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Although data is stored in various ways, text remains the main form of
exchanging information. This is particularly evident in literature or linguistics
where data is composed of huge corpora and dictionaries. This applies as well
to computer science, where a large amount of data is stored in linear files. And
this is also the case in molecular biology where biological molecules can often
be approximated as sequences of nucleotides or amino acids. Moreover, the
quantity of available data in this fields tends to double every 18 months. This
is the reason why algorithms should be efficient even if the speed of computers
increases at a steady pace.

Pattern matching is the problem of locating a specific pattern inside raw
data. The pattern is usually a collection of strings described in some formal
language. In this chapter we present several algorithms for solving the problem
when the pattern is composed of a single string.

In several applications, texts need to be structured before being searched.
Even if no further information is known about their syntactic structure, it is
possible and indeed extremely efficient to build a data structure that support
searches. In this chapter we present suffix arrays, suffix trees, suffix automata
and compact suffix automata.

1.1 Pattern matching

String-matching consists in finding all the occurrences of a pattern x of length
m in a text y of length n (m,n > 0). Both strings x and y are built on a finite
alphabet V .

Applications require two kinds of solution depending on which string, the
pattern or the text, is given first. Algorithms based on the use of automata or
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combinatorial properties of strings are commonly implemented to preprocess
the pattern in time O(m) and solve the first kind of problem in time O(n).
The notion of indexes realized by trees or automata is used in the second kind
of solutions to preprocess the text in time O(n). The search of the pattern
can then be done in time O(m). This section only investigates algorithms of
the first kind.

String-matching is a very important subject in the wider domain of text
processing. String-matching algorithms are basic components used in imple-
mentations of practical software existing under most operating systems. More-
over, they emphasize programming methods that serve as paradigms in other
fields of computer science (system or software design). Finally, they also play
an important role in theoretical computer science by providing challenging
problems.

y c a c g t a t a t a t g c g t t a t a a t

x t a t a x t a t a

x t a t a

Fig. 1.1. There are three occurrences of x = tata in y = cacgtatatatgcgttataat.

Figure 1.1 shows the occurrences of the pattern x = tata in the text
y = cacgtatatatgcgttataat. The basic operations allowed for comparing
symbols are equality and inequality (= and 6=).

String-matching algorithms of the present section work as follows. They
scan the text through a window which size is generally equal to m. They first
align the left ends of the window and the text, then compare the symbols of
the window with the symbols of the pattern — this specific work is called an
attempt — and after a whole match of the pattern or after a mismatch they
shift the window to the right. They repeat the same procedure again until the
right end of the window goes beyond the right end of the text. This mechanism
is usually called the sliding window mechanism. A string-matching algorithm
is thus a succession of scan and shift. Figure 1.2 illustrates this notion.

We associate each attempt with the positions j and j + m− 1 in the text
when the window is positioned on y[j . . j + m − 1]: we say that the attempt
is at the left position j and at the right position j + m− 1.

The naive algorithm consists in checking, at all positions in the text be-
tween 0 and n−m, whether an occurrence of the pattern starts there or not.
Then, after each attempt, it shifts the pattern by exactly one position to the
right. It memorizes no information (see Figure 1.3). It requires no prepro-
cessing phase, and a constant extra space in addition to the pattern and the
text. During the searching phase the symbol comparisons can be done in any
order. The time complexity of this searching phase is O(m × n) (the bound
is met when searching for am−1b in an for instance). The expected number
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String-Matching(x, m, y, n)
1 put window at the beginning of y
2 while window on y do

⊲ scan
3 if window = x then

4 report it
⊲ shift

5 shift window to the right and
6 memorize some information for use during next scans and shifts

Fig. 1.2. Scan and shift mechanism for string-matching.

of symbol comparisons is 2n on a two-symbol alphabet, with equiprobability
and independence conditions.

Naive-Search(x, m, y, n)
1 j← 0
2 while j ≤ n−m do

3 i← 0
4 while i < m and x[i] = y[i + j] do

5 i← i + 1
6 if i = m then

7 Output(x occurs in y at position j)
8 j← j + 1

Fig. 1.3. The naive string-matching algorithm.

1.1.1 Complexities of the problem

The following theorems state some known results on the problem.

Theorem 1 ([GS83]). The search can be done optimally in time O(n) and

space O(1).

Theorem 2 ([Yao79]). The search can be done in optimal expected time

O( log m
m
× n).

Theorem 3 ([CHPZ95]). The maximal number of comparisons done during

the search is ≥ n + 9
4m

(n−m), and can be made ≤ n + 8
3(m+1) (n−m).

We now give lower and upper bounds on symbol comparisons with different
strategies depending on the access to the text:
Access to the whole text:
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• upper: 2n− 1 [MP70];
• lower: 4

3n [GG91].

