
—— SOLUTIONS ——

King’s College London
This paper is part of an examination of the College counting towards the award of a
degree. Examinations are governed by the College Regulations under the authority
of the Academic Board.

Enter your candidate number in the box provided above

and on the answer book(s) provided. Do this now.

MSc / MSci EXAMINATION

7CCSMTSP/CSMTSP – TEXT SEARCHING AND PROCESSING

MAY 2008

TIME ALLOWED: TWO HOURS.

ANSWER THREE OF THE FIVE QUESTIONS.

NO CREDIT WILL BE GIVEN FOR ATTEMPTING ANY FURTHER QUESTIONS.

ALL QUESTIONS CARRY EQUAL MARKS.

THE USE OF ELECTRONIC CALCULATORS IS NOT PERMITTED.

BOOKS, NOTES OR OTHER WRITTEN MATERIAL MAY NOT BE BROUGHT

INTO THIS EXAMINATION.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

TURN OVER WHEN INSTRUCTED

 2008 King’s College London

—— SOLUTIONS ——

2008 2 7CCSMTSP/CSMTSP
1. String overlaps

The overlap between two strings y and x, denoted by ov(y, x), is the longest

suffix of y that is also a prefix of x.

a. Choose a string-matching algorithm and describe how it can be used to

compute ov(y, x). What is the running time of the computation corre-

sponding to your choice?

[15 marks]

Answer

Any sequential string-matching algorithm searching y for x can be used.

Use of MP or KMP algorithm: stop the search when the algorithm has just

read the last letter of y. Then, if i is the index on x at that time, ov(y, x) =
x[0 . . i− 1].

Running time: O(|x|+ |y|).

Use of the string-matching automaton of x: parse y with the automaton up to

the last symbol. The corresponding state of the automaton is associated with

a prefix of x that is precisely ov(y, x).

Running time: O(|x|×cardA+|y|) if the complete automaton is used; O(|x|+|y|)
if an implementation by failure link or default state of the automaton is used.

[unseen]

b. Describe how to compute ov(y, x) in time O(min{|y|, |x|}) using only

O(min{|y|, |x|}) extra memory space (space in addition to the space used

for the input).

[10 marks]

Answer

If |x| ≤ |y|, the processing (or parsing) of y can start at position |y| − |x| on y

because the overlap, as a suffix of y, does not start before this position. Doing

so, the running time to preprocess x is O(|x|) as is the time to process the suffix

of y; giving O(|x|), that is, O(min{|y|, |x|}) running time. Extra space (for the

border table or the automaton implemented with failure links or default state)

is O(|x|), that is, O(min{|y|, |x|}) memory space.

If |x| > |y|, only the prefix of x of length |y| needs to be preprocessed because

the overlap cannot be longer. Doing so the running time to preprocess the pre-

fix of x is O(|y|) as is the time to process y; giving O(|y|), that is, O(min{|y|, |x|})
running time again.

Extra space (for the border table or the automaton implemented with failure

links or default state of the prefix of x) is O(|y|), that is, O(min{|y|, |x|}) mem-

ory space again.

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 3 7CCSMTSP/CSMTSP
c. Design the common suffix tree of the strings x1 = aba, x2 = bab, and

x3 = aabb.

Sketch how to build the common suffix tree of a finite set of nonempty

strings X = {x1, x2, . . . , xk}, k > 0, in which each terminal state is

labelled by the set of indices of strings having a suffix associated with

the state.

[15 marks]

Answer

1, 2, 3

1

3

2

1

3

2, 3

1 2

3

a

a
b b

b
a

b

b
a

b

b

To build the common suffix tree, we first build the suffix tree of x1. Then,

each string is inserted in the current tree in a similar process as for the initial

construction of the tree.

When a state p is met having a suffix link to a terminal state q, the set of

string indices of q is added to the one of p.

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 4 7CCSMTSP/CSMTSP
d. Given a finite set of nonempty strings X = {x1, x2, . . . , xk}, k > 0, de-

scribe how to compute the overlaps between all pairs (xi, xj), i 6= j,

using the common suffix tree of the strings in X.

