Sequential String Matching

MAXIME CROCHEMORE

King's College London

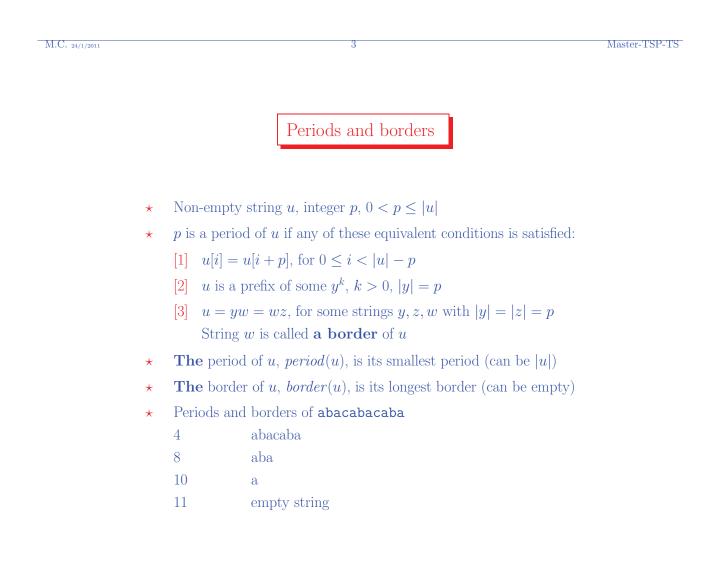
Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 24/1/2011	1	Master-TSP-
	Examples	
	-	
★ Naive search (1)		
ababaaa	b a a b a a b a b	
abaaba	b	
abaaab	a b	
abaaa	b a b	
<u>a</u> baa	a b a b	
<u>a b</u> a	a a b a b	
★ Naive search (2)		
	a b a b a a b a b	
aaabaa		
<u>aaa</u> baa		
<u>aa</u> aba		
<u>a</u> aab		
aaa	b a a	
• •	•	

M.C. 24/1/2011



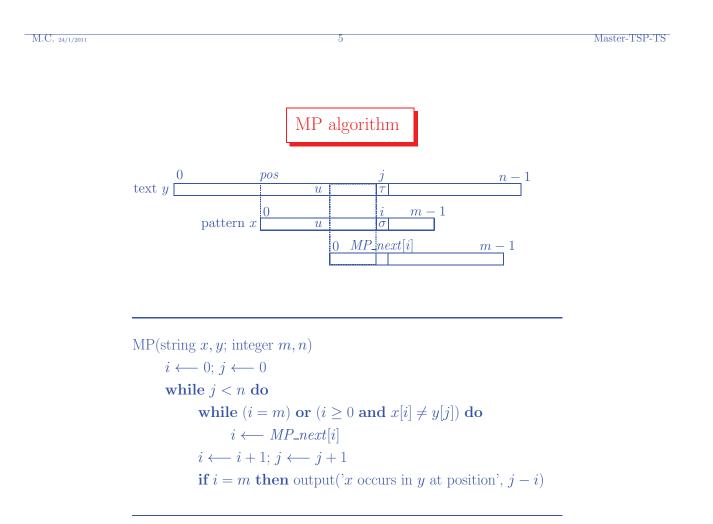
- ★ Mismatch situation: $\sigma \neq \tau$
- $\star \quad period(u) = |u| |border(u)|$
- ★ Optimal shift length = $period(u\tau)$
- **\star** Valid if u = x



- \star Simple online search
- \star Length of shift = period
- \star Memorization of borders

while window on text do

u ← longest common prefix of window and pattern
if u = pattern then report a match
shift window period(u) places to right
memorize border(u)



Example of MP run

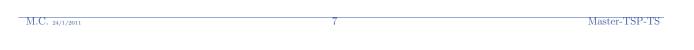
 \star *MP_next* table

i	0	1	2	3	4	5	6	7	8	9	10
x[i]	a	b	а	с	a	b	a	С	а	b	
$MP_next[i]$	-1	0	0	1	0	1	2	3	4	5	6

 \star ~ Run of MP algorithm

y	a	b	a	b	а	с	а	b	a	d	a	b								
x	а	b	a	С	a	b	а	С	a	b										
			a	b	a	С	а	b	a	С	a	b								
							а	b	a	С	a	b	а	С	a	b				
									a	b	a	С	а	b	а	С	a	b		
										а	b	а	С	а	b	а	С	а	b	
											a	b	a	с	a	b	a	с	a	b

\star If end of y, MP algorithm gives the longest overlap between y and x.



