Suffix Trees

MaAXIME CROCHEMORE

King’s College London

Maxime.Crochemore@kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/mac/

M.C. 22/3/2011 1 Master-TSP-ST

Implementation of indexes

suffix of text

| | pattern |

Implementation with efficient data structures

* Suffix Trees
digital trees, PATRICIA tree (compact trees)

*x Suffix Automata or DAWG’s

minimal automata, compact automata
Implementation with efficient algorithm

* Suffix Arrays

binary search in the ordered list of suffixes

1\IC 22/3/2011 2 I\'IaStGI—TSP—ST

Suffixes

Text y € ¥*

*x Suff (y) = set of suffixes of y,
*x card Suff (y) = |y| + 1

% Suff (ababbb)

{ 1 4
ylif a b a
position
ababbb 0
b b b b 1
a bbb 2
b b b 3
b b 4
b D
€ 6 (empty string)
M.C- 27570m 3 Master-TSP-ST

Trie of suffixes

T (y) = digital tree which branches are labeled by suffixes of y
= tree-like deterministic automaton accepting Suff (y)

Nodes

identified with factors (subwords) of y

Terminal nodes

identified with suffixes of y, output = position of the suffix

Suffix trie of ababbb

M.C. 22/3/2011

1 Master-TSP-ST

Insertion of uw = y[i..n — 1] in the structure accepting longer suffixes

Forks I

x Head of u: longest prefix y[i .. k — 1] of w occurring before
* Tail of w: rest y[k..n — 1] of suffix u
* 1y = ababbb; head of abbb is ab; tail of abbb is bb
* Fork
any node that has outdegree 2 at least,
or that both has outdegre 1 and is terminal
* Note: the node associated with the head of u is a fork
initial node is a fork iff ¥ non empty
M.C. z27/20m1 5 Master-TSP-ST
Suffix link ‘I
% Function s,, suffiz link
if node p identified with factor av, a € ¥, v € X*
sy(p) = ¢, node identified with v
* Use
creates shortcuts used to accelerate heads computations
* Useful for forks only
undefined on initial node
*x Note: if p is a fork, so is s,(p)

M.C. 22/3/2011

6

Master-TSP-ST

Suffix Tree

Text y € 3* of length n
S(y) suffix tree of y: compact tric accepting Suff (y)

* Definition
tree obtained from the suffix trie of y by deleting all nodes having

outdegree 1 that are not terminal

* Edges labeled by factors of y instead of letters

* Number of nodes: no more than 2n (if n > 0)
because all internal nodes have two children at least

and there are at most n external nodes

M.C. 22/3/2011 7 Master-TSP-ST

Labels of edges

x Labels represented by pairs (pos, Length)

1 012345
yij a b a b b b

* Requires to have y in main memory

* Size of S(y): O(n)

1\IC 22/3/2011 8 I\'IaStGI—TSP—ST

Scheme of suffix tree construction

SUFFIX-TREE(Y)
1 T <~ NEW-TREE()
2 fori+0Oton—1do
3 find fork of head of y[i..n — 1] using
FAST-FIND from node s[parent] if needed
and then SLOW-FIND
k < position of tail of y[i..n — 1]
if £ <n then
q < NEW-STATE()
Adjlfork] < Adjlfork] U {((k,n — k), 0)}
output|q| < i

© 00 1 O Ot =

else output|[fork| < i

e}

10 outputlinitial] < n
11 return T

* Adjacency-list representation of labeled arcs

M.C. 22/3/2011 9 Master-TSP-ST

Straight insertion

* Insertion of suffix ababbb is done by letter comparisons from the

initial node (current node)

abababbb

1 01234567
yii/ a b a b a bbb

* It leads to create node 3 which suffix link is still undefined,
* and node 4 associated with suffix ababbb at position 2

* Head is abab, tail is bb

1\IC 22/3/2011 10 Master—TSP—ST

Slow find

SLOw-FIND(p, k)
1 while k£ < n and TARGET(p, y[k]) # NIL do

2 q < TARGET(p, y[k])

