
Sequential String Matching

Maxime Crochemore

King’s College London

Maxime.Crochemore@kcl.ac.uk

http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 24/1/2011 1 Master-TSP-TS

Examples

⋆ Naive search (1)

a b a b a a a b a a b a a b a b . .

a b a a a b a b

a b a a a b a b

a b a a a b a b

a b a a a b a b

a b a a a b a b

. . .

⋆ Naive search (2)

a a a b a a a a b a b a a b a b . .

a a a b a a

a a a b a a

a a a b a a

a a a b a a

a a a b a a

. . .

M.C. 24/1/2011 2 Master-TSP-TS

Left-to-right scan — shift

u

u

τ

σ

text y

pattern x

✲✛

period(u) ✝ ✆
border(u)

⋆ Mismatch situation: σ ̸= τ

⋆ period(u) = |u|− |border(u)|

⋆ Optimal shift length = period(uτ)

⋆ Valid if u = x

M.C. 24/1/2011 3 Master-TSP-TS

Periods and borders

⋆ Non-empty string u, integer p, 0 < p ≤ |u|

⋆ p is a period of u if any of these equivalent conditions is satisfied:

[1] u[i] = u[i + p], for 0 ≤ i < |u|− p

[2] u is a prefix of some yk, k > 0, |y| = p

[3] u = yw = wz, for some strings y, z, w with |y| = |z| = p

String w is called a border of u

⋆ The period of u, period(u), is its smallest period (can be |u|)

⋆ The border of u, border(u), is its longest border (can be empty)

⋆ Periods and borders of abacabacaba

4 abacaba

8 aba

10 a

11 empty string

M.C. 24/1/2011 4 Master-TSP-TS

Sequential search

⋆ Simple online search

⋆ Length of shift = period

⋆ Memorization of borders

while window on text do

u ←− longest common prefix of window and pattern

if u = pattern then report a match

shift window period(u) places to right

memorize border(u)

M.C. 24/1/2011 5 Master-TSP-TS

MP algorithm

u τ
0 pos j n− 1

u σ
0 i m− 1

0 MP next [i] m− 1

text y

pattern x

MP(string x, y; integer m,n)

i ←− 0; j ←− 0

while j < n do

while (i = m) or (i ≥ 0 and x[i] ̸= y[j]) do

i ←− MP next [i]

i ←− i + 1; j ←− j + 1

if i = m then output(’x occurs in y at position’, j − i)

M.C. 24/1/2011 6 Master-TSP-TS

Example of MP run

⋆ MP next table

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a b a c a b a c a b

MP next [i] -1 0 0 1 0 1 2 3 4 5 6

⋆ Run of MP algorithm

y a b a b a c a b a d a b . .

x a b a c a b a c a b

a b a c a b a c a b

a b a c a b a c a b

a b a c a b a c a b

a b a c a b a c a b

a b a c a b a c a b

⋆ If end of y, MP algorithm gives the longest overlap between y and x.

M.C. 24/1/2011 7 Master-TSP-TS

Computing borders of prefixes

⋆ A border of a border of u is a border of u

A border of u is either border(u) or a border of it

⋆ Border[i] = |border(x[0 . . i− 1])|

⋆ j runs through decreasing lengths of borders

Compute borders(string x; integer m)

Border[0] ←− −1

for i ←− 0 to m− 1 do

j ←− Border[i]

while j ≥ 0 and x[i] ̸= x[j] do

j ←− Border[j]

Border[i + 1] ←− j + 1

return Border

⋆ MP next [i] = Border[i] for i = 0, . . . ,m

M.C. 24/1/2011 8 Master-TSP-TS

Improvement

u σ

w wτx

x

✲✛

p

⋆ Interrupted periods — strict borders

⋆ Changes only the preprocessing of MP algorithm

while window on text do

u ←− longest common prefix of window and pattern

if u = pattern then report a match

shift window interrupt period(u) places to the right

memorize strict border(u)

M.C. 24/1/2011 9 Master-TSP-TS

Interrupted periods and strict borders

⋆ Fixed string x, non-empty prefix u of x

⋆ w is a strict border of u if both:

– w is a border of u

– wτ is a prefix of x, but uτ is not

⋆ p is an interrupted period of u if p = |u|− |w| for
some strict border |w| of u

⋆ Prefix abacabacaba of abacabacabacc

Interrupted periods and strict borders of abacabacaba

10 a

11 empty string

M.C. 24/1/2011 10 Master-TSP-TS

KMP preprocessing

⋆ k = MP next [i]

⋆ KMP next [i] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k, if x[i] ̸= x[k] or if i = m,

KMP next [k], if x[i] = x[k].

