
—— SOLUTIONS ——

King’s College London
UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a
degree. Examinations are governed by the College Regulations under the authority
of the Academic Board.

Enter your candidate number in the box provided above

and on the answer book(s) provided. Do this now.

MSc / MSci EXAMINATION

7CCSMTSP/CSMTSP – TEXT SEARCHING AND PROCESSING

MAY 2009

TIME ALLOWED: TWO HOURS.

ANSWER THREE OF THE FIVE QUESTIONS.

NO CREDIT WILL BE GIVEN FOR ATTEMPTING ANY FURTHER QUESTIONS.

ALL QUESTIONS CARRY EQUAL MARKS.

THE USE OF ELECTRONIC CALCULATORS IS NOT PERMITTED.

BOOKS, NOTES OR OTHER WRITTEN MATERIAL MAY NOT BE BROUGHT

INTO THIS EXAMINATION.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

TURN OVER WHEN INSTRUCTED

 2009 UNIVERSITY OF LONDON

—— SOLUTIONS ——

2009 2 7CCSMTSP/CSMTSP

1. Borders and overlaps

Given a word x = x[0 . . m− 1], its Border table is defined by: Border [0] = −1,

and Border [j] is the maximal length of (proper) borders of x[0 . . j − 1], for

0 < j ≤ m.

a. Give the Border table associated with the word aaabaaababa.

[10 marks]

Answer

i 0 1 2 3 4 5 6 7 8 9 10 11
x[i] a a a b a a a b a b a

Border[i] −1 0 1 2 0 1 2 3 4 5 0 1

[unseen]

b. Design, and describe using pseudo-code, an algorithm that computes

the Border table of a word x of length m in time O(m).

[10 marks]

Answer

COMPUTE BORDERS(string x; integer m)
1 Border[0]← −1
2 for i← 0 to m− 1
3 do j ← Border[i]
4 while j ≥ 0 and x[i] 6= x[j]
5 do j ← Border[j]
6 Border[i + 1]← j + 1
7 return Border

[10 marks]

[bookwork]

c. Give a tight upper bound on the number of symbol comparisons ex-

ecuted during a run of the algorithm of Question 1.b, and prove the

bound.

[10 marks]

Answer

The number of symbol comparisons is bounded by 2m. [5 marks]

The running time is proportional to the number of symbol comparisons done

at Line 4. Each positive comparison leads to an increment of variable i which

values are in increasing order. Each negative comparison leads to an incre-

ment of expression i− j which values are in increasing order. So, there are at

most 2m comparisons, which proves the result. [5 marks]

[bookwork]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 3 7CCSMTSP/CSMTSP

d. Let x and y be two strings on the alphabet {a,b}. Show how to find the

positions of the occurrences of x in y using the Border table associated

with the string xcy (c is a letter different from a and b).

[10 marks]

Answer

Note that Border [i] ≤ |x| because the letter c does not appear in y. If a posi-

tions i on xcy is such that Border [i] = |x| then x is a suffix of xcy[0 . . i− 1] and

then of y[0 . . i− 2|x| − 1]. So, x occurs in y at position i− |x|. [5 marks]

Conversely, if x occurs in y at position j, then x is a border of xcy[0 . . i− 1] for

i = j + |x| because the border cannot be longer than x. Thus Border [i] = |x|. [5

marks]

Conclusion: the condition Border [i] = |x| can be used to signal occurrences of

x in y. [unseen]

e. The overlap between x and y, ov(x, y), is the longest word that is both a

prefix of x and a suffix of y. How would you find ov(x, y) using the table

Border associated with the string xcy? How would you do it using the

table Border associated with the string x?

[10 marks]

Answer

Let k = Border [|x| + |y|+ 1], then ov(x, y) = x[0 . . k − 1]. [5 marks]

With the table Border associated with the string x, apply MP algorithm until

j = |y|; then ov(x, y) = x[0 . . i− 1]. [5 marks] [unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 4 7CCSMTSP/CSMTSP

2. Dictionary-Matching Automaton

Let Σ be the alphabet {a, b, c} and X be a finite set of strings of Σ∗. The

dictionary-matching automaton of X over Σ is denoted by D(X).

a. Draw the trie of the set {aa,abaabba,abb,bba}. Mark its terminal

states.

[5 marks]

Answer

a

a

b a
a b b a

b
b

b a
[unseen]

b. Define the notion of a failure link on a state (node) of the trie of X.

Draw the implementation with failure links of the dictionary-matching

automaton D({aa,abaabba,abb,bba}). Mark its terminal states.

