
—— SOLUTIONS ——

King’s College London
This paper is part of an examination of the College counting towards the award of a
degree. Examinations are governed by the College Regulations under the authority
of the Academic Board.

Enter your candidate number in the box provided above

and on the answer book(s) provided. Do this now.

BSc EXAMINATION

6CCS3TSP/CS3TSP – TEXT SEARCHING AND PROCESSING

MAY 2011

TIME ALLOWED: TWO HOURS.

ANSWER TWO OF THE THREE QUESTIONS.

NO CREDIT WILL BE GIVEN FOR ATTEMPTING ANY FURTHER QUESTIONS.

ALL QUESTIONS CARRY EQUAL MARKS.

THE USE OF ELECTRONIC CALCULATORS IS NOT PERMITTED.

BOOKS, NOTES OR OTHER WRITTEN MATERIAL MAY NOT BE BROUGHT

INTO THIS EXAMINATION.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

TURN OVER WHEN INSTRUCTED

 2011 King’s College London

—— SOLUTIONS ——

2011 2 6CCS3TSP/CS3TSP
1. String Matching

a. Name what type of string-matching algorithm should be used to search

many texts for a single pattern given first? What are the possible pre-

processing time and running time for k texts each of length n and a

pattern of length m?

Name what type of string-matching algorithm should be used to search

for many patterns in a single text given first? What are the possible

preprocessing time and running time for k patterns each of length m
and a text of length n?

[10 marks]

Answer

In the first case the pattern can be preprocessed once for searching all texts.

[2 marks] The preprocessing time can be done in O(m) time and all searches

in O(kn) time. [3 marks]

In the second case the text is to be preprocessed (indexed). [2 marks] The pre-

processing time can be done in O(n) or O(n log a) time (a is the alphabet size)

and all searches in O(km) or O(km log a) time depending on the representation

of the index. [3 marks] [unseen]

b. Let x be the string abaababa. Give its Border table B (B[i] is the

maximal length of borders of x[0 . . i− 1]), its Period table P (P [i] is the

smallest period of x[0 . . i−1]), its MP next table, and its KMP next table.

[10 marks]

Answer

0 1 2 3 4 5 6 7 8

a b a a b a b a
B -1 0 0 1 1 2 3 2 3

P – 1 2 2 3 3 3 5 5

MP next -1 0 0 1 1 2 3 2 3

KMP next -1 0 -1 1 0 -1 3 -1 3

[3 marks for each row 1,2,4; 1 mark for row 3] [unseen]

c. Give the failure table of the trie of abaababa:

0 1
a

2
b

3
a

4
a

5
b

6
a

7
b

8
a

[10 marks]

Answer

0 1 2 3 4 5 6 7 8

F – 0 0 1 1 2 3 2 3

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2011 3 6CCS3TSP/CS3TSP
d. Give the optimised failure function of the trie of sub-question 1.c.

[10 marks]

Answer

0 1 2 3 4 5 6 7 8

Opt F – 0 – 1 0 – 3 – 3

[unseen]

e. Design the String Matching Automaton of the string x of sub-question 1.b,

SMA(abaababa), on the alphabet A = {a,b}.

[10 marks]

Answer

0

b

1
a

a

2
b

b

3
a

b

4
a

a

5
b

b

6
a

a

7
b

b

8
a

b

a

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2011 4 6CCS3TSP/CS3TSP
2. Doubling

Let y be a fixed text of length n.

For a word u and a positive integer k, Firstk(u) is u if |u| ≤ k and is u[0 . . k−1]
otherwise. The integer Rk[i] is the rank of Firstk(y[i . . n−1]) inside the sorted

list of all Firstk(u) where u is a nonempty suffix of y (ranks are numbered

from 0).

a. Give R1, R2, R3, R4, R8 for the word abaababaab, assuming a < b.

[10 marks]

Answer

i 0 1 2 3 4 5 6 7 8 9

y[i] a b a a b a b a a b

R1[i] 0 1 0 0 1 0 1 0 0 1

R2[i] 1 3 0 1 3 1 3 0 1 2

R3[i] 2 4 0 2 5 2 4 0 1 3

R4[i] 3 6 1 4 7 3 6 0 2 5

R8[i] 4 8 1 5 9 3 7 0 2 6

[2 marks for each row] [unseen]

b. State the doubling lemma and prove it.

[10 marks]

Answer

Lemma 1 Rank2k[i] is the rank of the pair (Rankk[i],Rankk[i+k]) in the sorted

list of these pairs.

[5 marks] [bookwork]

Proof. Let i be a position on y and let u = First2k(y[i . . n−1]). Let j be a position

on y and let v = First2k(y[i . . n− 1]). We show that u ≤ v, which is equivalent

to Rank2k[i] ≤ Rank2k[j], iff (Rankk[i],Rankk[i+ k]) ≤ (Rankk[j],Rankk[j + k]).

First case: Firstk(u) < Firstk(v). This is equivalent to Rankk[i] < Rankk[j] so

the result holds in this case.

Second case: Firstk(u) = Firstk(v). This is equivalent to Rankk[i] = Rankk[j].
Then the comparison between u and v depends only on the second halves of

these words; in other terms, Rank2k[i] ≤ Rank2k[j] is equivalent to Rankk[i +
k] ≤ Rankk[j + k]. [5 marks] [unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2011 5 6CCS3TSP/CS3TSP
c. Describe an efficient algorithm to compute R2k from Rk. What is its

running time?