Compute KMP next(string x; integer m);

KMP next [0] ←− −1; k ←− 0

for i ←− 1 to m− 1 do {here: k = MP next [i]}
if x[i] = x[k] then

KMP next [i] ←− KMP next [k]

else KMP next [i] ←− k

do k ←− KMP next [k]

while k ≥ 0 and x[i] ̸= x[k]

k ←− k + 1

KMP next [m] ←− k

return KMP next

M.C. 24/1/2011 11 Master-TSP-TS

Example of KMP run

⋆ KMP next table

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a b a c a b a c a b

MP next [i] -1 0 0 1 0 1 2 3 4 5 6

KMP next [i] -1 0 -1 1 -1 0 -1 1 -1 0 6

⋆ Run of KMP algorithm

y a b a b a c a b a d a b . .

x a b a c a b a c a b

a b a c a b a c a b

a b a c a b a c a b

a b a c a b a c a b

a b a c a b a c a b

⋆ If end of y, KMP algorithm gives the longest overlap between y and x.

M.C. 24/1/2011 12 Master-TSP-TS

Running times of MP and KMP

Theorem 1 On a text of length n, MP and KMP string-searching

algorithm run in time O(n).

They make less than 2n symbol comparisons.

Proof Positive comparisons increase the value of j

Negative comparisons increase the value of j − i (shift)

⋆ Delay = maximum number of comparisons on a text symbol

Theorem 2 Pattern of length m. The delay for MP algorithm is

no more than m. The delay for KMP algorithm is no more than

logΦ(m + 1), where Φ is the golden ratio, (1 +
√
5)/2.

Proof For KMP, use the periodicity theorem

⋆ A worst-case pattern of length 19: abaababaabaababaaba

M.C. 24/1/2011 13 Master-TSP-TS

Periodicities

Theorem 3 If p and q are periods of a word x and satisfy

p + q −GCD(p, q) ≤ |x| then GCD(p, q) is a period of x.

[Fine, Wilf, 1965]

Used in the analysis of KMP algorithm and in the analysis of

many other pattern matching algorithms.

Theorem 4 (Weak version) If p and q are periods of a

word x and satisfy p + q ≤ |x| then GCD(p, q) is a period

of x.

Proof If p and q are periods of x, p > q, then p − q is also

a period of x. Rest of the proof analogous to correctness of

Euclid’s gcd algorithm.

M.C. 24/1/2011 14 Master-TSP-TS

Proof of the weak statement

⋆ p and q periods of x with p + q ≤ |x| and p > q

⋆ p− q period of x because:

a b c

✲
p

✛

q
✲✛

p− q

a bc
✛

q

✲
p

✲✛

p− q

⋆ rest of the proof like Euclid’s induction

M.C. 24/1/2011 15 Master-TSP-TS

Searching with an automaton

⋆ Uses the string-matching automaton SMA(x):

smallest deterministic automaton accepting Σ∗x

⋆ Example x = abaa

0 1 2 3 4
a b a a

b a

b

b

a

b

⋆ Search for abaa in:

b a b b a a b a a b a a b b a · · ·
state 0 0 1 2 0 1 1 2 3 4 2 3 4 2 0 1 · · ·

M.C. 24/1/2011 16 Master-TSP-TS

Searching algorithm

⋆ Simple online parsing of the text with

the string-matching automaton SMA(x)

SEARCH(string x, y; integer m,n)

(Q,Σ, initial , {terminal }, δ) is the automaton SMA(x)

q ←− initial state

if q = terminal then report an occurrence of x in y

while not end of y do

σ ←− next symbol of y

q ←− δ(q, σ)

if q = terminal then report an occurrence of x in y

M.C. 24/1/2011 17 Master-TSP-TS

Construction of SMA(x)

⋆ Unwinding arcs

⋆ From SMA(abaa) . . .