[10 marks]

Answer

Let p be a state of the trie of X distinct from the root. Let u ∈ Σ+, be the label

of the path from the root to state p. Then the failure state f(p) of state p is the

state of the trie whose path from the root is labelled by the longest possible

proper suffix of u.

[bookwork]

a

a

b a
a b b a

b
b

b a
[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 5 7CCSMTSP/CSMTSP

c. Describe in pseudo-code the next-state function for the implementation

with failure links of D(X).

[10 marks]

Answer

NextState(p, a)
if there is an edge (p, a, q) in the trie

return q
else if f(p) is defined

return NextState(f(p), a)
else return the root of the trie

[bookwork]

d. What data structure would you use to implement a state of the dictio-

nary-matching automaton?

[10 marks]

Answer

For each node in the automaton, one can use a structure comprising two point-

ers, one for the failure link and one for the list of next nodes defined by the

transition function, a boolean field to mark terminal states, and possibly a

field for storing some data associated with the state (for example, the letter

labelling the incoming edge).

[unseen]

e. Describe in your own words or in pseudo-code how the failure links of

the implementation of a dictionary-matching automaton can be com-

puted. What are the terminal states of the automaton?

[15 marks]

Answer

The computation is done top-down in a width-first traversal of the trie. The

root has no failure link. The failure target of the children of the root is the

root.

Assume that we want to compute the failure link of node q (the failure links

of states at a lower level have already been computed). Also assume that the

parent of q is the node p and that the arc connecting the nodes p and q is

labelled by the letter a. Then, the failure link f(q) of the node q is given by

f(q) = NextState(f(p), a) if f(p) is defined (where NextState is the function

described in 2.c), otherwise f(q) is the root.

The set of terminal states comprises the terminal states of the trie and states

q for which f(q) is a terminal state.

[bookwork]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 6 7CCSMTSP/CSMTSP

3. BM-Horspool

Let x be a string of length m, x = x[0 . . m− 1].

a. The DA table of a string implements the bad-character rule for the BM

algorithm. How do you define the DA table for the string x? What is

the length of the shift inferred from DA when the rule applies after

comparing the text symbol y[j] and the pattern symbol x[i]?

[10 marks]

Answer

DA[σ] = min{|z| > 0 | σz suffix of x} ∪ {|x|},
shift = DA[y[j]]−m + i + 1.

[bookwork]

b. On the alphabet {a,b,c,d}, give the DA table associated with the word

x = acbabaaba

[5 marks]

Answer

a a b c d
DA[a] 2 1 7 9

[unseen]

c. Describe in pseudo-code the computation of the DA table for the word

x and the alphabet A.

[15 marks]

Answer

COMPUTE DA(string x; integer m)

for all a in A do

DA[a] = m
for i←− 0 to m− 2 do

DA[x[i]] = m− i− 1
return DA

[bookwork]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 7 7CCSMTSP/CSMTSP

d. Describe in pseudo-code a string-matching algorithm, searching for x
in y, using the DA table of x.

[10 marks]

Answer

BMH(string x, y; integer m, n);

pos ←− 0
while pos ≤ n−m do

i←− m− 1
while i ≥ 0 and x[i] = y[pos + i] do

i←− i− 1
if i = −1 then

output(’x occurs in y at position ’, pos)

pos ←− pos + max{1, DA[y[pos + i]]−m + i + 1}

[unseen]

e. What is the minimum and the maximum number of symbol compar-

isons for the algorithm of Question 3.d applied to a text of length n and

pattern of length m?

[5 marks]

Consider the pattern x = acbabaaba of Question 3.a. Give a text

y on the alphabet {a,b,c} for which the number of symbol compar-

isons equals the minimum number of symbol comparisons you have

just given. Give a text y on the alphabet {a,b,c} for which the number

of symbol comparisons equals the maximum number of symbol compar-

isons you have just given.

[5 marks]

Answer

Minimum is n/m, maximum is m(n−m + 1).
Text cccccccccc.. gives the minimum (around n/7) and text (bcbabaaba)k

gives the maximum.

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 8 7CCSMTSP/CSMTSP

4. Suffix Array and Suffix Tree

a. Define the data structure called the Suffix Array of a string y of length n.

[10 marks]

Answer

It is composed of two tables p and LCP such that

y[p[0] . . n− 1] < y[p[1] . . n− 1] < . . . < y[p[n− 1] . . n− 1]
and LCP[i] = |lcp(y[p[i− 1] . . n− 1], y[p[i] . . n− 1])|.

[bookwork]

b. Give the Suffix Array of the string y = abaabbabb.