Search with a sliding window of size m:

• lower: n + 9
4m

(n−m) [CHPZ95];
• upper: n + 8

3(m+1) (n−m) [CHPZ95].

Search with a sliding window of size 1:

• lower and upper: (2− 1
m

)n [Han93, BCT93];

The delay is defined as the maximum number of comparisons on each text
symbol:

• lower: min{1 + log2 m, card(V )} [Han93];
• upper: min{logΦ(m + 1), card(V )} [Sim89],

min{1 + log2 m, card(V )} [Han93] and
log min{1 + log2 m, card(V )} [Han96].

1.1.2 Methods

Actually, searching for the occurrences of a pattern x in a text y consists in
identifying all the prefixes of y that are elements of the language V ∗x (see
Figure 1.4).

x

� �prefix of y in V ∗x

Fig. 1.4. An occurrence of the pattern x in the text y corresponds to a prefix of y
in V ∗x.

To solve this problem there exist several methods of different types :

• Sequential searches: methods in this category adopt a window of size
exactly one symbol. They are well adapted to applications in telecom-
munication. They are based on efficient implementations of automata
[KMP77, Sim89, Han93, BCT93].

• Time-space optimal searches: these methods are mainly of theoretical
interest and are based on combinatorial properties of strings [GS83, CP91,
Cro92, GPR95, CGR99].

• Practically-fast searches: these methods are typically used in text edi-
tors or data retrieval software. They are based on combinatorics on words
and theory of automata and often use heuristics [BM77, Gal79, AG86,
CCG+94].
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1.1.3 Morris and Pratt algorithm

Periods and borders

For a non-empty string u, an integer p such that 0 < p ≤ |u| is a period of u
if any of these equivalent conditions is satisfied:

1. u[i] = u[i + p], for 0 ≤ i < |u| − p;
2. u is a prefix of some yk, k > 0, |y| = p;
3. u = yw = wz, for some strings y, z, w with |y| = |z| = p. The string w is

called a border of u: it occurs both as a prefix and a suffix of u.

The period of u, denoted by period(u), is its smallest period (it can be
|u|). The border of u, denoted by border(u), is its longest border (it can be
empty).

Example 1. u = abacabacaba

periods borders of u
4 abacaba

8 aba

10 a

11 empty string

The searching algorithm

The notions of period and border naturally lead to a simple on-line search
algorithm where the length of the shift is given by the period of the matched
prefix of the pattern. Furthermore the algorithm implements a memorization
of the border of the matched prefix of the pattern.

u

u

b

a

text y

pattern x

-�

period(u)
� �

border(u)

Fig. 1.5. A typical situation during a sequential search.

A typical situation during a sequential search is the following: a prefix
u of the pattern has been matched, a mismatch occurs between a symbol
a in the pattern and a symbol b in the text (a 6= b). Then a shift of length
period(u) = |u|−|border(u)| can be applied (see Figure 1.5). The comparisons
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are then resumed between symbols x[|border(u)|] of x and b in y (no backtrack
is necessary on the text y). The corresponding algorithm MP, due to Morris
and Pratt [MP70], is shown Figure 1.6. It uses a table MPnext defined by
MPnext[i] = |border(x[0 . . i− 1])| for i = 0, . . . ,m.

MP(x, m, y, n)
1 i← 0
2 j ← 0
3 while j < n do

4 while i = m or (i ≥ 0 and x[i] 6= y[j]) do

5 i← MPnext[i]
6 i← i + 1
7 j ← j + 1
8 if i = m then

9 Output(x occurs in y at position j − i)

Fig. 1.6. The Morris and Pratt string-matching algorithm.

Computing borders of prefixes

The table MPnext is defined by MPnext[i] = |border(x[0 . . i − 1])| for i =
0, . . . ,m. It can be computed by using the following remark: a border of a
border of u is a border of u. A border of u is either border(u) or a border of
it. It can be linearly computed by the algorithm presented in Figure 1.7. This
algorithm uses an index j that runs through decreasing lengths of borders.
The computation of the table MPnext proceeds as the searching algorithm, as
if y = x[1 . . m− 1].

Compute-MP-next(x, m)
1 MPnext[0]← −1
2 for i← 0 to m− 1 do

3 j ← MPnext[i]
4 while j ≥ 0 and x[i] 6= x[j] do

5 j ← MPnext[j]
6 MPnext[i + 1]← j + 1
7 return MPnext

Fig. 1.7. A linear time algorithm for computing the table MPnext for a string x
of length m.
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1.1.4 Knuth-Morris-Pratt algorithm

Interrupted periods and strict borders

For a fixed string x and a non-empty prefix u of x, w is a strict border of u if
both:

• w is a border of u;
• wb is a prefix of x, but ub is not.