3 (7,0) < label(p, q)

4 i j

5 do i<+ i+1

6 k< k+1

7 while i < j + ¢ and k < n and yli] = y[k]
8 if ¢ <j+ /¢ then

9 Adjlp] + Adjlp] \ {((4,0), ¢)}

10 r < NEW-STATE()

11 Adjlp] < Adjlp] U{((j;i = 7))}
12 Adjr] = Adj[r]U{((j +i—Jj,t —i+]),q)}
13 return (r, k)

14 p<—q

15 return (p, k)

M.C. 22/3/2011

>

11

New suffix link I

Computing s[3] = s,(3) remains to find the node associated with bab

1 01234567
ylif, a b a b ab b b

Arc (0, (1,7),2) is split into (0, (1,3),5) and (5, (4,4),2)
Execution in constant time (here)

In general, iteration in time proportional to the number of nodes along the

path (and not proportional to the length of the string)

Master-TSP-ST

M.C. 22/3/2011

12

Master-TSP-ST

Fast find

FAsT-FIND(r, j, k)
1 > computes TARGET(r,y[j .. k — 1])
2 if j > k then
3 return r
4 else q + TARGET(r,y[j])
5 (7', 0) < label(r, q)
6 if j + ¢ <k then
7 return FAST-FIND(q, j + ¢, k)
8 else Adj[r] <= Adj[r]\ {((4',0),q)}
9 p < NEW-STATE()

10 Adjlr] <= Adjlr] U{((7, k = j),p)}
11 Adjlp] = Adjlpl UL((" + k =5, 6 =k +),)}
12 return p
M.C. 22/3/2011 13 Master-TSP-ST

Next insertion

* End of insertion of suffix babbb

[01234567
ylif, a b a b ab b b

+ Execution in constant time

* Head is bab, tail is bb

1\IC 22/3/2011 14 Master—TSP—ST

Scheme for insertion

% Scheme for the insertion of suffix y[i..n — 1] =u-v-w- 2z

initial fork
state a-u-v
O O
lal w] v l
7 ki k
la] U | v | w | z
[u] v [w]
fast slow
O O————>0—-0
initial sylr] D fork
state UV W

* It first computes p = TARGET(s[r],v) with FAST-FIND

(if necessary)

* then the fork of the current suffix with SLOw-FIND

I\IC 22/3/2011 15 I\'Iaster—TSP—ST

Scheme for insertion (continued)

%

General scheme for inserting the next suffix in the data structure

when the suffix target of the current fork is not defined

new fork

1\IC 22/3/2011 16 Master—TSP-ST

Complete algorithm

SUFFIX-TREE(y)

1 T + NEW-TREE()
2 slinitial[T]] + initial[T

3 (fork, k) < (initial[T}],0)

4 fori+0ton—1do

5 k + max{k,i}

6 if s[fork] = NIL then

7 r < parent of fork

8 (7, £) = label(r, fork)
9 if = initial[T] then

10 l—10—1

11 s[fork] < FAST-FIND(s[r], k — , k)

12 (fork, k) < SLOW-FIND(s[fork], k)

13 if £ <n then

14 q < NEW-STATE()

15 Adj[fork] <— Adj[fork] U {((k,n —k),q)}
16 output|q] + i

17 else output[fork] < i

18 output[initial] < n
19 return T

M.C. 22/3/2011

*

17 Master-TSP-ST

Running time

Scheme for insertion

i J k
l o] w] v [w] z
[u] v [w]
fast slow
O O——F—0———0

Main iteration increments ¢, which never decreases
[teration in FAST-FIND increments j, which never decreases
[teration in SLOW-FIND increments k, which never decreases

Basic operations run in constant time or in time O(log card %)

Theorem 1 Ezxecution of SUFFIX-TREE(y) = S(y) takes

O(ly| x logcard XJ) time in the comparison model.

M.C. 22/3/2011

18 Master-TSP-ST

