2 Local alignment

A local alignment of two strings x and y consists in finding the segment
of x that is closer to a segment of y. The notion of distance used to compute
global alignments cannot be used in that case since the segments of x closer
to segments of y would only be the empty segment or individual characters.

44 Book title goes here

This is why a notion of similarity is used based on a scoring scheme for edit
operations.

A score (instead of a cost) is associated to each elementary edit operation.
For a, b ∈ Σ:

• SubS(a, b) denotes the score of substituting the character b for the char-
acter a,

• DelS(a) denotes the score of deleting the character a,

• InsS(a) denotes the score of inserting the character a.

This means that the scores of the edit operations are independent of the
positions where the operations occur. For two characters a and b, a positive
value of SubS(a, b) means that the two characters are close to each other, and
a negative value of SubS(a, b) means that the two characters are far apart.

The edit score of two strings x and y can now be defined by

sco(x, y) = max{score of γ | γ ∈ Γx,y}

where Γx,y is the set of all the sequences of edit operations that transform x
into y and the score of an element σ ∈ Γx,y is the sum of the scores of its
elementary edit operations.

In order to compute sco(x, y) for two strings x and y of length m and n
respectively, a two-dimensional table T of m + 1 rows and n + 1 columns is
used such that

T [i, j] = sco(x[i], y[j])

for i = 0, . . . , m−1 and j = 0, . . . , n−1. Therefore sco(x, y) = T [m−1, n−1].
The values of the table T can be computed by the following recurrence

formula:

T [−1,−1] = 0 ,

T [i,−1] = 0 ,

T [−1, j] = 0 ,

T [i, j] = max

T [i− 1, j − 1] + SubS(x[i], y[j]) ,

T [i− 1, j] + DelS(x[i]) ,

T [i, j − 1] + InsS(y[j]) ,

0 ,

for i = 0, 1, . . . , m− 1 and j = 0, 1, . . . , n− 1.
Computing the values of T for a local alignment of x and y

can be done by a call to Generic-DP with the following parameters
(x, m, y, n,Margin-local,Formula-local) in O(mn) time and space com-
plexity (see Fig. 1.43, 1.47 and 1.48). Recovering a local alignment can be done
in a way similar to what is done in the case of a global alignment (see Fig. 1.46)

Pattern Matching and Text Compression Algorithms 45

Margin-local(T, x, m, y, n)

1 T [−1,−1]← 0
2 for i← 0 to m− 1
3 do T [i,−1]← 0
4 for j ← 0 to n− 1
5 do T [−1, j]← 0

FIGURE 1.47: Margin initialization for computing a local alignment.

Formula-local(T, x, i, y, j)

1 return max

T [i− 1, j − 1] + SubS(x[i], y[j])

T [i− 1, j] + DelS(x[i])

T [i, j − 1] + InsS(y[j])

0

FIGURE 1.48: Recurrence formula for computing a local alignment.

but the trace back procedure must start at a position of a maximal value in
T rather than at position [m− 1, n− 1].

Example 1.14: Computation of an optimal local alignment of
x = EAWACQGKL and y = ERDAWCQPGKWY with scores:
SubS(a, a) = 1, SubS(a, b) = −3 and DelS(a) = InsS(a) = −1 for a, b ∈ Σ,

a 6= b.

T j −1 0 1 2 3 4 5 6 7 8 9 10 11
i y[j] E R D A W C Q P G K W Y
−1 x[i] 0 0 0 0 0 0 0 0 0 0 0 0 0

0 E 0 1 0 0 0 0 0 0 0 0 0 0 0

1 A 0 0 0 0 1 0 0 0 0 0 0 0 0

2 W 0 0 0 0 0 2 1 0 0 0 0 1 0

3 A 0 0 0 0 1 1 0 0 0 0 0 0 0

4 C 0 0 0 0 0 0 2 1 0 0 0 0 0

5 Q 0 0 0 0 0 0 1 3 2 1 0 0 0

6 G 0 0 0 0 0 0 0 2 1 3 2 1 0

7 K 0 0 0 0 0 0 0 1 0 2 4 3 2
8 L 0 0 0 0 0 0 0 0 0 1 3 2 1

The corresponding optimal local alignment is:

A W A C Q - G K
A W - C Q P G K

46 Book title goes here

Formula-lcs(T, x, i, y, j)

1 if x[i] = y[j]
2 then return T [i− 1, j − 1] + 1
3 else return max{T [i− 1, j], T [i, j − 1]}

FIGURE 1.49: Recurrence formula for computing an lcs.

1.6.3 Longest Common Subsequence of Two Strings

A subsequence of a word x is obtained by deleting zero or more characters
from x. More formally w[0 . . i − 1] is a subsequence of x[0 . .m − 1] if there
exists an increasing sequence of integers (kj | j = 0, . . . , i − 1) such that for
0 ≤ j ≤ i− 1, w[j] = x[kj]. A word is an lcs(x, y) if it is a longest common
subsequence of the two words x and y. Note that two strings can have several
longest common subsequence. Their common length is denoted by llcs(x, y).

A brute-force method to compute an lcs(x, y) would consist in computing
all the subsequences of x, checking if they are subsequences of y, and keeping
the longest one. The word x of length m has 2m subsequences, and so this
method could take O(2m) time, which is impractical even for fairly small
values of m.

However llcs(x, y) can be computed with a two-dimensional table T by the
following recurrence formula:

T [−1,−1] = 0 ,

T [i,−1] = 0 ,

T [−1, j] = 0 ,

T [i, j] =

{

T [i− 1, j − 1] + 1 ifx[i]=y[j],

max(T [i− 1, j], T [i, j − 1]) otherwise,

for i = 0, 1, . . . , m − 1 and j = 0, 1, . . . , n − 1. Then T [i, j] =
llcs(x[0 . . i], y[0 . . j]) and llcs(x, y) = T [m− 1, n− 1].

Computing T [m−1, n−1] can be done by a call to Generic-DP with the
following parameters (x, m, y, n,Margin-local,Formula-lcs) in O(mn)
time and space complexity (see Fig. 1.43, 1.47 and 1.49).

It is possible afterward to trace back a path from position [m − 1, n− 1]
in order to exhibit an lcs(x, y) in a similar way as for producing a global
alignment (see Fig. 1.46).

Example 1.15: The value T [4, 8] = 4 is llcs(x, y) for x = AGCGA and
y = CAGATAGAG. String AGGA is an lcs of x and y.

Pattern Matching and Text Compression Algorithms 47

LLCS(x, m, y, n)

1 for i← −1 to m− 1
2 do C[i]← 0
3 for j ← 0 to n− 1
4 do last← 0
5 for i← −1 to m− 1
6 do if last > C[i]
7 then C[i]← last
8 elseif last < C[i]
9 then last← C[i]

10 elseif x[i] = y[j]
11 then C[i]← C[i] + 1
12 last← last + 1
13 return C

FIGURE 1.50: O(m)-space algorithm to compute llcs(x, y).

T j −1 0 1 2 3 4 5 6 7 8
i y[j] C A G A T A G A G

−1 x[i] 0 0 0 0 0 0 0 0 0 0

0 A 0 0 1 1 1 1 1 1 1 1

1 G 0 0 1 2 2 2 2 2 2 2
2 C 0 1 1 2 2 2 2 2 2 2

3 G 0 1 1 2 2 2 2 3 3 3

4 A 0 1 2 2 3 3 3 3 4 4

1.6.4 Reducing the Space: Hirschberg Algorithm

If only the length of an lcs(x, y) is required, it is easy to see that only one
row (or one column) of the table T needs to be stored during the computation.
The space complexity becomes O(min(m, n)) as can be checked on the algo-
rithm of Fig. 1.50. Indeed, the Hirschberg algorithm computes an lcs(x, y)
in linear space and not only the value llcs(x, y). The computation uses the
algorithm of Fig. 1.50.

