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2007 2 CSMTSP1. Table of prefixes

Given a word x = x[0 . .m − 1] the table Pref of prefixes of x is defined, for

0 ≤ i < m, by: Pref [i] = lcp(x, x[i . .m − 1]), which is the maximal length of

prefixes common to x and its suffix x[i . .m− 1].

a. Give the table Pref of the string abaababaabaab.

[10 marks]

Answer

i 0 1 2 3 4 5 6 7 8 9 10 11 12
x[i] a b a a b a b a a b a a b

Prefix[i] 13 0 1 3 0 6 0 1 5 0 1 2 0

[unseen]

b. How do you characterize the positions of occurrences of x in another

string y using the table Pref of the string x$y (assuming that the sym-

bol $ does not occur in x nor in y)?

[5 marks]

Answer

The string x occurs at position i on y iff Pref [i + |x|+ 1] = |x|. [unseen]

c. Let i be a position on x, 0 ≤ i < m. Let j = i + Pref [i]. What can you

say about the border of x[0 . . j − 1]?

[5 marks]

Answer

The word x[i . . j−1] is a prefix of x, then a border of x[0 . . j−1], but not always

the longest as shows the next example.

For x = abaaba and i = 5, 5 + Pref [5] = 5 + 1 = 6, x[5 . . 5] = a is a border of x,

but its (longest) border is aba. [unseen]

d. A square is a word of the form uu where u is a non-empty word. Indicate

how to find all squares that are prefixes of x using its table Pref .

[5 marks]

Answer

x[0 . . 2i− 1] is a square iff Pref [i] ≥ i. [unseen]

SEE NEXT PAGE
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2007 3 CSMTSPe. Let Pref be the table of prefixes of x. Let f, g, i be three positions on x
for which g = f + Pref [f ] and f < i < g. What is the value of Pref [i]
when Pref [i− f ] 6= g − i?

[10 marks]

Answer

If Pref [i− f ] < g − i, Pref [i] = Pref [i− f ]. If Pref [i− f ] > g − i, Pref [i] = g − i.
[unseen]

f. Write in your own words a linear-time algorithm to compute the table

Pref of x.

[15 marks]

Answer

Prefixes(x,m)

Pref [0] = m
g = 0
for i = 1 to m− 1 do

if(i < g and Pref [i− f ] 6= g − i)
Pref [i] = min{Pref [i− f ], g − i}

else

(f, g) = (i,max{g, i})
while(g < m and x[g] = x[g − f ])

g = g + 1
Pref [i] = g − f

return Pref

[unseen, 10 marks]

The algorithm runs in linear time since positive letter comparisons increase

the value of g that never decreases and goes from 0 to m, and negative com-

parisons leads to incrementing i whose values go from 0 to m − 1. [unseen, 5

marks]

SEE NEXT PAGE
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2007 4 CSMTSP2. String Matching Automaton

We consider the alphabet Σ = {a,b,c}. For a string x ∈ Σ∗, the string

matching automaton of x, SMA(x), is the minimal deterministic automaton

accepting the language Σ∗x. Its initial state is denoted by initial , its terminal

state by terminal , and its transition function by δ.

a. Design the string matching automata SMA(a), SMA(aa), SMA(aab),
SMA(aaba).

[10 marks]

Answer
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[in lectures]

b. Describe how to build efficiently the automaton SMA(xσ) from the au-

tomaton SMA(x) when x ∈ Σ∗ and σ ∈ Σ.

[15 marks]

Answer

Let r = δ(terminal , σ). The automaton is transformed by adding a new state s
and keeping the same transitions except that δ(terminal , σ) is set to s. Then,

the transitions from s reproduce those from r, that is: δ(s, τ) = δ(r, τ) for every

τ ∈ Σ. Finally, s becomes the only terminal state. [in lectures]

c. List all the forward arcs of SMA(aaba). List all its backward arcs.

[10 marks]

Answer

Its forward arcs are: (0,a, 1), (1,a, 2), (2,b, 3), (3,a, 4).

Its backward arcs are: (2,a, 2), (4,a, 2). [unseen]

SEE NEXT PAGE
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2007 5 CSMTSPd. Give a formal characterization of a backward arc of SMA(x). Prove that

for any string x the automaton SMA(x) has no more than |x| backward

arcs. For each positive integer m give a string of length m whose string

matching automaton has exactly m backward arcs.

[15 marks]

Answer

A backward arc of SMA(x) is of the form (u, τ, vτ) for some strings u, v prefixes

of x, where v is proper suffix of u. Therefore v is a border of u. Let p(u, τ) =
|u| − |v| be the corresponding period of u. [in lectures, 5 marks]

We show that two different backward arcs are associated with two different

periods. Let (u, τ, vτ) and (u′, τ ′, v′τ ′) be two backward arcs such that p(u, τ) =
p(u′, τ ′).

If v = v′ then |u| = |u′| and u = u′. We have also τ = x[|v|] = x[|v′|] = τ ′. Thus

the backward arcs coincide.

If v 6= v′, let us consider for example that v′ is a proper prefix of v. By definition

of the backward arc (u′, τ ′, v′τ ′) we have τ ′ = x[|v′|] 6= x[|u′|]. But since p(u, τ)
is a period of u we have τ ′ = x[|v′|] = x[|v′|+ p(u, τ)] = x[|v′|+ p(u′, τ ′)] = x[|u′|]
a contradiction.