An integer p is an interrupted period of u if p = |u| − |w| for some strict
border |w| of u.

Example 2. Prefix abacabacaba of abacabacabacc

interrupted periods strict borders of abacabacaba
10 a

11 empty string

The searching algorithm

The Morris-Pratt algorithm can be further improved. Consider a typical sit-
uation (Figure 1.5) where a prefix u of x has been matched and a mismatch
occurs between the symbol a in x and the symbol b in y. Then the shift in
the Morris-Pratt algorithm consists in aligning the prefix occurrence of the
border of u in x with its suffix occurrence in y. But if this prefix occurrence
in x is followed by the symbol a then another mismatched will occur with
the symbol b in y. An alternative solution consists in precomputing for each
prefix x[0..i − 1] of x the longest border followed by a symbol different from
x[i] for i = 1, . . . ,m. Those borders are called strict borders and then the
length of the shifts are given by interrupted periods. It changes only the
preprocessing of the string-matching algorithm KMP which is due to Knuth,
Morris and Pratt [KMP77].

Computing strict borders of prefixes

The preprocessing of the algorithm KMP consists in computing the table
KMPnext. KMPnext[0] is set to −1. Then for i = 1, . . . ,m− 1, k = MPnext[i]

KMPnext[i] =

{

k if x[i] 6= x[k] or if i = m,

KMPnext[k] if x[i] = x[k].

The table KMPnext can be computed with the algorithm presented Fig-
ure 1.8.
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Compute-KMP-next(x, m)
1 KMPnext[0]← −1
2 j ← 0
3 for i← 1 to m− 1 do

4 if x[i] = x[j] then

5 KMPnext[i]← KMPnext[j]
6 else KMPnext[i]← j
7 j ← KMPnext[j]
8 while j ≥ 0 and x[i] 6= x[j] do

9 j ← KMPnext[j]
10 j ← j + 1
11 KMPnext[m]← j
12 return KMPnext

Fig. 1.8. Preprocessing of the Knuth-Morris-Pratt algorithm.

1.1.5 Complexities of MP and KMP algorithms

Let us consider the algorithm given in Figure 1.6. Every positive comparisons
increase the value of j. The value of j runs from 0 to n − 1. Thus there
are at most n positive comparisons. Negative comparisons increase the value
of j − i because such comparisons imply a shift. The value of j − i runs
from 0 to n− 1. Thus there are at most n negative comparisons. Altogether,
the algorithm makes no more than 2n symbol comparisons. This gives the
following theorem.

Theorem 4. On a text of length n, MP and KMP string-searching algorithms

run in time O(n). They make less than 2n symbol comparisons.

The delay is defined as the maximum number of comparisons on one text
symbol.

Theorem 5. With a pattern of length m, the delay for MP algorithm is no

more than m. The delay for KMP algorithm is no more than logΦ(m + 1),
where Φ is the golden ratio, (1 +

√
5)/2.

Theorem 5 shows the advantage of KMP algorithm over MP algorithm. Its
proof relies on combinatorial properties of strings. The next section sketches
a further improvement.

1.1.6 Searching with an automaton

The MP and KMP algorithms simulate a finite automaton. It is possible to
build and use the string-matching automaton SMA(x) which is the smallest
deterministic automaton accepting the language V ∗x.

Example 3. SMA(abaa)
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0 1 2 3 4
a b a a

b a

b

b

a

b

Search for abaa in y = babbaabaabaabba:

y b a b b a a b a a b a a b b a

state 0 0 1 2 0 1 1 2 3 4 2 3 4 2 0 1

Two occurrences of x occur in y at (right) positions 8 and 11. This is given
by the fact that at these positions the search reaches the only terminal state
of the string-matching automaton (state 4).

Searching algorithm

The searching algorithm consists in a simple parsing of the text y with the
string-matching automaton SMA(x) (see Figure 1.9).

Search-with-an-automaton(x, y)
1 (Q, V, initial , {terminal}, δ) is the automaton SMA(x)
2 q ← initial

3 while not end of y do

4 a← next symbol of y
5 q ← δ(q, a)
6 if q = terminal then

7 report an occurrence of x in y

Fig. 1.9. Searching with an automaton.

Construction of SMA(x)

The on-line construction of the smallest deterministic automaton accepting
the language V ∗x actually consists in unwinding appropriate arcs. The fol-
lowing example presents one step of the construction.

Example 4. From SMA(abaa)

0 1 2 3 4
a b a a

b a

b

b

a

b
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to SMA(abaab)

0 1 2 3 4 5
a b a a b

b a

b

b

a

a

b

Updating SMA(abaa) to SMA(abaab) consists in storing the target state
of the transition from the terminal state 4 in SMA(abaa) labeled by b (the
new symbol): this state is 2. Then a new terminal state 5 is added and the
transition from 4 by b is redirected to 5 and transitions for all the symbols of
the alphabet from 5 go as all the transitions from 2: 5 by a leads to 3 since 2
by a leads to 3 (same for 5 by b leading to 0 since 2 by b leads to 0).