[10 marks]

Answer

i 0 1 2 3 4 5 6 7 8

y[i] a b a a b b a b b
p[i] 2 0 6 3 8 1 5 7 4

LCP[i] 0 1 2 3 0 1 2 1 2

[unseen]

c. How do you compute the maximal length of prefixes common to the

suffixes of y at positions i and j (i < j) using its Suffix Array? What is

the running time of your solution?

[10 marks]

Answer

The value is min{LCP[k] | i < k ≤ j}. It can be computed by traversing the

sub-array LCP[i+1 . . j] in time O(j− i). If the pair (i, j) is a pair of the binary

search tree the running time is O(log(j − i)).

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 9 7CCSMTSP/CSMTSP

d. Design the Suffix Tree of the string y = abaabbabb without the suffix

links but with the final states.

[10 marks]

Answer

a

abbabb

b
aabbabb

b abb

b
a

abbabb

bb

b abb

[unseen]

e. Describe in your own words how to compute the LCP (longest common

prefix) table associated with the Suffix Array of y using its suffix tree.

[10 marks]

Answer

The depth of the deepest internal node between the consecutive suffixes is

their LCP. Its computation is done during a traversal of the tree in which

letters are processed in lexicographic order.

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 10 7CCSMTSP/CSMTSP

5. Word transformation

Let x = x[0 . . m − 1] be a word of length m. For an integer i, 0 ≤ i < m, the

i-rotation of x is the word x[i . . m− 1]x[0 . . i− 1]. We assume in this question

that the m rotations of x are pairwise distinct and that x is the smallest of

them according to the lexicographic order.

The BW matrix of x, denoted by BW (x), is the m×m matrix whose lines are

the rotations of x in lexicographic order.

The BW transform of x, denoted by L(x), is the last column of the BW matrix.

(It is a word of length m.)

a. Give the BW matrix of the word x = aabbab. Give L(aabbab).

[5 marks]

Answer

BW (aabbab) =

















a a b b a b

a b a a b b

a b b a b a

b a a b b a

b a b a a b

b b a b a a

















L(aabbab) = bbaaba [unseen]

b. How would you compute the BW matrix of x considering the Suffix

Array of the string xx?

What would be the running time of the algorithm both if the alphabet

is bounded and if it is unbounded?

[15 marks]

Answer

Rotations of x are segments of length m of the word x′ = x[0]x[1] · · ·x[m −
1]x[0]x[1] · · ·x[m − 1]. Sorting the suffixes of this word gives the answer. [5

marks]

On an unbounded alphabet, suffixes can be sorted either by using the suffix

tree or the suffix automaton of x′, which is done in O(m× log a) time, where a
is the size of the alphabet of x. [5 marks]

On a bounded alphabet, suffixes can be sorted with the suffix array of x′ which

requires O(m) time. [5 marks] [unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2009 11 7CCSMTSP/CSMTSP

c. Let a be a letter and u, v be two different strings of the same length.

Prove that au < av if and only ua < va.

[10 marks]

Answer

Let w be the longest common prefix of u and v. Since u 6= v, w is a proper prefix

of u and of v. Then, u = wbu′ and v = wcv′ for some letters b, c and some words

u′, v′. The condition au < av is equivalent to b < c, because aw is the longest

prefix of au and av, which is equivalent to u < v and to ua < va, because none

of u and v is a prefix of the other. [unseen]

d. Let F (x) be the first column of BW (x). Let a be a letter occurring at two

positions i and j on x: a = x[i] = x[j]. Show that the two occurrences

a appear in the same relative order in F (x) and in L(x). [Hint: use

Question 5.c.]

[10 marks]

Answer

The occurrences of a in F (x) are associated with two rotations au = x[i]u and

av = x[j]v of x. If x[i]u < x[j]v, by Question 5.c, we have ux[i] < vx[j]. If

x[i]u > x[j]v, by Question 5.c, we have ux[i] > vx[j]. Therefore occurrences of

a appear in the same relative order in F (x) and in L(x). [unseen]

e. Note that the letters in F (x) are in non-decreasing order and that, if

L(x)[k] = x[i], 0 ≤ i < m − 2, then x[i + 1] = F (x)[k]. Describe how to

compute x from L(x).

[10 marks]

Answer

First compute F (x) by sorting the letter of L(x).
The first letter of x is L(x)[0].
Assume that the letter x[i] has been computed. The next letter x[i + 1] can

be computed as follows: let L(x)[k] be the letter having the same rank among

occurrences of x[i]’s in L(x) as its rank among occurrences of x[i]’s in F (x);
then x[i + 1] = F (x)[k]. [unseen]

FINAL PAGE