Let us define

T ∗[i, n] = T ∗[m, j] = 0, for 0 ≤ i ≤ m and 0 ≤ j ≤ n

T ∗[m− i, n− j] = llcs((x[i . . m− 1])R, (y[j . . n− 1])R)

for 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1

48 Book title goes here

Hirschberg(x, m, y, n)

1 if m = 0
2 then return ε
3 else if m = 1
4 then if x[0] ∈ y
5 then return x[0]
6 else return ε
7 else j ← ⌊n/2⌋
8 C ← LLCS(x, m, y[0 . . j − 1], j)
9 C∗ ← LLCS(xR, m, y[j . . n− 1]R, n− j)

10 k ← m− 1
11 M ← C[m− 1] + C∗[m− 1]
12 for j ← −1 to m− 2
13 do if C[j] + C∗[j] > M
14 then M ← C[j] + C∗[j]
15 k ← j
16 return Hirschberg(x[0 . . k − 1], k, y[0 . . j − 1], j)·

Hirschberg(x[k . . m− 1], m− k,
y[j . . n− 1], n− j)

FIGURE 1.51: O(min(m, n))-space computation of lcs(x, y).

and
M(i) = max

0≤j<n
{T [i, j] + T ∗[m− i, n− j]}

where the word wR is the reverse (or mirror image) of the word w. The
following property is the key observation to compute an lcs(x, y) in linear
space:

M(i) = T [m− 1, n− 1], for 0 ≤ i < m .

In the algorithm shown in Fig. 1.51 the integer j is chosen as n/2. After
T [i, j−1] and T ∗[m−i, n−j] (0 ≤ i < m) are computed, the algorithm finds an
integer k such that T [i, k]+T ∗[m−i, n−k] = T [m−1, n−1]. Then, recursively,
it computes an lcs(x[0 . . k−1], y[0 . . j−1]) and an lcs(x[k . .m−1], y[j . . n−1]),
and concatenates them to get an lcs(x, y).

The running time of the Hirschberg algorithm is still O(mn) but the
amount of space required for the computation becomes O(min(m, n)) instead
of being quadratic when computed by dynamic programming.

1.7 Approximate String Matching

Approximate string matching is the problem of finding all approximate
occurrences of a pattern x of length m in a text y of length n. Approximate

Pattern Matching and Text Compression Algorithms 49

occurrences of x are segments of y that are close to x according to a specific
distance: the distance between segments and x must be not greater than a
given integer k. Two distances are considered in this section: the Hamming
distance and the Levenshtein distance.

With the Hamming distance, the problem is also known as approximate
string matching with k mismatches. With the Levenshtein distance (or edit
distance), the problem is known as approximate string matching with k dif-
ferences.

The Hamming distance between two words w1 and w2 of the same length
is the number of positions with different characters. The Levenshtein distance
between two words w1 and w2 (not necessarily of the same length) is the
minimal number of differences between the two words. A difference is one of
the following operations:

• A substitution: a character of w1 corresponds to a different character in
w2.

• An insertion: a character of w1 corresponds to no character in w2.

• A deletion: a character of w2 corresponds to no character in w1.

The Shift-Or algorithm of the next section is a method that is both very
fast in practice and very easy to implement. It solves the Hamming distance
and the Levenshtein distance problems. The method for the exact string-
matching problem is initially described and then it is presented how to handle
the cases of k mismatches and of k differences. The method is flexible enough
to be adapted to a wide range of similar approximate matching problems.

1.7.1 Shift-Or Algorithm

An algorithm to solve the exact string-matching problem is first presented
that uses a technique different from those developed in section 1.2, but which
extends readily to the approximate string-matching problem.

Let R0 be a bit array of size m. Vector R0
j is the value of the entire array

R0 after text character y[j] has been processed (see Fig. 1.52). It contains
information about all matches of prefixes of x that end at position j in the
text. It is defined, for 0 ≤ i ≤ m− 1, by

R0
j [i] =

{

0 if x[0 . . i] = y[j − i . . j],

1 otherwise.

Therefore, R0
j [m − 1] = 0 is equivalent to saying that an (exact) occurrence

of the pattern x ends at position j in y.
The vector R0

j can be computed after R0
j−1 by the following recurrence

relation:

R0
j [i] =

{

0 if R0
j−1[i− 1] = 0 and x[i] = y[j],

1 otherwise,

50 Book title goes here

y

j

x[0]

x[0 . . 1]

x[0 . . 2]

x

i = 0

i = 1

i = 2

i = m− 1

1

0

1

0

R0
j

...
...

...
...

FIGURE 1.52: Meaning of vector R0
j .

and

R0
j [0] =

{

0 if x[0] = y[j],

1 otherwise.

The transition from R0
j−1 to R0

j can be computed very fast as follows. For
each a ∈ Σ, let Sa be a bit array of size m defined, for 0 ≤ i ≤ m− 1, by

Sa[i] = 0 iff x[i] = a.

The array Sa denotes the positions of the character a in the pattern x. All
arrays Sa are preprocessed before the search starts. And the computation of
R0

j reduces to two operations, SHIFT and OR:

R0
j = SHIFT(R0

j−1) OR Sy[j] .

Example 1.16: String x = GATAA occurs at position 2 in y =
CAGATAAGAGAA.

SA SC SG ST

1 1 0 1
0 1 1 1
1 1 1 0
0 1 1 1
0 1 1 1

C A G A T A A G A G A A
G 1 1 0 1 1 1 1 0 1 0 1 1
A 1 1 1 0 1 1 1 1 0 1 0 1
T 1 1 1 1 0 1 1 1 1 1 1 1
A 1 1 1 1 1 0 1 1 1 1 1 1
A 1 1 1 1 1 1 0 1 1 1 1 1

Pattern Matching and Text Compression Algorithms 51

∼

y

j -1 j

i -1 i

FIGURE 1.53: If R0
j−1[i− 1] = 0 then R1

j [i] = 0.

1.7.2 String Matching with k Mismatches

The Shift-Or algorithm easily adapts to support approximate string match-
ing with k mismatches. To simplify the description, the case where at most
one substitution is allowed is presented first.

Arrays R0 and S are used as before, and an additional bit array R1 of
size m. Vector R1

j−1 indicates all matches with at most one substitution up to
the text character y[j−1]. The recurrence on which the computation is based
splits into two cases.

• There is an exact match on the first i characters of x up to y[j− 1] (i.e.,
R0

j−1[i − 1] = 0). Then, substituting x[i] to y[j] creates a match with
one substitution (see Fig. 1.53). Thus,

R1
j [i] = R0

j−1[i− 1] .

• There is a match with one substitution on the first i characters of x up
to y[j − 1] and x[i] = y[j]. Then, there is a match with one substitution
of the first i + 1 characters of x up to y[j] (see Fig. 1.54). Thus,

R1
j [i] =

{

R1
j−1[i− 1] if x[i] = y[j],

1 otherwise.

This implies that R1
j can be updated from R1

j−1 by the relation:

R1
j =

(

SHIFT
(

R1
j−1

)

OR Sy[j]

)

AND SHIFT
(

R0
j−1

)

.

Example 1.17: String x = GATAA occurs at positions 2 and 7 in y =
CAGATAAGAGAA with no more than one mismatch.