Let N = Σk
i=1
|xi|. What is the running time of your procedure?

[10 marks]

Answer

Build the common suffix tree of the strings in X ; running time: O(N × log a)
where a is the size of the alphabet.

For each string xj , follow the branch of the tree labelled by xj (from leaf to

root to avoid branching). If a terminal state is met during the traversal, for

each index i of its set, i 6= j, update ov(xi, xj) to the length of the prefix of

xi corresponding to the state. The latest update of ov(xi, xj) gives the correct

value. Update time is O(k). The running time of this step is O(k ×N).

The total running time is then O(N × (k + log a)).

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 5 7CCSMTSP/CSMTSP
2. Dictionary-Matching Automaton

Let Σ be the alphabet {a, b, c} and X be a finite set of strings of Σ∗. The

dictionary-matching automaton of X over Σ is denoted by D(X).

a. Draw the trie of the set ({aabbaba,aa,ab,bba}). Mark its terminal

states.

[5 marks]

Answer

a

a
b b a b a

b

b

b a
[unseen]

b. Define the notion of a failure link on a state (node) of the trie of X.

Draw the implementation with failure links ofD({aabbaba,aa,ab,bba}).
Mark its terminal states.

[10 marks]

Answer

Let p be a state of the trie of X distinct from the root. Let u ∈ Σ+, be the label

of the path from the root to state p. Then the failure state f(p) of state p is the

state of the trie whose path from the root is labelled by the longest possible

proper suffix of u.

[bookwork]

a

a
b b a b a

b

b

b a
[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 6 7CCSMTSP/CSMTSP
c. Describe in pseudo-code the next-state function for the implementation

with failure links of D(X).

[10 marks]

Answer

NextState(p, a)
if there is an edge (p, a, q) in the trie

return q

else if f(p) is defined

return NextState(f(p), a)
else return the root of the trie

[bookwork]

d. What data structure would you use to implement a state of the dictionary-

matching automaton?

[10 marks]

Answer

For each node in the automaton, one can use a structure comprising two point-

ers, one for the failure link and one for the list of next nodes defined by the

transition function, a boolean field to mark terminal states, and possibly a

field for storing some data associated with the state (for example, the letter

labelling the incoming edge).

[unseen]

e. Describe in your own words or in pseudo-code how the failure links of

the implementation of a dictionary-matching automaton can be com-

puted. What are the terminal states of the automaton?

[15 marks]

Answer

The computation is done top-down in a width-first traversal of the trie. The

root has no failure link. The failure target of the children of the root is the

root.

Assume that we want to compute the failure link of node q (the failure links

of states at a lower level have already been computed). Also assume that the

parent of q is the node p and that the arc connecting the nodes p and q is

labelled by the letter a. Then, the failure link f(q) of the node q is given by

f(q) = NextState(f(p), a) if f(p) is defined (where NextState is the function

described in 2.c), otherwise f(q) is the root.

The set of terminal states comprises the terminal states of the trie and states

q for which f(q) is a terminal state.

[bookwork]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 7 7CCSMTSP/CSMTSP
3. Lexicographically maximal suffix

Given a fixed word x = x[0 . . m− 1], for each integer i, 0 ≤ i < m, we denote

by si the position of the lexicographically maximal suffix of x[0 . . i] (prefix of

length i+1 of x), by pi the smallest period of x[si . . i], and by ri the remainder

(i−si+1)% pi. (Note that (i−si+1) is the length of x[si . . i], i−si+1 = q×pi+ri
for some positive integer q, and 0 ≤ ri < pi.)

a. Assuming that a < b, give the values of si, pi, and ri corresponding to

the word ababaababaababbb for all integer i ∈ [0, 15]

[10 marks]

Answer

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x a b a b a a b a b a a b a b b b

si 0 1 1 1 1 1 1 1 1 1 1 1 1 1 13 13
pi 1 1 2 2 2 5 5 5 5 5 5 5 5 5 1 1
ri 0 0 0 1 0 0 1 2 3 4 0 1 2 3 0 0

[unseen]

b. Let i ∈ [1,m− 1].
When x[i] = x[si−1 + ri−1], what are the values of si, pi, and ri as ex-

pressions of si−1, pi−1, and ri−1?