The complete construction can be achieved by the algorithm given in Fig-
ure 1.10.

automaton-SMA(x)
1 let initial be a new state
2 Q← {initial}
3 for each a ∈ V do

4 δ(initial , a)← initial

5 terminal ← initial

6 while not end of x do

7 b← next symbol of x
8 r ← δ(terminal , b)
9 add new state s to Q

10 δ(terminal , b)← s
11 for each a ∈ V do

12 δ(s, a)← δ(r, a)
13 terminal ← s
14 return (Q, V, initial , {terminal}, δ)

Fig. 1.10. The construction of the automaton SMA(x).

Significant arcs

We now characterize the number of significant arcs in the string-matching
automaton SMA(x).
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Example 5. Complete automaton SMA(ananas):

0 1 2 3 4 5 6
a n a n a s

n,s a

s

n,s

a

s

n,s

a

n

a

n,s

In such an automaton we distinguish two kinds of arcs:

• Forward arcs: arcs that spell the pattern;
• Backward arcs: other arcs which do not reach the initial state.

Example 6. SMA(ananas) represented with only forward and backward arcs:

0 1 2 3 4 5 6
a n a n a s

n,s a

a

a

n

a

Backward arcs in SMA(x)

The different states of SMA(x) are identified with prefixes of x. A backward
arc is of the form (u, b, vb) with u, v prefixes of x and b ∈ V a symbol where
vb is the longest suffix of ub that is a prefix of x, and u 6= v. Note that ub is
not a prefix of x. Let p(u, b) = |u| − |v| (a period of u).

Let (u, b, vb) and (u′, b′, v′b′) be two backward arcs. If p(u, b) = p(u′, b′) =
p, then vb = v′b′. Otherwise, if, for instance, vb is a proper prefix of v′b′, vb
occurs at position p like v′ does, ub is a prefix of x, which is a contradiction.
Thus v = v′, b = b′, and then u = u′. Each period p, 1 ≤ p ≤ |x|, corresponds
to at most one backward arc, thus there are at most |x| such arcs. This gives
the following lemma.
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Lemma 1. The automaton SMA(x) contains at most |x| backward arcs.

The bound of the previous lemma is tight: SMA(abm−1) has m backward
arcs (a 6= b) and thus constitutes a worst case for the number of backward
arcs.

A fairly immediate consequence is that the implementation of SMA(x) and
its construction can be done in O(|x|) time and space, independently of the
alphabet size.

Complexity of searching with SMA

The complexities of the search with the string-matching automaton depend
upon the implementation chosen for the automaton.

With a complete SMA implemented by transition matrix, the preprocess-
ing on the pattern x can be done in time O(m × card(V )) using a space in
O(m × card(V )). Then the search on the text y can be done in time O(n)
using a space in O(m× card(V )). The delay is then constant.

With a SMA implemented by lists of forward and backward arcs. The
preprocessing on the pattern x can be done in time O(m) using a space in
O(m). Then the search on the text y can be done in time O(n) using a
space in O(m). The delay becomes min{card(V ), log2 m} comparisons. This
constitutes an improvement on KMP algorithm.

1.1.7 Boyer-Moore algorithm

The Boyer-Moore string-matching algorithm [BM77] performs the scanning
operations from right to left inside the window on the text.

Example 7. x = cgctagc and y = cgctcgcgctatcg

y c g c t c g c g c t a t c g

x c g c t a g c

x c g c t a g c

x c g c t a g c

It uses two rules:

• the matching shift: good-suffix rule;
• the occurrence heuristics: bad-character rule;

to compute the length of the shift after each attempt. Extra rules can be used
if some memorization are done from one attempt to the next.
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The matching shift

A typical situation during the searching phase of the Boyer-Moore algorithm
is depicted in Figure 1.11. During an attempt where the window is positioned
on y[j..j + m − 1], a suffix u = x[i + 1..m − 1] of x has been matched (from
right to left) in y. A mismatch has occurred between symbol x[i] = a in x and
y[j] = b in y.

u

u

b

a
0 i m− 1

0 j n− 1

text y

pattern x

Fig. 1.11. A typical situation during the Boyer-Moore algorithm.

Then a valid shift consists in aligning the occurrence of u in y with a
reoccurrence of u in x preceded by a symbol c 6= a (see Figure 1.12). If no
such reoccurrence exists, the shift consists in aligning the longest suffix of u
in y which is a prefix of x (see Figure 1.13).

u

u

u

b

a
i
c

j

text y

pattern x -�
shift

Fig. 1.12. The matching shift: a reoccurrence of u exists in x with c 6= a.

u

u

b

a
i

j

text y

pattern x -�
shift

Fig. 1.13. The matching shift: no reoccurrence of u exists in x.