C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 1 0 1 0 0 1 0 1 0 0
T 1 1 1 1 0 1 1 1 1 0 1 0
A 1 1 1 1 1 0 1 1 1 1 0 1
A 1 1 1 1 1 1 0 1 1 1 1 0

52 Book title goes here

∼

∼

y

j -1 j

i -1 i

FIGURE 1.54: R1
j [i] = R1

j−1[i− 1] if x[i] = y[j].

1.7.3 String Matching with k Differences

In this section it is shown how to adapt the Shift-Or algorithm to the case
of only one insertion, and then dually to the case of only one deletion. The
method is based on the following elements.

One insertion is allowed: here, vector R1
j−1 indicates all matches with at

most one insertion up to text character y[j − 1]. R1
j−1[i− 1] = 0 if the first i

characters of x (x[0 . . i− 1]) match i symbols of the last i + 1 text characters
up to y[j − 1]. Array R0 is maintained as before, and array R1 is maintained
as follows. Two cases arise.

• There is an exact match on the first i + 1 characters of x (x[0 . . i]) up
to y[j − 1]. Then inserting y[j] creates a match with one insertion up to
y[j] (see Fig. 1.55). Thus,

R1
j [i] = R0

j−1[i] .

• There is a match with one insertion on the i first characters of x up to
y[j − 1]. Then if x[i] = y[j] there is a match with one insertion on the
first i + 1 characters of x up to y[j] (see Fig. 1.55). Thus,

R1
j [i] =

{

R1
j−1[i− 1] if x[i] = y[j],

1 otherwise.

This shows that R1
j can be updated from R1

j−1 with the formula

R1
j =

(

SHIFT
(

R1
j−1

)

OR Sy[j]

)

AND R0
j−1 .

Example 1.18: Here GATAAG is an occurrence of x = GATAA with
exactly one insertion in y = CAGATAAGAGAA

C A G A T A A G A G A A
G 1 1 1 0 1 1 1 1 0 1 0 1
A 1 1 1 1 0 1 1 1 1 0 1 0
T 1 1 1 1 1 0 1 1 1 1 1 1
A 1 1 1 1 1 1 0 1 1 1 1 1
A 1 1 1 1 1 1 1 0 1 1 1 1

Pattern Matching and Text Compression Algorithms 53

+y

j -1 j

i

FIGURE 1.55: If R0
j−1[i] = 0 then R1

j [i] = 0.

+y

j -1 j

i -1 i

FIGURE 1.56: R1
j [i] = R1

j−1[i− 1] if x[i] = y[j].

One deletion is allowed: assume here that R1
j−1 indicates all possible

matches with at most one deletion up to y[j − 1]. As in the previous solu-
tion, two cases arise.

• There is an exact match on the first i + 1 characters of x (x[0 . . i]) up
to y[j] (i.e., R0

j [i] = 0). Then, deleting x[i] creates a match with one
deletion (see Fig. 1.57). Thus,

R1
j [i] = R0

j [i] .

• There is a match with one deletion on the first i characters of x up to
y[j− 1] and x[i] = y[j]. Then, there is a match with one deletion on the

−

y

j -1 j

i -1 i

FIGURE 1.57: If R0
j [i] = 0 then R1

j [i] = 0.

54 Book title goes here

−

−

y

j -1 j

i -1 i

FIGURE 1.58: R1
j [i] = R1

j−1[i− 1] if x[i] = y[j].

first i + 1 characters of x up to y[j] (see Fig. 1.57). Thus,

R1
j [i] =

{

R1
j−1[i− 1] if x[i] = y[j],

1 otherwise.

The discussion provides the following formula used to update R1
j from R1

j−1:

R1
j =

(

SHIFT
(

R1
j−1

)

OR Sy[j]

)

AND SHIFT
(

R0
j

)

.

Example 1.19: GATA and ATAA are two occurrences with one deletion
of x = GATAA in y = CAGATAAGAGAA

C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 1 0 0 0 0 0 0 0
T 1 1 1 0 0 1 1 1 0 1 0 1
A 1 1 1 1 0 0 1 1 1 1 1 0
A 1 1 1 1 1 0 0 1 1 1 1 1

1.7.4 Wu–Manber Algorithm

In this section, a general solution for the approximate string-matching
problem with at most k differences of the types: insertion, deletion, and sub-
stitution is presented. It is an extension of the problems presented above. The
following algorithm maintains k + 1 bit arrays R0,R1, . . . ,Rk that are de-
scribed now. The vector R0 is maintained similarly as in the exact matching
case (section “Shift-Or Algorithm”). The other vectors are computed with the
formula (1 ≤ ℓ ≤ k)

Rℓ
j =

(

SHIFT
(

Rℓ
j−1

)

OR Sy[j]

)

AND SHIFT
(

Rℓ−1
j

)

AND SHIFT
(

Rℓ−1
j−1

)

AND Rℓ−1
j−1

Pattern Matching and Text Compression Algorithms 55

WM(x, m, y, n, k)

1 for each character a ∈ Σ
2 do Sa ← 1m

3 for i← 0 to m− 1
4 do Sx[i][i]← 0
5 R0 ← 1m

6 for ℓ← 1 to k

7 do Rℓ ← SHIFT(Rℓ−1)
8 for j ← 0 to n− 1
9 do T ← R0

10 R0 ← SHIFT(R0) OR Sy[j]

11 for ℓ← 1 to k

12 do T ′ ← Rℓ

13 Rℓ ← (SHIFT(Rℓ) OR Sy[j]) AND

(SHIFT((T AND Rℓ−1)) AND T
14 T ← T ′

15 if Rk[m− 1] = 0
16 then Output(j)

FIGURE 1.59: Wu–Manber approximate string-matching algorithm.

which can be rewritten into

Rℓ
j =

(

SHIFT
(

Rℓ
j−1

)

OR Sy[j]

)

AND SHIFT
(

Rℓ−1
j AND Rℓ−1

j−1

)

AND Rℓ−1
j−1.

Example 1.20: Here x = GATAA and y = CAGATAAGAGAA and k = 1.
The output 5, 6, 7, and 11 corresponds to the segments GATA, GATAA,
GATAAG, and GAGAA which approximate the pattern GATAA with no
more than one difference.

C A G A T A A G A G A A
G 0 0 0 0 0 0 0 0 0 0 0 0
A 1 0 0 0 0 0 0 0 0 0 0 0
T 1 1 1 0 0 0 1 1 0 0 0 0
A 1 1 1 1 0 0 0 1 1 1 0 0
A 1 1 1 1 1 0 0 0 1 1 1 0

The method, called the Wu–Manber algorithm, is implemented in Fig. 1.59.
It assumes that the length of the pattern is no more than the size of the
memory word of the machine, which is often the case in applications.

The preprocessing phase of the algorithm takes O(σm + km) memory
space, and runs in time O(σm + k). The time complexity of its searching
phase is O(kn).

56 Book title goes here

1.8 Text Compression

This section is interested in algorithms that compress texts. Compression
serves both to save storage space and to save transmission time. Assume that
the uncompressed text is stored in a file. The aim of compression algorithms
is to produce another file containing the compressed version of the same text.
Methods in this section work with no loss of information, so that decompress-
ing the compressed text restores exactly the original text.

Two main strategies to design the algorithms are applied. The first strategy
is a statistical method that takes into account the frequencies of symbols to
build a uniquely decipherable code optimal with respect to the compression.
The code contains new codewords for the symbols occurring in the text. In
this method fixed-length blocks of bits are encoded by different codewords. A

contrario the second strategy encodes variable-length segments of the text. To
put it simply, the algorithm, while scanning the text, replaces some already
read segments just by a pointer to their first occurrences.

Text compression software often use a mixture of several methods. An
example of that is given in Section 1.8.3 which contains in particular two
classical simple compression algorithms. They compress efficiently only a small
variety of texts when used alone. But they become more powerful with the
special preprocessing presented there.