[5 marks]

When x[i] < x[si−1 + ri−1], show that si = si−1, pi = i − si−1 + 1, and

ri = 0.

[5 marks]

When x[i] > x[si−1 + ri−1], show that si ≥ i− ri−1.

[5 marks]

Answer

By definition of pi−1 and ri−1, the current maximal suffix x[si−1 . . i − 1] is of

the form uqv for two words u and v satisfying: |u| = pi−1, |v| = ri−1, and v is a

prefix of u. The positions si−1 stops to be the position of the current maximal

suffix only if the suffix starting at position x[i−ri−1] becomes lexicographically

larger or smaller than x[si−1 . . i − 1]. Comparing the letters x[i] and x[si−1 +
ri−1] gives the answer.

When x[i] = x[si−1 + ri−1], the periodicity continues; then, si = si−1, pi = pi−1,

and ri = ri−1 + 1 if ri−1 + 1 < pi−1 or ri = 0 otherwise.

When x[i] < x[si−1 + ri−1], all the suffixes of x[0 . . i] different from x[si−1 . . i]
are smaller than it without being a prefix of it. In particular, x[si−1 . . i] has no

nonempty border, which is equivalent to say that that its length is its smallest

period: pi = i− si−1 + 1. We also have si = si−1 and ri = 0.

When x[i] > x[si−1 + ri−1], the suffix x[i− ri−1 . . i] is larger than x[si−1 . . i] and

than all suffixes of x[0 . . i] starting at any position j, j < i − ri−1. Therefore

si ≥ i− ri−1.

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 8 7CCSMTSP/CSMTSP
c. Based on the three properties stated in Question 3.b, describe in pseudo-

code an algorithm for computing the maximal suffix of the word x, using

only a constant memory space in addition to the array used to store x.

[15 marks]

Answer

MaximalSuffix(x, m)

s← 0; p← 1; r ← 0; i← 1
while i < m do

if x[i] = x[s+ r] then

r ← if r = p then 0 else r + 1; i← i+ 1
elseif x[i] < x[s+ r] then

p← (i− s+ 1); r ← 0; i← i+ 1
else x[i] > x[s+ r] then

s← i− r; p← 1; r ← 0; i← s+ 1
return s

[unseen]

d. Analyse the running time of the algorithm you described in Question 3.c.

Justify your answer.

[10 marks]

Answer

The algorithm is in the answer of Question 3.c.

The value of the expression s + i strictly increases during each step of the

while loop: this is obvious if one of the first two conditions holds because the

value of s is unchanged while i is incremented by 1; this is also true when the

third condition holds because s is incremented by at least p, i is decremented

by r − 1, and r < p.

Therefore, since the initial value of s+i is 1 and the final value is smaller than

2m, the algorithm runs in time O(m).

[unseen]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 9 7CCSMTSP/CSMTSP
4. Doubling

Let y be a fixed text of length n.

For a word u and a positive integer k, Firstk(u) is u if |u| ≤ k and is u[0 . . k−1]
otherwise. The integer Rk[i] is the rank of Firstk(y[i . . n−1]) inside the sorted

list of all Firstk(u) where u is a nonempty suffix of y (ranks are numbered

from 0).

a. Give R1, R2, R3, R4, R8 for the word aababbabba, assuming a < b.

[10 marks]

Answer

i 0 1 2 3 4 5 6 7 8 9

y[i] a a b a b b a b b a

R1[i] 0 0 1 0 1 1 0 1 1 0

R2[i] 1 2 3 2 4 3 2 4 3 0

R3[i] 1 2 5 3 6 5 3 6 4 0

R4[i] 1 2 5 3 7 5 3 6 4 0

R8[i] 1 2 7 4 9 6 3 8 5 0

[unseen]

b. State the doubling lemma and prove it.