The first case for the matching shift which consists in the computation of
the rightmost reoccurrences of each suffix u of x can be done in O(m) time
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and space. The second case which basically corresponds to the computation
of the period of x can also be performed in O(m) time and space.

A table D implements the good-suffix rule: for i = 0, . . . ,m− 1,
D[i] = min{|z| > 0 | (x suffix of x[i . . m− 1]z) or

(bx[i . . m− 1]z suffix of x and
bx[i . . m− 1] not suffix of x, for b ∈ V )}

and D[m] = 1.

The occurrence heuristics

During an attempt, of the searching phase of the Boyer-Moore algorithm,
where the window is positioned on y[j..j + m − 1], a suffix u of x has been
matched (from right to left) in y. A mismatch has occurred between symbol
x[i] = a in x and y[i + j] = b in y. The occurrence shift consists in aligning
the symbol b in y with its rightmost occurrence in x (possibly leading to a
negative shift) (see Figure 1.14).

u

u

b

i
a

b

j

text y

pattern x -�
shift

-�

DA[b]

Fig. 1.14. The occurrence shift.

A table DA implements the bad-character rule: DA[a] = min({|z| > 0 |
az suffix of x} ∪ {m}) for any symbol a ∈ V .

Then the length of the shift to apply is given by DA[b]−|u| = DA[b]−m+i.

BM algorithm

The Boyer-Moore string-matching algorithm performs no memorization of
previous matches. It applies the maximum between the two shifts. It is pre-
sented in Figure 1.15.

Suffix displacement

For 0 ≤ i ≤ m − 1 we denote by suf [i] the length of the longest suffix of x
ending at position i in x. Let us denote by lcsuf (u, v) the longest common
suffix of two words u and v.

The computation of the table suf is done by the algorithm Suffixes
presented in Figure 1.16. Figure 1.17 depicts the variables and the invariants
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BM(x, m, y, n)
1 j← 0
2 while j ≤ n−m do

3 i← m− 1
4 while i ≥ 0 and x[i] = y[i + j] do

5 i← i− 1
6 if i = −1 then

7 Output(j)
8 j← j + max{D[i + 1],DA[y[i + j]]−m + i + 1}

Fig. 1.15. The Boyer-Moore algorithm.

Suffixes(x, m)
1 suf [m− 1]← m
2 g ← m− 1
3 for i← m− 2 downto 0 do

4 if i > g and suf [i + m− 1− f ] < i− g then

5 suf [i]← suf [i + m− 1− f ]
6 else g ← min{g, i}
7 f ← i
8 while g ≥ 0 and x[g] = x[g + m− 1− f ] do

9 g ← g − 1
10 suf [i]← f − g
11 return suf

Fig. 1.16. Algorithm Suffixes.

of the main loop of algorithm Suffixes. The values of suf are computed for
each position i in x in decreasing order. The algorithm uses two variables f
and g which satisfy:

• g = min{j − suf [j] | i < j < m− 1};
• f is such that i < f < m− 1 and f − suf [f ] = g.

x b v a v

0 g i f m− 1

Fig. 1.17. Variables i, f, g of algorithm Suffixes. The main loop has invariants:
v = x[g + 1 . . f ] = lcsuf (x, x[0 . . f ]) and a 6= b (a, b ∈ V ) and i < f . The picture
corresponds to the case where g < i.

We are now able to give, in Figure 1.18, the algorithm Compute-D that
computes the table D using the table suf . The invariants of the second loop
of algorithm Compute-D are presented in Fig. 1.19.
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Compute-D(x, m)
1 j ← 0
2 for i← m− 1 downto −1 do

3 if i = −1 or suf [i] = i + 1 then

4 while j < m− 1− i do

5 D [j]← m− 1− i
6 j ← j + 1
7 for i← 0 to m− 2 do

8 D [m− 1− suf [i]]← m− 1− i
9 return D

Fig. 1.18. Computation of the matching shift.

x b v a v

0 i j m− 1

Fig. 1.19. Variables i and j of algorithm Compute-D. Situation where suf [i] <
i + 1. The loop of lines 7-8 has the following invariants: v = lcsuf (x, x[0 . . i]) and
a 6= b (a, b ∈ V ) and suf [i] = |v|. Thus D [j] ≤ m− 1− i with j = m− 1− suf [i].

The algorithm of Figure 1.20 computes the table DA.

Compute-DA(x, m)
1 for each a ∈ V do

2 DA[a]← m
3 for i← 0 to m− 2 do

4 DA[x[i]]← m− i− 1
5 return DA

Fig. 1.20. Computation of the occurrence shift.