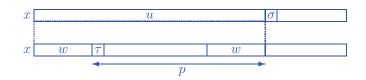
Computing borders of prefixes

- ★ A border of a border of u is a border of uA border of u is either border(u) or a border of it
- $\star \quad \text{Border}[i] = |border(x[0 \dots i 1])|$
- \star j runs through decreasing lengths of borders

```
COMPUTE_BORDERS(string x; integer m)
Border[0] \leftarrow -1
for i \leftarrow 0 to m - 1 do
j \leftarrow \text{Border}[i]
while j \ge 0 and x[i] \ne x[j] do
j \leftarrow \text{Border}[j]
Border[i + 1] \leftarrow j + 1
return Border
```

$MP_next[i] = Border[i] \text{ for } i = 0, \dots, m$

Improvement



- ★ Interrupted periods strict borders
- \star $\,$ Changes only the preprocessing of MP algorithm

 $\mathbf{while} \ \mathrm{window} \ \mathrm{on} \ \mathrm{text} \ \mathbf{do}$

 $u \leftarrow longest$ common prefix of window and pattern if u = pattern then report a match shift window *interrupt_period(u)* places to the right memorize *strict_border(u)*

M.C. 24/1/2011

Master-TSP-TS

Interrupted periods and strict borders

- \star Fixed string x, non-empty prefix u of x
- \star w is a strict border of u if both:
 - w is a border of u
 - $w\tau$ is a prefix of x, but $u\tau$ is not
- ★ p is an interrupted period of u if p = |u| |w| for some strict border |w| of u

Prefix abacabacaba of abacabacabacc Interrupted periods and strict borders of abacabacaba

10 a

11 empty string

KMP preprocessing

$$k = MP_next[i]$$

$$KMP_next[i] = \begin{cases} k, & \text{if } x[i] \neq x[k] \text{ or if } i = m, \\ KMP_next[k], & \text{if } x[i] = x[k]. \end{cases}$$

COMPUTE_KMP_NEXT(string x; integer m); $KMP_next[0] \longleftarrow -1; k \longleftarrow 0$ for $i \longleftarrow 1$ to m - 1 do {here: $k = MP_next[i]$ } if x[i] = x[k] then $KMP_next[i] \longleftarrow KMP_next[k]$ else $KMP_next[i] \longleftarrow k$ do $k \longleftarrow KMP_next[k]$ while $k \ge 0$ and $x[i] \ne x[k]$ $k \longleftarrow k + 1$ $KMP_next[m] \longleftarrow k$ return KMP_next

M.C. 24/1/2011

11

Master-TSP-TS

Example of KMP run

\star If end of y, KMP algorithm gives the longest overlap between y and x.

Theorem 1 On a text of length n, MP and KMP string-searching algorithm run in time O(n). They make less than 2n symbol comparisons.

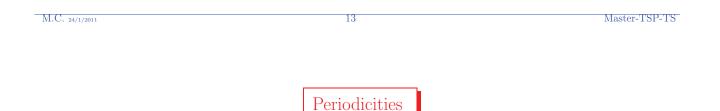
Proof Positive comparisons increase the value of jNegative comparisons increase the value of j - i (shift)

 \star Delay = maximum number of comparisons on a text symbol

Theorem 2 Pattern of length m. The delay for MP algorithm is no more than m. The delay for KMP algorithm is no more than $\log_{\Phi}(m+1)$, where Φ is the golden ratio, $(1 + \sqrt{5})/2$.