1.8.1 Huffman Coding

The Huffman method is an optimal statistical coding. It transforms the
original code used for characters of the text (ASCII code on 8 b, for instance).
Coding the text is just replacing each symbol (more exactly each occurrence
of it) by its new codeword. The method works for any length of blocks (not
only 8 b), but the running time grows exponentially with the length. In the
following, one assumes that symbols are originally encoded on 8 b to simplify
the description.

The Huffman algorithm uses the notion of prefix code. A prefix code is
a set of words containing no word that is a prefix of another word of the set.
The advantage of such a code is that decoding is immediate. Moreover, it can
be proved that this type of code does not weaken the compression.

A prefix code on the binary alphabet {0, 1} can be represented by a trie (see
section on the Aho–Corasick algorithm) that is a binary tree. In the present
method codes are complete: they correspond to complete tries (internal nodes
have exactly two children). The leaves are labeled by the original characters,
edges are labeled by 0 or 1, and labels of branches are the words of the code.
The condition on the code implies that codewords are identified with leaves
only. The convention is adopted that, from an internal node, the edge to its
left child is labeled by 0, and the edge to its right child is labeled by 1.

Pattern Matching and Text Compression Algorithms 57

Count(fin)

1 for each character a ∈ Σ
2 do freq(a)← 0
3 while not end of file fin and a is the next symbol
4 do freq(a)← freq(a) + 1
5 end← 1

FIGURE 1.60: Counts the character frequencies.

In the model where characters of the text are given new codewords, the
Huffman algorithm builds a code that is optimal in the sense that the com-
pression is the best possible (the length of the compressed text is minimum).
The code depends on the text, and more precisely on the frequencies of each
character in the uncompressed text. The more frequent characters are given
short codewords, whereas the less frequent symbols have longer codewords.

1.8.1.1 Encoding

The coding algorithm is composed of three steps: count of character fre-
quencies, construction of the prefix code, and encoding of the text.

The first step consists in counting the number of occurrences of each char-
acter in the original text (see Fig. 1.60). A special end marker (denoted by
end) is used, which (virtually) appears only once at the end of the text. It is
possible to skip this first step if fixed statistics on the alphabet are used. In
this case the method is optimal according to the statistics, but not necessarily
for the specific text.

The second step of the algorithm builds the tree of a prefix code using the
character frequency freq(a) of each character a in the following way:

• create a one-node tree t for each character a, setting weight(t) = freq(a)
and label(t) = a,

• repeat (1), extract the two least weighted trees t1 and t2, and (2) cre-
ate a new tree t3 having left subtree t1, right subtree t2, and weight
weight(t3) = weight(t1) + weight(t2),

• until only one tree remains.

The tree is constructed by the algorithm Build-tree in Fig. 1.61. The imple-
mentation uses two linear lists. The first list contains the leaves of the future
tree, each associated with a symbol. The list is sorted in the increasing order
of the weight of the leaves (frequency of symbols). The second list contains
the newly created trees. Extracting the two least weighted trees consists in
extracting the two least weighted trees among the two first trees of the list
of leaves and the two first trees of the list of created trees. Each new tree is
inserted at the end of the list of the trees. The only tree remaining at the end
of the procedure is the coding tree.

58 Book title goes here

Build-tree()

1 for each character a ∈ Σ ∪ {end}
2 do if freq(a) 6= 0
3 then create a new node t
4 weight(t)← freq(a)
5 label(t)← a
6 lleaves ← list of all the nodes in increasing order of weight
7 ltrees← empty list
8 while Length(lleaves) + Length(ltrees) > 1
9 do (ℓ, r)← extract the two nodes of smallest weight (among the

two nodes at the beginning of lleaves and the two nodes at the beginning of ltrees)
10 create a new node t
11 weight(t)← weight(ℓ) + weight(r)
12 left(t)← ℓ
13 right(t)← r
14 insert t at the end of ltrees
15 return t

FIGURE 1.61: Builds the coding tree.

Build-code(t, length)

1 if t is not a leaf
2 then temp[length]← 0
3 Build-code(left(t), length + 1)
4 temp[length]← 1
5 Build-code(right(t), length + 1)
6 else codeword(label(t))← temp[0 . . length− 1]

FIGURE 1.62: Builds the character codes from the coding tree.

After the coding tree is built, it is possible to recover the codewords asso-
ciated with characters by a simple depth-first search of the tree (see Fig. 1.62;
codeword(a) is then the binary code associated with the character a.

In the third step, the original text is encoded. Since the code depends
on the original text, in order to be able to decode the compressed text, the
coding tree and the original codewords of symbols must be stored with the
compressed text. This information is placed in a header of the compressed
file, to be read at decoding time just before the compressed text. The header
is made via a depth-first traversal of the tree. Each time an internal node
is encountered a 0 is produced. When a leaf is encountered a 1 is produced
followed by the original code of the corresponding character on 9 b (so that
the end marker can be equal to 256 if all the characters appear in the original
text). This part of the encoding algorithm is shown in Fig. 1.63.

After the header of the compressed file is computed, the encoding of the
original text is realized by the algorithm of Fig. 1.64.

Pattern Matching and Text Compression Algorithms 59

Code-tree(fout, t)

1 if t is not a leaf
2 then write a 0 in the file fout
3 Code-tree(fout, left(t))
4 Code-tree(fout, right(t))
5 else write a 1 in the file fout
6 write the original code of label(t) in the file fout

FIGURE 1.63: Memorizes the coding tree in the compressed file.

Code-text(fin, fout)

1 while not end of file fin and a is the next symbol
2 do write codeword(a) in the file fout
3 write codeword(end) in the file fout

FIGURE 1.64: Encodes the characters in the compressed file.

A complete implementation of the Huffman algorithm, composed of the
three steps just described, is given in Fig. 1.65.

Example 1.21: Here y = CAGATAAGAGAA. The length of y = 12×8 =
96 b (assuming an 8-b code). The character frequencies are

A C G T end

7 1 3 1 1

The different steps during the construction of the coding tree are

1 1 1 3 7 1 2 3 7

C T end G A end 1 1 G A

C T

Coding(fin, fout)

1 Count(fin)
2 t← Build-tree()
3 Build-code(t, 0)
4 Code-tree(fout, t)
5 Code-text(fin, fout)

FIGURE 1.65: Complete function for Huffman coding.

60 Book title goes here

3 3 7 6 7

1 2 G A 3 3 A

end 1 1 1 2 G

C T end 1 1
C T

13

6 7

3 3 A

1 2 G

end 1 1
C T

character codewords:

A C G T end

1 0010 01 0011 000

The encoded tree is 0001 binary (end, 9)01binary (C, 9)1binary(T, 9)
1binary (G, 9)1binary (A, 9), which produces a header of length 54 b,

0001 100000000 01 001000011 1 001010100 1 001000111 1 001000001

The encoded text

0010 1 01 1 0011 1 1 01 1 01 1 1 000

is of length 24 b. The total length of the compressed file is 78 b.

The construction of the tree takes O(σ log σ) time if the sorting of the list
of the leaves is implemented efficiently. The rest of the encoding process runs
in linear time in the sum of the sizes of the original and compressed texts.

1.8.1.2 Decoding

Decoding a file containing a text compressed by the Huffman algorithm is a
mere programming exercise. First, the coding tree is rebuilt by the algorithm of
Fig. 1.66. Then, the uncompressed text is recovered by parsing the compressed
text with the coding tree. The process begins at the root of the coding tree
and follows a left edge when a 0 is read or a right edge when a 1 is read.
When a leaf is encountered, the corresponding character (in fact the original
codeword of it) is produced and the parsing phase resumes at the root of
the tree. The parsing ends when the codeword of the end marker is read. An
implementation of the decoding of the text is presented in Fig. 1.67.