[10 marks]

Answer

Two steps: first sort positions i according to the pairs (Rk[i], Rk[i + k]); then

assign the same R2k rank to positions associated with the same pair. [5 marks]

First step can be implemented by bucket sort (count sort) in linear time; sec-

ond step is obvious and runs also in linear time. [5 marks]

[bookwork]

d. Apply your algorithm of sub-question 2.c to compute R8 from R4 on the

string of Question 2.a.

[10 marks]

Answer

List of positions with their pairs:

0(3, 7), 1(6, 3), 2(1, 6), 3(4, 0), 4(7, 2), 5(3, 5), 6(6,−1), 7(0,−1), 8(2,−1), 9(5,−1) [4

marks]

Sorted according to pairs:

7(0,−1), 2(1, 6), 8(2,−1), 5(3, 5), 0(3, 7), 3(4, 0), 9(5,−1), 6(6,−1), 1(6, 3), 4(7, 2) [2

marks]

Assignment of new ranks to positions:

7 : 0, 2 : 1, 8 : 2, 5 : 3, 0, 4, 3 : 5, 9 : 6, 6 : 7, 1 : 8, 4 : 9. [4 marks]

[unseen]

e. Define the two arrays SUF and LCP composing the Suffix Array of the

string y. Using the result of Question 2.c, give the running time of the

induced algorithm to compute the array SUF. Justify your answer.

[10 marks]

Answer

The array SUF contains the permutation of suffix positions in increasing order

of the suffixes:

y[SUF[0] . . n− 1] < y[SUF[1] . . n− 1] < . . . < y[SUF[n− 1] . . n− 1]

and the LCP array is defined by:

LCP[i] = |lcp(y[SUF[i− 1] . . n− 1], y[SUF[i] . . n− 1])|

where lcp(u, v) is the longest common prefix of u and v. [5 marks]

The runtime of the induced algorithm is O(n× logn) because there are ⌈logn⌉
steps and each step can be implemented to run in O(n) from answer to Ques-

tion 2.c. [5 marks]

[bookwork]

SEE NEXT PAGE

—— SOLUTIONS ——

2011 6 6CCS3TSP/CS3TSP
3. Suffix structures

In this question we consider the string z = abaababa.

a. Design the Suffix trie of the word z.

Give an example of a word of length n on the alphabet {a, b} having a

Suffix trie of size Ω(n2).

[10 marks]

Answer

a

a b a b a

b a a b a b a

b a
b

a a b a b a

b a

[5 marks] [unseen]

The trie of the word an/4bn/4an/4bn/4, for two distinct letters a and b, has

at least n/4 branches each of them having n/4 nodes. Which gives at least

(n/4)2 = Ω(n2) nodes. [5 marks] [in lectures]

b. Design the Suffix tree of z. What are the properties characterising the

Suffix tree of a non-empty string y? Describe how to get the Suffix tree

of y from its Suffix trie.

[10 marks]

Answer

a

ababa

ba ababa
ba

ba
ababa

ba

[5 marks] [unseen]

The suffix tree of y is a digital tree in which edges are labelled by non-empty

strings. The label of a path from the root to a terminal node is a suffix of y and

all the suffixes of y appear as such. Edges outgoing a given node have labels

starting with different letters. No node has only on outgoing edge. [bookwork]

Each node having only one outgoing edge in the suffix trie should be deleted to

get the suffix tree, and edges should be labelled accordingly. For edges (p, u, q)
and (q, a, r) where u is a word, a a letter and q has no other outgoing edge, it

is deleted with the two edges, and the new edge (p, ua, r) is created. [5 marks]

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2011 7 6CCS3TSP/CS3TSP
c. What is the Suffix automaton of a non-empty string y? Design the

Suffix automaton of the string z. Which algorithm produces the Suffix

automaton of a string y from its Suffix trie?

[10 marks]

Answer

a b a a b a b a

a b

b

[5 marks] [unseen]

The Suffix automaton of y is obtained by minimising its suffix trie. [5 marks]

[bookwork]

d. Describe how to discover if a pattern x of length m occurs in a string

y using the Suffix automaton of y. Discuss the running time of the

method with respect to the implementation of the automaton.

[10 marks]

Answer

To discovering if x occurs in y we just have to follow the path labelled by x
in the Suffix automaton. If the path does not exist, x does not occur in y.

Otherwise it occurs. [5 marks]

If the automaton is represented by a transition (goto) table, each branching

from a state takes constant time, which leads to O(m) time. If the automaton

is represented by successor lists it takes O(m log a), where a is the number of

letter in the alphabet, because the automaton is deterministic and then there

are no more than a edges outgoing a given state; the edges can be arranged in

a balanced tree to get O(log a) for branching. [5 marks] [mostly unseen]

e. Let us assume that string x of length m occurs in string y of length n.

Describe how to find all the positions of x in y using the Suffix automa-

ton of y.

[10 marks]

Answer

Let q be the state at the end of the path labelled by x from the initial state in

the Suffix automaton of y. The get all the positions of x in y, we have to follow

all the paths leading to a terminal state from q.

A path of length ℓ gives an occurrence of x at position n−m− ℓ in y.

[unseen]

FINAL PAGE