0 1 2 3 4
a b a a

b a

b

b

a

b

⋆ . . . to SMA(abaab)

0 1 2 3 4 5
a b a a b

b a

b

b

a

a

b

M.C. 24/1/2011 18 Master-TSP-TS

Construction algorithm

⋆ Unwind the appropriate arc

automaton SMA(string x)

let initial be a new state

Q ←− {initial }
terminal ←− initial

for all σ in Σ do δ(initial , σ) ←− initial

while not end of x do

τ ←− next symbol of x

r ←− δ(terminal , τ)

add new state s to Q

δ(terminal , τ) ←− s

for all σ in Σ do δ(s, σ) ←− δ(r, σ)

terminal ←− s

return (Q,Σ, initial , {terminal }, δ)

M.C. 24/1/2011 19 Master-TSP-TS

Significant arcs

⋆ Complete SMA(ananas)

✲ ✲✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

0 1 2 3 4 5 6✲ ✲ ✲ ✲ ✲ ✲
a n a n a s

☞✞
✚
✛

n, s ☞✞
✚
✛
a ✞ ☎✛

a
✛ ✘✛

a
✬ ✩✛

a

✝ ✆✛
s ✝ ✆✛

n✚ ✙✛

n, s✫ ✪✛
s✫ ✪✛

n, s✫ ✪✛

n, s

⋆ Forward arcs: spell the pattern

⋆ Backward arcs: arcs going backwards without reaching the

initial state

✲ ✲✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

0 1 2 3 4 5 6✲ ✲ ✲ ✲ ✲ ✲
a n a n a s

☞✞
✚
✛
a ✞ ☎✛

a
✛ ✘✛

a
✬ ✩✛

a

✝ ✆✛
n

Lemma 1 SMA(x) contains at most |x| backward arcs.

⋆ Consequence: the implementation of SMA(x) can be done in

O(|x|) time and space, independently of the alphabet size

M.C. 24/1/2011 20 Master-TSP-TS

Backward arcs in SMA

⋆ States of SMA(x) are identified with prefixes of x

A backward arc is of the form (u, τ, vτ) (u, v prefixes of x, τ symbol) with

– vτ longest suffix of uτ that is a prefix of x, and u ̸= v

Note: uτ is not a prefix of x

Let p(u, τ) = |u|− |v| ; it is a period of u because v is a border of u

✓ ✏✛
τ

x τ σ

v τ v
✲✛

p(u, τ)

⋆ Backward arcs to periods: p is injective

Each period p, 1 ≤ p ≤ |x|, corresponds to at most one backward arc,

thus there are at most |x| such arcs

⋆ A worst case: SMA(abm−1) has m backward arcs (a ̸= b)

M.C. 24/1/2011 21 Master-TSP-TS

Backward arcs (followed)

⋆ Proof that p is injective

Two backward arcs (u, τ, vτ), (u′, τ ′, v′τ ′)

Assume p(u, τ) = p(u′, τ ′) = p ; we prove u = u′ and τ = τ ′.

✓ ✏✛
τ

x τ σ

v τ v

v′ τ ′ v′
✲✛

p

⋆ If v = v′ then u = u′ and also τ = τ ′

✓ ✏✛
τ✞ ☎✛

τ ′

x τ στ ′ σ′

v τ v

v′ τ ′ v′
✲✛

p

⋆ If v′ a proper prefix of v then v′τ ′ and v′σ′ are prefixes of v

thus τ ′ = σ′ a contradiction

M.C. 24/1/2011 22 Master-TSP-TS

Complexity of searching with SMA

⋆ Pattern x of length m, text y of length n

⋆ With complete SMA implemented by transition matrix

Preprocessing on pattern x time O(m× cardΣ)

space O(m× cardΣ)

Search on text y time O(n)

space O(m× cardΣ)

Delay time constant

⋆ With SMA implemented by lists of forward and backward arcs

Preprocessing on pattern x time O(m)

space O(m)

Search on text y time O(n)

space O(m)

Delay comparisons min{cardΣ, log2m}

⋆ Improves on KMP algorithm

M.C. 24/1/2011 23 Master-TSP-TS