Consequently p is injective, and since it has at most |x| possible values, there

are at most |x| possible backward arcs. [in lectures, 5 marks]

For each positive integer m, the automaton SMA(abm−1) has exactly m back-

ward arcs. [in lectures, 5 marks]

SEE NEXT PAGE
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2007 6 CSMTSP3. Linear-time suffix sorting

Let y be a string of length n.

a. List the nonempty suffixes of the string abababaa in lexicographic or-

der assuming a < b.

[5 marks]

Answer

a,aa,abaa,ababaa, abababaa,baa,babaa,bababaa. [unseen]

b. Let P01 be the positions on y of the form 3q or 3q + 1. Let P2 be the

positions on y of the form 3q + 2. Describe the four steps of the Skew

algorithm to sort the suffixes of y.

[20 marks]

Answer

1. Sort the position in P01 according to their associated 3-grams. Let t[i] be

the rank of i in the sorted list.

2. Recursively sort the suffixes of t[0]t[3] . . . t[1]t[4] . . .. For a position i in P01,

let s[i] be the rank of its associated suffix in the sorted list of them, L01.

3. Sort the positions j in P2. Let L2 be the sorted list.

4. Merge lists L01 and L2.

[in lectures, 5 marks for each step]

c. Let L01 be the list of positions of P01 sorted according to their associated

suffixes; let s[i] be the rank of i in L01. Describe how to sort P2 in time

O(cardP2).

[10 marks]

Answer

Sorting elements j of P2 remains to sort their associated pairs (y[j], s[j + 1]).
This can be done in linear time using radix sort. [in lectures]

d. In addition to L01 and s in Question 3.c, let L2 be the list of positions of

P2 sorted according to their associated suffixes. Describe how to com-

pare i in L01 with j in L2 in constant time. How long does it take?

[15 marks]

Answer

If i is of the form 3q, i + 1 and j + 1 are in L01, thus s[i + 1] and s[j + 1] are

defined. Comparing i and j amounts to compare (y[i], s[i+1]) and (y[j], s[j+1]).

If i is of the form 3q + 1, i + 2 and j + 2 are in L01, thus s[i + 2] and s[j + 2]
are defined. Comparing i and j amounts to compare (y[i]y[i + 1], s[i + 2]) and

(y[j]y[j + 1], s[j + 2]). [in lectures, 10 marks]

In both cases comparisons are done in constant time. [in lectures, 5 marks]

SEE NEXT PAGE
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2007 7 CSMTSP4. Suffix trie and suffix tree

a. Design the trie of suffixes of the word y = aabbaabb.

[10 marks]

Answer
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b. Give an example of a word of length n on the alphabet {a, b} having a

trie of suffixes of size Ω(n2).

[10 marks]

Answer

The trie of the word an/4bn/4an/4bn/4, for two distinct letters a and b, has at

least n/4 branches each of them having n/4 nodes. Which gives (n/4)2 = Ω(n2)
nodes. [in lectures]

c. Design an algorithm to compact the trie of suffixes of a word into its

suffix tree.

[20 marks]

Answer

The following procedure compacts a trie T , even if suffix links are defined on

states.

Compact(trie T )

r ← root of T
for each arc (r, a, p) do

Compact(subtrie of T rooted at p)

if(p has exactly one child)

q ← that child

u← label of (p, q)
replace p by q as child of r
set a · u as label of (r, q)

[unseen, 10 marks for correct tree traversal, 10 marks for correct node dele-

tion]

SEE NEXT PAGE
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2007 8 CSMTSPd. Describe possible data structures required to implement the suffix tree

of a word y.

[10 marks]

Answer

Each node or state p of the tree can be implemented as a structure containing

two pointers: the first pointer to implement the suffix link; the second pointer

to give access to the list of arcs outgoing state p. The list of arcs can contain

4-tuples in the form (a, i, ℓ, q) where a is a letter, i and ℓ are integers, and q is a

pointer to a state. They are such that (p, u, q) is an arc of the automaton with

a = y[i] and u = y[i . . i + ℓ− 1]. [unseen]

SEE NEXT PAGE
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2007 9 CSMTSP5. Suffix automaton

a. Design SA(ababbb), the suffix automaton of the string ababbb.

[10 marks]

Answer
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[unseen]

b. Indicate how to modify the automaton of question 5.a to get SA(ababbba).

[10 marks]

Answer
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[unseen]

c. Let p be a state of SA(y), for a string y. Let SAp(y) be the automaton

obtained from SA(y) by considering p as the only initial state. How do

you characterize the words accepted by the automaton SAp(y)?

[10 marks]

Answer

Words accepted by SAp(y) are suffixes of y that start with any of the words

labelling paths from the initial state to p. [unseen]

d. Let p be a state of SA(y) and let SAp(y) be as in question 5.c. Let X(p) be

the number of words accepted by SAp(y) considering that all its states

are terminal states. Give a recurrence relation to compute X(p) from

the X(q)s where the qs are targets of transitions from p.

[10 marks]

Answer

X[p] =

{

1 if deg(p) = 0,

1 +
∑

(p,v,q)∈F (|v| − 1 + X[q]) otherwise,

where F is the set of arcs of the automaton. [unseen]

SEE NEXT PAGE
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2007 10 CSMTSPe. What is the running time of an algorithm using the recurrence of ques-

tion 5.d to compute the number of strings accepted by SA(y)? Explain

why.

[10 marks]

Answer

The computation is done during a traversal of the automaton starting in the

initial state. Since no transition is executed, if the implementation is by lists

of successors, the running time is O(|y|). It is O(#A×n) if a transition matrix

is used. [unseen]
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