Complexity of BM algorithm

Preprocessing phase: The match shift can be computed in O(m) time
while the occurrence shift can be computed in O(m + card(V )) time.

Searching phase: When one wants to find all the occurrences of the pat-
tern int the text, the worst case running time of the Boyer-Moore string-
matching algorithm is O(n ×m). The minimum number of symbol com-
parisons is n/m and the maximum number of symbol comparisons n×m.

Extra space: The extra space needed for the two shift functions is O(m +
card(V )) and it can be reduced to O(m).
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Symbol comparisons in variants of BM

In [KMP77], it is proved that for finding the first occurrence of a pattern x of
length m in a text y of length n, the BM algorithm performs no more than
7n comparisons between symbols of the text and symbols of the pattern. The
bound is lowered to 4n comparisons in [GO80]. R. Cole [Col94] gives a tight
bound of 3n−m comparisons for non-periodic patterns (i.e. period(x) > m/2)

For finding all the occurrences of a pattern x of length m in a text y
of length n, linear variants of the BM algorithm have been designed. The
Galil algorithm [Gal79] implements a prefix memorization technique when an
occurrence of the pattern is located in the text. It gives a linear number of
comparisons between symbols of the pattern and symbols of the text and
requires a constant extra space.

The Turbo-BM algorithm [CCG+94] implements a last-suffix memoriza-
tion technique which leads to a maximal of 2n comparisons. It also requires
a constant extra space. Actually it stores the last match in the text when a
matching shift is applied (the memorized factor is called memory) (see Fig-
ure 1.21). This enables it to perform jumps, in subsequent attempts, on these
memorized factors of the text, saving thus some symbol comparisons. It can
also perform, in some cases, larger shifts by using turbo-shifts. Its preprocess-
ing is the same as the BM algorithm. The searching phase need an O(1) extra
space to store memory as a pair (length, right position).

u

u

u z

j

text y

pattern x -�
match-shift

-�
memory

Fig. 1.21. When a match shift is applied the Turbo-BM algorithm memorizes the
factor u of y.

The Apostolico-Giancarlo [AG86] implements an all-suffix memorization
technique that gives a maximal number of comparisons equal to 1.5n [CL97].
It requires an O(m) extra space. The Apostolico and Giancarlo remembers
the length of the longest suffix of the pattern ending at the right position of
the window at the end of each attempt (see Figure 1.22). These information
are stored in a table skip. Let us assume that during an attempt at a position
less than j the algorithm has matched a suffix of x of length k at position j+ i
with 0 < i < m then skip[j + i] is equal to k. Let suf [i], for 0 ≤ i < m be
equal to the length of the longest suffix of x ending at the position i in x (see
Section 1.1.7). During the attempt at position j, if the algorithm compares



18 Maxime Crochemore and Thierry Lecroq

successfully the factor of the text y[j+ i + 1..j+ m− 1] only in the case where
k = suf [i], a ”jump” has to be done over the text factor y[j+ i−k+1..j+ i] in
order to resume the comparisons between the symbols y[j+ i−k] and x[i−k].
In all the other cases, no more comparisons have to be done to conclude the
attempt and a shift can be performed.

current match

text y

pattern x

previous matches

������) ?

H
H

H
Hj

PPPPPPq

�

Fig. 1.22. The Apostolico-Giancarlo algorithm stores all the matches that occur
between suffixes of x and subwords of y.

1.2 Searching a list of strings — Suffix Arrays

In this section we consider two main questions that are related by the tech-
nique used to solve them. The first question on word list searching is treated
in the first subsection, and the second one, indexing a text, is treated in Sub-
section 1.2.3.

1.2.1 Searching a list of words

Input a list L of n strings of V ∗ stored in increasing lexicographic order in a
table: L0 ≤ L1 ≤ · · · ≤ Ln−1 and a string x ∈ V ∗ of length m.
Problem find either i, −1 < i < n, with x = Li if x occurs in L, or d,
−1 ≤ d ≤ n, that satisfy Ld < x < Ld+1 otherwise.

Example 8. List L

L0 = a a a b a a

L1 = a a a b b

L2 = a a b b b b

L3 = a b

L4 = b a a a

L5 = b b

The search for aaabb outputs 1 as does the search for aaba.
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1.2.2 Searching algorithm

A standard way of solving the problem is to use a binary search because the
list of strings is sorted. Its presentation below makes use of the function lcp

that computes the longest common prefix (LCP) of two strings.
Simple-search(L, n, x,m)

1 d← −1
2 f ← n
3 while d + 1 < f do

⊲ Invariant: Ld < x < Lf

4 i← ⌊(d + f)/2⌋
5 ℓ← |lcp(x,Li)|
6 if ℓ = m and ℓ = |Li| then
7 return i
8 else if (ℓ = |Li|) or (ℓ 6= m and Li[ℓ] < x[ℓ]) then
9 d← i

10 else f ← i
11 return d

The running time of the binary search is O(m × log n) if we assume
that the LCP computation of two string takes a linear time, doing it by
pairwise symbol comparisons. The worst case is met with the list L =
(am−1b, am−1c, am−1d, . . . ) and the string x = am.