The complete decoding program is given in Fig. 1.68. It calls the preceding

Pattern Matching and Text Compression Algorithms 61

Rebuild-tree(fin, t)

1 b← read a bit from the file fin
2 if b = 1 ⊲ leaf
3 then left(t)← nil
4 right(t)← nil
5 label(t)← symbol corresponding to

the 9 next bits in the file fin
6 else create a new node ℓ
7 left(t)← ℓ
8 Rebuild-tree(fin, ℓ)
9 create a new node r

10 right(t)← r
11 Rebuild-tree(fin, r)

FIGURE 1.66: Rebuilds the tree read from the compressed file.

Decode-text(fin, fout, root)

1 t← root
2 while label(t) 6= end
3 do if t is a leaf
4 then label(t) in the file fout
5 t← root
6 else b← read a bit from the file fin
7 if b = 1
8 then t← right(t)
9 else t← left(t)

FIGURE 1.67: Reads the compressed text and produces the uncompressed
text.

62 Book title goes here

Decoding(fin, fout)

1 create a new node root
2 Rebuild-tree(fin, root)
3 Decode-text(fin, fout, root)

FIGURE 1.68: Complete function for Huffman decoding.

functions. The running time of the decoding program is linear in the sum of
the sizes of the texts it manipulates.

1.8.2 Lempel–Ziv–Welsh (LZW) Compression

Ziv and Lempel designed a compression method using encoding segments.
These segments are stored in a dictionary that is built during the compression
process. When a segment of the dictionary is encountered later while scanning
the original text it is substituted by its index in the dictionary. In the model
where portions of the text are replaced by pointers on previous occurrences,
the Ziv–Lempel compression scheme can be proved to be asymptotically op-
timal (on large enough texts satisfying good conditions on the probability
distribution of symbols).

The dictionary is the central point of the algorithm. It has the property
of being prefix closed (every prefix of a word of the dictionary is in the dic-
tionary), so that it can be implemented as a tree. Furthermore, a hashing
technique makes its implementation efficient. The version described in this
section is called the Lempel–Ziv–Welsh method after several improvements
introduced by Welsh. The algorithm is implemented by the compress com-
mand existing under the UNIX operating system.

1.8.2.1 Compression Method

The scheme of the compression method is first described. The dictionary
is initialized with all the characters of the alphabet. The current situation is
when one has just read a segment w in the text. Let a be the next symbol
(just following w). Then the methods proceeds as follows:

• If wa is not in the dictionary, write the index of w to the output file,
and add wa to the dictionary. Then w is reset to a and process the next
symbol (following a).

• If wa is in the dictionary, process the next symbol, with segment wa
instead of w.

Initially, the segment w is set to the first symbol of the source text.

Example 1.22: Here y = CAGTAAGAGAA

Pattern Matching and Text Compression Algorithms 63

C A G T A A G A G A A w out added
↑ C 67 CA, 257
↑ A 65 AG, 258
↑ G 71 GT, 259
↑ T 84 TA, 260
↑ A 65 AA, 261
↑ A
↑ AG 258 AGA, 262
↑ A
↑ AG
↑ AGA 262 AGAA, 262
↑ A

65
256

1.8.2.2 Decompression Method

The decompression method is symmetrical to the compression algorithm.
The dictionary is recovered while the decompression process runs. It is basi-
cally done in this way:

• Read a code c in the compressed file.

• Write in the output file the segment w which has index c in the dictio-
nary.

• Add to the dictionary the word wa where a is the first letter of the next
segment.

In this scheme, a problem occurs if the next segment is the word which is
being built. This arises only if the text contains a segment azazax for which
az belongs to the dictionary but aza does not. During the compression process
the index of az is written into the compressed file, and aza is added to the
dictionary. Next, aza is read and its index is written into the file. During the
decompression process the index of aza is read while the word az has not been
completed yet: the segment aza is not already in the dictionary. However, since
this is the unique case where the situation arises, the segment aza is recovered
taking the last segment az added to the dictionary concatenated with its first
letter a.

Example 1.23: Here the decoding is 67, 65, 71, 84, 65, 258, 262, 65, 256

64 Book title goes here

Compress(fin, fout)

1 count← −1
2 for each character a ∈ Σ
3 do count← count + 1
4 Hash-insert(D, (−1, a, count))
5 count← count + 1
6 Hash-insert(D, (−1, end, count))
7 p← −1
8 while not end of file fin
9 do a← next character of fin

10 q ← Hash-search(D, (p, a))
11 if q = nil
12 then write code(p) on 1 + log(count) bits in fout
13 count← count + 1
14 Hash-insert(D, (p, a, count))
15 p← Hash-search(D, (−1, a))
16 else p← q
17 write code(p) on 1 + log(count) bits in fout
18 write code(Hash-search(D, (−1, end))) on 1 + log(count) bits in fout

FIGURE 1.69: LZW compression algorithm.

read written added
67 C
65 A CA, 257
71 G AG, 258
84 T GT, 259
65 A TA, 260
258 AG AA, 261
262 AGA AGA, 262
65 A AGAA, 263
256

1.8.2.3 Implementation

For the compression algorithm shown in Fig. 1.69, the dictionary is stored
in a table D. The dictionary is implemented as a tree; each node z of the tree
has the three following components:

• parent(z) is a link to the parent node of z.

• label(z) is a character.

• code(z) is the code associated with z.

Pattern Matching and Text Compression Algorithms 65

Uncompress(fin, fout)

1 count← −1
2 for each character a ∈ Σ
3 do count← count + 1
4 Hash-insert(D, (−1, a, count))
5 count← count + 1
6 Hash-insert(D, (−1, end, count))
7 c← first code on 1 + log(count) bits in fin
8 write string(c) in fout
9 a← first(string(c))

10 while true
11 do d← next code on 1 + log(count) bits in fin
12 if d > count
13 then count← count + 1
14 parent(count)← c
15 label(count)← a
16 write string(c)a in fout
17 c← d
18 else a← first(string(d))
19 if a 6= end
20 then count← count + 1
21 parent(count)← c
22 label(count)← a
23 write string(d) in fout
24 c← d
25 else break

FIGURE 1.70: LZW decompression algorithm.

The tree is stored in a table that is accessed with a hashing function.
This provides fast access to the children of a node. The procedure Hash-

insert((D, (p, a, c))) inserts a new node z in the dictionary D with parent(z) =
p, label(z) = a, and code(z) = c. The function Hash-search((D, (p, a))) re-
turns the node z such that parent(z) = p and label(z) = a.

For the decompression algorithm, no hashing technique is necessary. Hav-
ing the index of the next segment, a bottom-up walk in the trie implementing
the dictionary produces the mirror image of the segment. A stack is used to
reverse it. Assume that the function string(c) performs this specific work for
a code c. The bottom-up walk follows the parent links of the data structure.
The function first(w) gives the first character of the word w. These features
are part of the decompression algorithm displayed in Fig. 1.70.

The Ziv–Lempel compression and decompression algorithms run both in
linear time in the sizes of the files provided a good hashing technique is chosen.
Indeed, it is very fast in practice. Its main advantage compared to Huffman
coding is that it captures long repeated segments in the source file.

66 Book title goes here

1.8.3 Mixing several methods

Simple compression methods are described and then an example of a com-
bination of several of them, basis of the popular bzip software.