[15 marks]

Answer

Lemma 1 Rank2k[i] is the rank of the pair (Rankk[i],Rankk[i+k]) in the sorted

list of these pairs.

Proof. Let i be a position on y and let u = First2k(y[i . . n−1]). Let j be a position

on y and let v = First2k(y[j . . n− 1]). We show that u ≤ v, which is equivalent

to Rank2k[i] ≤ Rank2k[j], iff (Rankk[i],Rankk[i+ k]) ≤ (Rankk[j],Rankk[j + k]).

First case: Firstk(u) < Firstk(v). This is equivalent to Rankk[i] < Rankk[j] so

the result holds in this case.

Second case: Firstk(u) = Firstk(v). This is equivalent to Rankk[i] = Rankk[j].
Then the comparison between u and v depends only on the second halves of

these words; in other terms, Rank2k[i] ≤ Rank2k[j] is equivalent to Rankk[i +
k] ≤ Rankk[j + k].

[bookwork]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 10 7CCSMTSP/CSMTSP
c. Describe an efficient algorithm to compute R2k from Rk. What is its

running time?

[15 marks]

Answer

Two steps: first sort positions i according to the pairs (Rk[i], Rk[i + k]); then

assign the same R2k rank to positions associated with the same pair.

First step can be implemented by bucket sort (count sort) in linear time; sec-

ond step is obvious and runs also in linear time.

[bookwork]

d. Analyse the running time of the algorithm based on Question 4.c to

compute R1, R2, R4, . . . , R2k, where k is the smallest integer satisfying

the inequality n ≤ 2k. Justify your answer.

[10 marks]

Answer

It is O(n × logn) because there are ⌈logn⌉ steps and each step can be imple-

mented to run in O(n) from answer to Question 4.c.

[bookwork]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 11 7CCSMTSP/CSMTSP
5. Linear-time suffix sorting

Let y be a string of length n.

a. List the nonempty suffixes of the string abaabba in lexicographic order

assuming a < b.

[5 marks]

Answer

a,aabba,abaabba,abba, ba,baabba,bba.

[unseen]

b. Let P01 be the positions on y of the form 3q or 3q + 1. Let P2 be the

positions on y of the form 3q + 2. Describe the four steps of the Skew

algorithm to sort the suffixes of y.

[20 marks]

Answer

1. Sort the position in P01 according to their associated 3-grams. Let t[i] be

the rank of i in the sorted list.

2. Recursively sort the suffixes of t[0]t[3] . . . t[1]t[4] For a position i in P01,

let s[i] be the rank of its associated suffix in the sorted list of them, L01.

3. Sort the positions j in P2. Let L2 be the sorted list.

4. Merge lists L01 and L2.

[in lectures, 5 marks for each step]

c. Let L01 be the list of positions of P01 sorted according to their associated

suffixes; let s[i] be the rank of i in L01. Describe how to sort P2 in time

O(|P2|).

[10 marks]

Answer

Sorting elements j of P2 remains to sort their associated pairs (y[j], s[j + 1]).
This can be done in linear time using radix sort.

[in lectures]

SEE NEXT PAGE

—— SOLUTIONS ——

2008 12 7CCSMTSP/CSMTSP
d. In addition to L01 and the table s in Question 5.c, let L2 be the list of

positions of P2 sorted according to their associated suffixes. Describe

how to compare i in L01 with j in L2 in constant time.

[15 marks]

Answer

If i is of the form 3q, i + 1 and j + 1 are both in L01, and then s[i + 1] and

s[j + 1] are both defined. Therefore, comparing i and j amounts to compare

(y[i], s[i+ 1]) and (y[j], s[j + 1]).

If i is of the form 3q + 1, i + 2 and j + 2 are both in L01, and then s[i + 2] and

s[j + 2] are both defined. Therefore, comparing i and j amounts to compare

(y[i]y[i+ 1], s[i+ 2]) and (y[j]y[j + 1], s[j + 2]).

[in lectures, 10 marks]

In both cases the comparison is done in constant time.

[in lectures, 5 marks]

FINAL PAGE