Indeed, it is possible to reduce the running time of the binary search to
O(m + log n) by storing the LCPs of some pairs of strings of the list. These
pairs are of the form (Ld, Lf ) where (d, f) is a pair of possible values of d and
f in the binary search algorithm. Since there are 2n + 1 such pairs, the extra
space required by the new algorithm Search is O(n).

The design of the algorithm is based on properties arising in three cases
(plus symmetric cases) that are described below. The algorithm maintains
three variables defined as: ld = |lcp(x,Ld)|, lf = |lcp(x,Lf )|, i = ⌊(d + f)/2⌋.
In addition, the main invariant of the loop of the algorithm is Ld < x < Lf .

Case one

If ld ≤ |lcp(Li, Lf )| < lf, then Li < x < Lf and |lcp(x,Li)| = |lcp(Li, Lf )|.

Case two

If ld ≤ lf < |lcp(Li, Lf )|, then Ld < x < Li and |lcp(x,Li)| = |lcp(x,Lf )|.

Case three

If ld ≤ lf = |lcp(Li, Lf )|, then we have to compare x and Li to discover if they
match or which one is the smallest. But this comparison symbol by symbol is
to start at position lf because the strings have a common prefix of length lf.
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The resulting algorithm including the symmetric cases where lf ≤ ld is
given in Figure 1.23 and it satisfies the next proposition because Lcp can
be implemented to run in constant time after preprocessing the list (in time
linear in the input size).

Search(L, n,Lcp, x, m)
1 (d, ld)← (−1, 0)
2 (f, lf)← (n, 0)
3 while d + 1 < f do

⊲ Invariant : Ld < x < Lf

4 i← ⌊(d + f)/2⌋
5 if ld ≤ Lcp(i, f) < lf then

6 (d, ld)← (i,Lcp(i, f))
7 else if ld ≤ lf < Lcp(i, f) then

8 f ← i
9 else if lf ≤ Lcp(d, i) < ld then

10 (f, lf)← (i,Lcp(d, i))
11 else if lf < ld < Lcp(d, i) then

12 d← i
13 else ℓ← max{ld, lf}
14 ℓ← ℓ + |lcp(x[ℓ . . m− 1], Li[ℓ . . |Li| − 1])|
15 if ℓ = m and ℓ = |Li| then

16 return i
17 else if (ℓ = |Li|) or (ℓ 6= m and Li[ℓ] < x[ℓ]) then

18 (d, ld)← (i, ℓ)
19 else (f, lf)← (i, ℓ)
20 return d

Fig. 1.23. Search for x in L in time O(m + log n).

Proposition 1. Algorithm Search finds a string x of length m in a sorted

list of n strings in time O(m + log n).
It makes no more than m+⌈log(n+1)⌉ comparisons of symbols and requires

O(n) extra space.

A straightforward extension of the algorithm Search used for suffix arrays
in the rest of the section computes the pair (d, f), −1 ≤ d < f ≤ n, that
satisfies: d < i < f if and only if x prefix of Li.

Preprocessing the list is a classical matter.
Sorting can be done by repetitive applications of bin sorting and takes

time O(||L||), where ||L|| =
∑n−1

i=0 |Li|.
Computing LCPs of strings consecutive in the sorted list takes the same

time by mere symbol comparisons. Computing other LCPs is based on next
lemma and takes time O(n).
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Lemma 2. Let L0 ≤ L1 ≤ . . . ≤ Ln−1. Let d, i and f , −1 < d < i < f < n.

Then |lcp(Ld, Lf )| = min{|lcp(Ld, Li)|, |lcp(Li, Lf )|}.

So, the complete preprocessing time is O(||L||).

1.2.3 Suffix array

A suffix array is a structure for indexing texts. It is used for the implementa-
tion of indexes supporting operations of searching for patterns, their number
of occurrences, or their list of positions. Contrary to suffix trees or suffix au-
tomata whose efficiency relies on the design of a data structure, suffix arrays
are grounded on efficient algorithms, one of them being the search algorithm
of the previous section.

The suffix array of a text y ∈ V ∗ of length n is composed of the elements
described for the list of strings, applied to the list of suffixes of the text. So, it
consists of both the permutation of positions on the text that gives the sorted
list of suffixes and the corresponding array of lengths of their LCPs. They are
denoted by p and LCP and defined by:

y[p[0] . . n− 1] < y[p[1] . . n− 1] < . . . < y[p[n− 1] . . n− 1]

and
LCP[i] = |lcp(y[p[i− 1] . . n− 1], y[p[i] . . n− 1])|.