Proof For KMP, use the periodicity theorem

 \star A worst-case pattern of length 19: abaabaabaabaabaabaaba



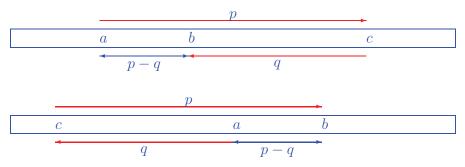
Theorem 3 If p and q are periods of a word x and satisfy $p+q-GCD(p,q) \leq |x|$ then GCD(p,q) is a period of x.

[Fine, Wilf, 1965]

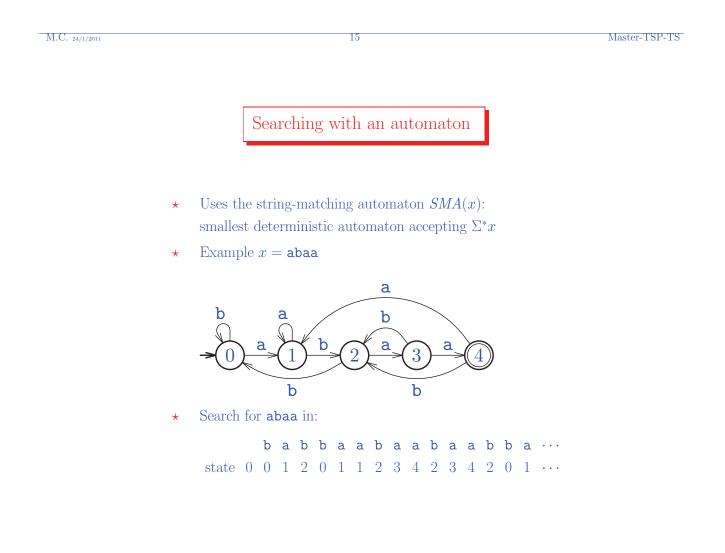
Used in the analysis of KMP algorithm and in the analysis of many other pattern matching algorithms.

Theorem 4 (Weak version) If p and q are periods of a word x and satisfy $p + q \le |x|$ then GCD(p,q) is a period of x.

Proof If p and q are periods of x, p > q, then p - q is also a period of x. Rest of the proof analogous to correctness of Euclid's gcd algorithm. ★ $p \text{ and } q \text{ periods of } x \text{ with } p + q \leq |x| \text{ and } p > q$

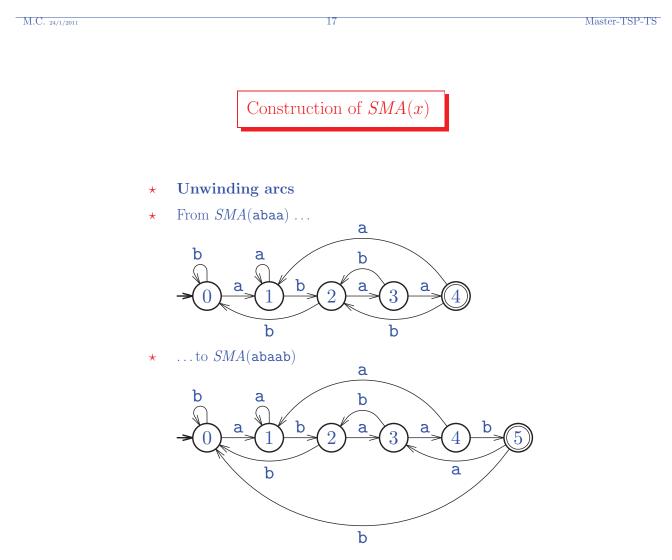


 \star rest of the proof like Euclid's induction



★ Simple online parsing of the text with the string-matching automaton SMA(x)

```
\begin{array}{l} \mathrm{SEARCH}(\mathrm{string}\;x,y;\;\mathrm{integer}\;m,n)\\ &(Q,\Sigma,\mathit{initial},\{\mathrm{terminal}\,\},\delta)\;\mathrm{is\;the\;automaton}\;SMA(x)\\ &q\longleftarrow\;\mathit{initial\;state}\\ &\mathbf{if}\;q=\mathrm{terminal\;then}\;\mathrm{report\;an\;occurrence\;of\;x\;in\;y}\\ &\mathbf{while\;not\;end\;of\;y\;do}\\ &\sigma\longleftarrow\;\mathrm{next\;symbol\;of\;y}\\ &q\leftarrow\;\delta(q,\sigma)\\ &\mathbf{if}\;q=\mathrm{terminal\;then\;report\;an\;occurrence\;of\;x\;in\;y} \end{array}
```