1.8.3.1 Run Length Encoding

The aim of Run Length Encoding (RLE) is to efficiently encode repetitions
occurring in the input data. Let us assume that it contains a good quantity
of repetitions of the form aa . . . a for some character a (a ∈ Σ). A repetition
of k consecutive occurrences of letter a is replaced by &ak, where the symbol
& is a new character (& /∈ Σ).

The string &ak that encodes a repetition of k consecutive occurrences
of a is itself encoded on the binary alphabet {0, 1}. In practice, letters are
often represented by their ASCII code. Therefore, the codeword of a letter
belongs to {0, 1}k with k = 7 or 8. Generally there is no problem in choosing
or encoding the special character &. The integer k of the string &ak is also
encoded on the binary alphabet, but it is not sufficient to translate it by its
binary representation, because one would be unable to recover it at decoding
time inside the stream of bits. A simple way to cope with this is to encode
k by the string 0ℓbin(k), where bin(k) is the binary representation of k, and
ℓ is the length of it. This works well because the binary representation of k
starts with a 1 so there is no ambiguity to recover ℓ by counting during the
decoding phase. The size of the encoding of k is thus roughly 2 log k. More
sophisticated integer representations are possible, but none is really suitable
for the present situation. Simpler solution consists in encoding k on the same
number of bits as other symbols, but this bounds values of ℓ and decreases
the power of the method.

1.8.3.2 Move To Front

The Move To Front (MTF) method may be regarded as an extension of
Run Length Encoding or a simplification of Ziv–Lempel compression. It is
efficient when the occurrences of letters in the input text are localized into
relatively short segment of it. The technique is able to capture the proximity
between occurrences of symbols and to turn it into a short encoded text.

Letters of the alphabet Σ of the input text are initially stored in a list
that is managed dynamically. Letters are represented by their rank in the list,
starting from 1, rank that is itself encoded as described above for RLE.

Letters of the input text are processed in an on-line manner. The clue of
the method is that each letter is moved to the beginning of the list just after
it is translated by the encoding of its rank.

The effect of MTF is to reduce the size of the encoding of a letter that
reappears soon after its preceding occurrence.

Pattern Matching and Text Compression Algorithms 67

a
�

�
�

�
�

�
�

�
�3

r

?
a
������������*
b

?
a
������������*
c

?
b

@
@

@
@

@
@I

a

?
c

@
@

@
@

@
@I

c

?
c
A

A
A

A
A

AK
a

?
r

PPPPPPPPPPPPPPPPPPi
a

?

FIGURE 1.71: BW (baccara).

1.8.3.3 Integrated example

Most compression software combine several methods to be able to com-
press efficiently a large range of input data. An example of this strategy,
implemented by the UNIX command bzip, is presented.

Let y = y[0]y[1] · · · y[n − 1] be the input text. The k-th rotation (or
conjugate) of y, 0 ≤ k ≤ n − 1, is the string yk = y[k]y[k + 1] · · · y[n −
1]y[0]y[1] · · ·y[k − 1].

The BW transformation is defined as BW (y) = y[p0]y[p1] · · · y[pn−1],
where pi + 1 is such that ypi+1 has rank i in the sorted list of all rotations of
y.

It is remarkable that y can be recovered from both BW (y) and a position
on it, starting position of the inverse transformation (see Figure 1.71). This
is possible due to the following property of the transformation. Assume that
i < j and y[pi] = y[pj] = a. Since i < j, the definition implies ypi+1 < ypj+1.
Since y[pi] = y[pj], transferring the last letters of ypi+1 and ypj+1 to the
beginning of these words does not change the inequality. This proves that the
two occurrences of a in BW (y) are in the same relative order as in the sorted
list of letters of y. Figure 1.71 illustrates the inverse transformation. Top line
is BW (y) and bottom line the sorted list of letters of it. Top-down arrows
correspond to succession of occurrences in y. Each bottom-up arrow links the
same occurrence of a letter in y. Arrows starting from equal letters do not
cross. The circular path is associated with rotations of the string y. If the
starting point is known, the only occurrence of letter b here, following the
path produces the initial string y.

Transformation BW obviously does not compress the input text y. But
BW (y) is compressed more efficiently with simple methods. This is the strat-
egy applied for the command bzip. It is a combination of the BW transfor-
mation followed by MTF encoding and RLE encoding. Arithmetic coding,
a method providing compression ratios slightly better than Huffman coding,
may also be used.

Table 1.1 contains a sample of experimental results showing the behavior of
compression algorithms on different types of texts from the Calgary Corpus:
bib (bibliography), book1 (fiction book), news (USENET batch file), pic

68 Book title goes here

bytes 111, 261 768, 771 377, 109 513, 216 39, 611 93, 695
Texts bib book1 news pic progc trans Average
pack 5.24 4.56 5.23 1.66 5.26 5.58 4.99
gzip-b 2.51 3.25 3.06 0.82 2.68 1.61 2.69
bzip2-1 2.10 2.81 2.85 0.78 2.53 1.53 2.46

TABLE 1.1: Compression results with three algorithms: Huffman coding
(pack), Ziv–Lempel coding (gzip-b) and Burrows-Wheeler coding (bzip2-1).

(black and white fax picture), progc (source code in C) and trans (transcript
of terminal session).

The compression algorithms reported in the table are: the Huffman cod-
ing algorithm implemented by pack, the Ziv–Lempel algorithm implemented
by gzip-b and the compression based on the BW transform implemented by
bzip2-1. Figures give the number of bits used per character (letter). They
show that pack is the less efficient method and that bzip2-1 compresses
a bit more than gzip-b. Additional compression results can be found at
http://corpus.canterbury.ac.nz.

1.9 Research Issues and Summary

The algorithm for string searching by hashing was introduced by Harrison
in 1971, and later fully analyzed by Karp and Rabin (1987).

The linear-time string-matching algorithm of Knuth, Morris, and Pratt is
from 1976. It can be proved that, during the search, a character of the text
is compared to a character of the pattern no more than logΦ(|x| + 1) (where
Φ is the golden ratio (1 +

√
5)/2). Simon (1993) gives an algorithm similar

to the previous one but with a delay bounded by the size of the alphabet (of
the pattern x). Hancart (1993) proves that the delay of Simon’s algorithm is,
indeed, no more than 1 + log2 |x|. He also proves that this is optimal among
algorithms searching the text through a window of size 1.

Galil (1981) gives a general criterion to transform searching algorithms of
that type into real-time algorithms.

The Boyer–Moore algorithm was designed by Boyer and Moore (1977). The
first proof of its linearity when restricted to the search for the first pattern
occurrence is by Knuth et al. (1977). Cole (1994) proves that the maximum
number of symbol comparisons is bounded by 3n, and that this bound is tight.

Knuth et al. (1977) consider a variant of the Boyer–Moore algorithm in
which all previous matches inside the current window are memorized. Each
window configuration becomes the state of what is called the Boyer–Moore

Pattern Matching and Text Compression Algorithms 69

automaton. It is still unknown whether the maximum number of states of the
automaton is polynomial or not.

Several variants of the Boyer–Moore algorithm avoid the quadratic behav-
ior when searching for all occurrences of the pattern. Among the more efficient
in terms of the number of symbol comparisons are: the algorithm of Apostolico
and Giancarlo (1986), Turbo–BM algorithm by Crochemore et al. (1992) (the
two algorithms are analyzed in Lecroq (1995)), and the algorithm of Colussi
(1994).

The general bound on the expected time complexity of string matching
is O(|y| log |x|/|x|). The probabilistic analysis of a simplified version of the
Boyer–Moore algorithm, similar to the Quick Search algorithm of Sunday
(1990) described in the chapter, was studied by several authors.

String searching can be solved by a linear-time algorithm requiring only a
constant amount of memory in addition to the pattern and the (window on
the) text. This can be proved by different techniques presented in Crochemore
and Rytter (2002).

Experimental results presented in this chapter have been realized us-
ing SMART (String Matching Algorithms Research Tool, http://www.dmi.
unict.it/~faro/smart/) by Faro and Lecroq (2011). An exhaustive experi-
mental study can be found in Faro and Lecroq (2010).

The Aho–Corasick algorithm is from Aho and Corasick (1975). It is imple-
mented by the fgrep command under the UNIX operating system. Commentz-
Walter (1979) has designed an extension of the Boyer-Moore algorithm to
several patterns. It is fully described in Aho (1990).

On general alphabets the two-dimensional pattern matching can be solved
in linear time, whereas the running time of the Bird/Baker algorithm has
an additional log σ factor. It is still unknown whether the problem can be
solved by an algorithm working simultaneously in linear time and using only
a constant amount of memory space (see Crochemore and Rytter 2002).

The suffix tree construction of section 1.4 is by McCreight (1976). An
on-line construction is given by Ukkonen (1995). Other data structures to
represent indexes on text files are: direct acyclic word graph (Blumer et al.,
1985), suffix automata (Crochemore, 1986), and suffix arrays (Manber and
Myers, 1993). All these techniques are presented in (Crochemore and Rytter,
2002). The data structures implement full indexes with standard operations,
whereas applications sometimes need only incomplete indexes. The design of
compact indexes is still unsolved.

The suffix array of a string, with the associated search algorithm based on
the knowledge of the common prefixes (Section 1.5), is from Manber and Myers
(1993). The suffix array construction in Section 1.5.1 is from Kärkkäinen and
Sanders (2003) (see also Kim et al. (2003) and Ko and Aluru (2003)). The
method used in Section 1.5.3 to compute the longest common prefixes of sorted
suffixes is from Kasai et al. (2001).

First algorithms for aligning two sequences are by Needleman and Wunsch
(1970) and Wagner and Fischer (1974). Idea and algorithm for local alignment

70 Book title goes here

is by Smith and Waterman (1981). Hirschberg (1975) presents the computa-
tion of the lcs in linear space. This is an important result because the algo-
rithm is classically run on large sequences. Another implementation is given in
Durbin et al. (1998). The quadratic time complexity of the algorithm to com-
pute the Levenshtein distance is a bottleneck in practical string comparison
for the same reason.

Approximate string searching is a lively domain of research. It includes,
for instance, the notion of regular expressions to represent sets of strings.
Algorithms based on regular expression are commonly found in books related
to compiling techniques. The algorithms of section 1.7 are by Baeza-Yates and
Gonnet (1992) and Wu and Manber (1992).

The statistical compression algorithm of Huffman (1951) has a dynamic
version where symbol counting is done at coding time. The current coding
tree is used to encode the next character and then updated. At decoding time
a symmetrical process reconstructs the same tree, so the tree does not need to
be stored with the compressed text, see Knuth (1985). The command compact

of UNIX implements this version.
Several variants of the Ziv and Lempel algorithm exist. The reader can refer

to Bell et al. (1990) for a discussion on them. Nelson (1992) presents practical
implementations of various compression algorithms. The BW transform is
from Burrows and Wheeler (1994).

Defining Terms

Alignment: an alignment of two strings x and y is a word of the form
(x0, y0)(x1, y1) · · · (xp−1, yp−1) where each (xi, yi) ∈ (Σ ∪ {ε}) × (Σ ∪
{ε}) \ ({(ε, ε)} for 0 ≤ i ≤ p − 1 and both x = x0x1 · · ·xp−1 and
y = y0y1 · · · yp−1.

Border: A word u ∈ Σ∗ is a border of a word w ∈ Σ∗ if u is both a prefix and
a suffix of w (there exist two words v, z ∈ Σ∗ such that w = vu = uz).
The common length of v and z is a period of w.

Edit distance: The metric distance between two strings that counts the min-
imum number of insertions and deletions of symbols to transform one
string into the other.

Hamming distance: The metric distance between two strings of same
length that counts the number of mismatches.

Levenshtein distance: The metric distance between two strings that counts
the minimum number of insertions, deletions, and substitutions of sym-
bols to transform one string into the other.

Pattern Matching and Text Compression Algorithms 71

Occurrence: An occurrence of a word u ∈ Σ∗, of length m, appears in a word
w ∈ Σ∗, of length n, at position i if for 0 ≤ k ≤ m− 1, u[k] = w[i + k].

Prefix: A word u ∈ Σ∗ is a prefix of a word w ∈ Σ∗ if w = uz for some
z ∈ Σ∗.

Prefix code: Set of words such that no word of the set is a prefix of another
word contained in the set. A prefix code is represented by a coding tree.

Segment: A word u ∈ Σ∗ is a segment of a word w ∈ Σ∗ if u occurs in w (see
occurrence), that is, w = vuz for two words v, z ∈ Σ∗ (u is also referred
to as a factor or a subword of w).

Subsequence: A word u ∈ Σ∗ is a subsequence of a word w ∈ Σ∗ if it
is obtained from w by deleting zero or more symbols that need not be
consecutive (u is sometimes referred to as a subword of w, with a possible
confusion with the notion of segment).

Suffix: A word u ∈ Σ∗ is a suffix of a word w ∈ Σ∗ if w = vu for some v ∈ Σ∗.

Suffix tree: Trie containing all the suffixes of a word.

Trie: Tree in which edges are labeled by letters or words.

72 Book title goes here

Bibliography

[1] Aho, A. V. 1990. Algorithms for finding patterns in strings. In Handbook

of Theoretical Computer Science, vol. A. Algorithms and Complexity, J. van
Leeuwen, ed., pp. 255–300. Elsevier, Amsterdam.

[2] Aho, A. V. and Corasick, M. J. 1975. Efficient string matching: an aid to
bibliographic search. Comm. ACM 18(6):333–340.

[3] Baeza-Yates, R. A. and Gonnet, G. H. 1992. A new approach to text
searching. Comm. ACM 35(10):74–82.

[4] Baker, T. P. 1978. A technique for extending rapid exact-match string
matching to arrays of more than one dimension. SIAM J. Comput. 7(4):533–
541.

[5] Bell, T. C., Cleary, J. G., and Witten, I. H. 1990. Text Compression.
Prentice–Hall, Englewood Cliffs, NJ.

[6] Bird, R. S. 1977. Two-dimensional pattern matching. Inf. Process. Lett.

6(5):168–170.

[7] Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., Chen, M. T., and
Seiferas, J. 1985. The smallest automaton recognizing the subwords of a
text. Theor. Comput. Sci. 40:31–55.

[8] Boyer, R. S. and Moore, J. S. 1977. A fast string searching algorithm.
Comm. ACM 20(10):762–772.

[9] Breslauer, D., Colussi, L., and Toniolo, L. 1993. Tight comparison bounds
for the string prefix matching problem. Inf. Process. Lett. 47(1):51–57.

[10] Burrows, M. and Wheeler, D. 1994. A block sorting lossless data com-
pression algorithm. Technical Report 124, Digital Equipment Corporation.

[11] Cole, R. 1994. Tight bounds on the complexity of the Boyer-Moore pat-
tern matching algorithm. SIAM J. Comput. 23(5):1075–1091.

[12] Colussi, L. 1994. Fastest pattern matching in strings. J. Algorithms

16(2):163–189.

[13] Crochemore, M. 1986. Transducers and repetitions. Theor. Comput. Sci.

45(1):63–86.

73

74 Book title goes here

[14] Crochemore, M. and Rytter, W. 2002. Jewels of Stringology. World Sci-
entific.