Construction algorithm

 \star Unwind the appropriate arc

```
automaton SMA(string x)

let initial be a new state

Q \leftarrow \{initial\}

terminal \leftarrow initial

for all \sigma in \Sigma do \delta(initial, \sigma) \leftarrow initial

while not end of x do

\tau \leftarrow next symbol of x

r \leftarrow \delta(terminal, \tau)

add new state s to Q

\delta(terminal, \tau) \leftarrow s

for all \sigma in \Sigma do \delta(s, \sigma) \leftarrow \delta(r, \sigma)

terminal \leftarrow s

return (Q, \Sigma, initial, \{terminal\}, \delta)
```

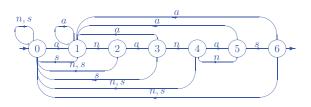
M.C. 24/1/2011

19

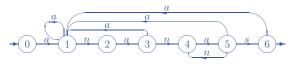
Master-TSP-TS

Significant arcs

 \star Complete *SMA*(ananas)



- ***** Forward arcs: spell the pattern
- ★ **Backward arcs**: arcs going backwards without reaching the initial state



Lemma 1 SMA(x) contains at most |x| backward arcs.

★ Consequence: the implementation of SMA(x) can be done in O(|x|) time and space, independently of the alphabet size

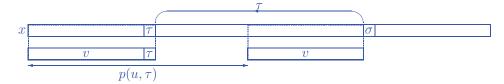
★ States of SMA(x) are identified with prefixes of x

A backward arc is of the form $(u, \tau, v\tau)$ (u, v prefixes of x, τ symbol) with

- $v\tau$ longest suffix of $u\tau$ that is a prefix of x, and $u \neq v$

Note: $u\tau$ is not a prefix of x

Let $p(u, \tau) = |u| - |v|$; it is a period of u because v is a border of u



- ★ Backward arcs to periods: p is injective Each period $p, 1 \le p \le |x|$, corresponds to at most one backward arc, thus there are at most |x| such arcs
- ★ A worst case: $SMA(ab^{m-1})$ has m backward arcs $(a \neq b)$

M.C. 24/1/2011

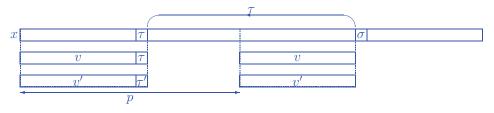
21

Master-TSP-TS

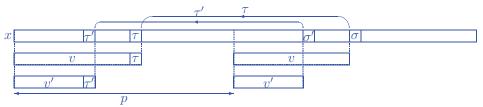
Backward arcs (followed)

$\star \quad \textbf{Proof that } p \textbf{ is injective}$

Two backward arcs $(u, \tau, v\tau)$, $(u', \tau', v'\tau')$ Assume $p(u, \tau) = p(u', \tau') = p$; we prove u = u' and $\tau = \tau'$.



***** If v = v' then u = u' and also $\tau = \tau'$



* If v' a proper prefix of v then $v'\tau'$ and $v'\sigma'$ are prefixes of v thus $\tau' = \sigma'$ a contradiction

★ Pattern x of length m, text y of length n

*	With complete SMA im	plemented by	transition matrix
	Preprocessing on pattern x	time	$O(m \times \operatorname{card} \Sigma)$
		space	$O(m \times \operatorname{card} \Sigma)$
	Search on text y	time	O(n)
		space	$O(m \times \operatorname{card} \Sigma)$
	Delay	time	constant
*	With SMA implemented	d by lists of fo	orward and backward arcs
	Preprocessing on pattern x	time	O(m)
		space	O(m)
	Search on text y	time	O(n)
		space	O(m)
	Delay	comparisons	$\min\{\operatorname{card}\Sigma, \log_2 m\}$
L.	Improves on KMP algorithm		

 \star $\;$ Improves on KMP algorithm

M.C. 24/1/2011

23

Master-TSP-TS