[15] Durbin, R., Eddy, S., and A. Krogh, A., and Mitchison G. 1998. Bio-

logical sequence analysis probabilistic models of proteins and nucleic acids.
Cambridge University Press.

[16] S. Faro and T. Lecroq. The Exact String Matching Problem: a Compre-
hensive Experimental Evaluation. Report arXiv:1012.2547, 2010.

[17] S. Faro and T. Lecroq. SMART: a string matching algorithm research
tool. http://www.dmi.unict.it/~faro/smart/, 2011.

[18] Galil, Z. 1981. String matching in real time. J. ACM 28(1):134–149.

[19] Hancart, C. 1993. On Simon’s string searching algorithm. Inf. Process.

Lett. 47(2):95–99.

[20] Hirschberg, D. S. 1975. A linear space algorithm for computing maximal
common subsequences. Comm. ACM 18(6):341–343.

[21] Hume, A. and Sunday, D. M. 1991. Fast string searching. Software—

Practice Exp. 21(11):1221–1248.

[22] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construc-
tion. J. C. M. Baeten, J. K. Lenstra, J. Parrow and G. J. Woeginger, editors.
Proceedings of the 30th International Colloquium on Automata, Languages

and Programming Eindhoven, The Netherlands, Lecture Notes in Computer
Science 2719, Springer-Verlag, 2003, 943–955.

[23] Karp, R. M. and Rabin, M. O. 1987. Efficient randomized pattern-
matching algorithms. IBM J. Res. Dev. 31(2):249–260.

[24] T. Kasai, G. Lee, H. Arimura, S. Arikawa and K. Park. Linear-Time
Longest-Common-Prefix Computation in Suffix Arrays and Its Applica-
tions. A. Amir and G. M. Landau, editors. Proceedings of the 12th Annual

Symposium on Combinatorial Pattern Matching, Jerusalem, Israel, 2001.
Lecture Notes in Computer Science 2089. Springer-Verlag, 2001, 181–192.

[25] D. K. Kim, J. S. Sim, H. Park and K. Park. Linear-Time Construction
of Suffix Arrays. R. A. Baeza-Yates, E. Chávez and M. Crochemore, edi-
tors. Proceedings of the 14th Annual Symposium on Combinatorial Pattern

Matching, Morelia, Michocán, Mexico, 2003. Lecture Notes in Computer
Science 2676. Springer-Verlag, 2003, 186–199.

[26] Knuth, D. E. 1985. Dynamic Huffman coding. J. Algorithms 6(2):163–
180.

[27] Knuth, D. E., Morris, J. H., Jr, and Pratt, V. R. 1977. Fast pattern
matching in strings. SIAM J. Comput. 6(1):323–350.

Pattern Matching and Text Compression Algorithms 75

[28] P. Ko and S. Aluru. Space Efficient Linear Time Construction of Suffix
Arrays. R. A. Baeza-Yates, E. Chávez and M. Crochemore, editors. Proceed-

ings of the 14th Annual Symposium on Combinatorial Pattern Matching,
Morelia, Michocán, Mexico, 2003. Lecture Notes in Computer Science 2676.
Springer-Verlag, 2003, 200–210.

[29] Lecroq, T. 1995. Experimental results on string-matching algorithms.
Software—Practice Exp. 25(7):727–765.

[30] McCreight, E. M. 1976. A space-economical suffix tree construction al-
gorithm. J. Algorithms 23(2):262–272.

[31] Manber, U. and Myers, G. 1993. Suffix arrays: a new method for on-line
string searches. SIAM J. Comput. 22(5):935–948.

[32] Needleman, S. B. and Wunsch, C. D. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. J.

Mol. Biol. 48:443–453.

[33] Nelson, M. 1992. The Data Compression Book. M&T Books.

[34] Simon, I. 1993. String matching algorithms and automata. In First Amer-

ican Workshop on String Processing, Baeza-Yates and Ziviani, eds., pp.
151–157. Universidade Federal de Minas Gerais.

[35] Smith, T. F. and Waterman, M. S. 1981. Identification of common molec-
ular sequences. J. Mol. Biol. 147:195–197.

[36] Stephen, G. A. 1994. String Searching Algorithms. World Scientific Press.

[37] Sunday, D. M. 1990. A very fast substring search algorithm. Comm. ACM

33(8):132–142.

[38] Ukkonen, E. 1995. On-line construction of suffix trees. Algorithmica

14(3):249–260.

[39] Wagner, R. A. and Fischer, M. 1974. The string-to-string correction prob-
lem. J. ACM 21(1):168–173.

[40] Welch, T. 1984. A technique for high-performance data compression.
IEEE Comput. 17(6):8–19.

[41] Wu, S. and Manber, U. 1992. Fast text searching allowing errors. Comm.

ACM 35(10):83–91.

[42] Zhu, R. F. and Takaoka, T. 1989. A technique for two-dimensional pattern
matching. Comm. ACM 32(9):1110–1120.

76 Book title goes here

Further Information

Problems and algorithms presented in the chapter are just a sample of ques-
tions related to pattern matching. They share the formal methods used to
design solutions and efficient algorithms. A wider panorama of algorithms on
texts may be found in a few books such as:

Adjeroh, D., Bell, T. and Mukherjee, A. 2008. The Burrows-Wheeler

Transform:Data Compression, Suffix Arrays, and Pattern Matching. Springer
Verlag.

Apostolico, A. and Galil, Z., editors. 1997. Pattern Matching Algorithms.
Oxford University Press.

Bell, T. C., Cleary, J. G. and Witten, I. H. 1990. Text Compression.
Prentice-Hall, Englewood Cliffs, NJ.

Crochemore, M., Hancart, C. and Lecroq, T. 2007. Algorithms on Strings.
Cambridge University Press.

Crochemore, M. and Rytter, W. 2002. Jewels of Stringology. World Scien-
tific.

Gusfield D. 1997. Algorithms on Strings, Trees and Sequences: Computer

Science and Computational Biology. Cambridge University Press.
Navarro, G. and Raffinot M. 2002. Flexible Pattern Matching in Strings:

Practical On-line Search Algorithms for Texts and Biological Sequences. Cam-
bridge University Press.

Nelson, M. 1992. The Data Compression Book. M&T Books.
Salomon, D. 2000. Data Compression: the Complete Reference. Springer

Verlag.
Smyth, W. F. 2003. Computing Patterns in Strings. Addison-Wesley Long-

man, 2003.
Stephen, G. A. 1994. String Searching Algorithms. World Scientific Press.

Research papers in pattern matching are disseminated in a few journals,
among which are: Communications of the ACM, Journal of the ACM, Theo-

retical Computer Science, Algorithmica, Journal of Algorithms, SIAM Journal

on Computing, Journal of Discrete Algorithms.
Finally, three main annual conferences present the latest advances of this

field of research: Combinatorial Pattern Matching, which started in 1990. Data
Compression Conference, which is regularly held at Snowbird. The scope of
SPIRE (String Processing and Information Retrieval) includes the domain of
data retrieval.

General conferences in computer science often have sessions devoted to
pattern matching algorithms.

Several books on the design and analysis of general algorithms contain
chapters devoted to algorithms on texts. Here is a sample of these books:

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to

Algorithms. MIT Press.

Pattern Matching and Text Compression Algorithms 77

Gonnet, G. H. and Baeza-Yates, R. A. 1991. Handbook of Algorithms and

Data Structures. Addison-Wesley.
Animations of selected algorithms may be found at:

• http://www-igm.univ-mlv.fr/~lecroq/string/ (Exact String Match-
ing Algorithms),

• http://www-igm.univ-mlv.fr/~lecroq/seqcomp/ (Alignments).