Example 9. y = aabaabaabba

i p[i] LCP[i]
0 10 0 a
1 0 1 a a b a a b a a b b a
2 3 6 a a b a a b b a
3 6 3 a a b b a
4 1 1 a b a a b a a b b a
5 4 5 a b a a b b a
6 7 2 a b b a
7 9 0 b a
8 2 2 b a a b a a b b a
9 5 4 b a a b b a
10 8 1 b b a

There are several algorithms for computing a suffix array efficiently, two
of them running in linear time are presented here as a sample. Note that the
solutions of Section 1.2.1 would lead to algorithms running in time O(n2)
because ||Suf(y)|| = O(n2). But they would not exploit the dependencies
between the suffixes of the text.

We consider that the alphabet is a bounded segment of integers, as it can
be considered in most real applications. The schema for sorting the suffixes is
as follows.
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1. bucket sort positions i according to First3(y[i . . n−1]), (First3(x) is either
the first three symbols of x if |x| ≥ 3 or x if |x| < 3 for a string x ∈ V ∗)
for i = 3q or i = 3q + 1;
let t[i] be the rank of i in the sorted list.

2. recursively sort the suffixes of the 2/3-shorter word
t[0]t[3] · · · t[3q] · · · t[1]t[4] · · · t[3q + 1] · · ·
let s[i] be the rank of suffix i in the sorted list (i = 3q or i = 3q + 1)

3. sort suffixes y[j . . n− 1], for j of the form 3q + 2, by bucket sorting pairs
(y[j], s[j + 1]).

4. merge lists obtained at steps 2 and 3
Note: comparing suffixes i (first list) and j (second list) remains to com-
pare:
(x[i], s[i + 1]) and (x[j], s[j + 1]) if i = 3q
(x[i]x[i + 1], s[i + 2]) and (x[j]x[j + 1], s[j + 2]) if i = 3q + 1

The recursivity of the algorithm yields the recurrence relation T (n) =
T (2n/3) + O(n) for its running time, which gives T (n) = O(n).

Example 10. y = aabaabaabba

i 0 1 2 3 4 5 6 7 8 9 10
y[i] a a b a a b a a b b a

Rank t
0 a

1 a a b

2 a b a

3 a b b

4 b a

Rank s i Suf(11142230)
0 10 0

1 0 1 1 1 4 2 2 3 0

2 3 1 1 4 2 2 3 0

3 6 1 4 2 2 3 0

4 1 2 2 3 0

5 4 2 3 0

6 7 3 0

7 9 4 2 2 3 0

Rank j (y[j], s[j + 1])
0 2 (b, 2)
1 5 (b, 3)
2 8 (b, 7)

i 0 1 2 3 4 5 6 7 8 9 10
y[i] a a b a a b a a b b a

r[i] 1 4 8 2 5 9 3 6 10 7 0
p[i] 10 0 3 6 1 4 7 9 2 5 8

Table r is defined by: r[j] = rank of suffix at position j in the sorted list
of all suffixes. It is the inverse of p.

There is a second linear-time algorithm for computing LCPs (see Fig-
ure 1.24) of consecutive suffixes in the sorted list (other LCPs are computed
as in Section 1.2.1). Its running time analysis is straightforward. The next
example illustrates the following lemma that is the clue of algorithm Lcp.

Example 11. y = aabaabaabba



1 Text Searching and Indexing 23

i 0 1 2 3 4 5 6 7 8 9 10 11
y[i] a a b a a b a a b b a

p[i] 10 0 3 6 1 4 7 9 2 5 8
LCP[i] 0 1 6 3 1 5 2 0 2 4 1 0

j r[j]
0 1 a a b a a b a a b b a

3 2 a a b a a b b a

j r[j]
1 4 a b a a b a a b b a

4 5 a b a a b b a

Lemma 3. Let j ∈ (1, 2, . . . , n − 1) with r[j] > 0.Then LCP[r[j − 1]] − 1 ≤
LCP[r[j]].

Lcp(y, n, p, r)
1 ℓ← 0
2 for j ← 0 to n− 1 do

3 ℓ← max{0, ℓ− 1}
4 if r[j] > 0 then

5 i← p[r[j]− 1]
6 while y[i + ℓ] = y[j + ℓ] do

7 ℓ← ℓ + 1
8 LCP[r[j]]← ℓ
9 LCP[0]← 0

10 LCP[n]← 0
11 return LCP

Fig. 1.24. Computation of the LCPs

The next statement summarizes the elements of the present section.

Proposition 2. Computing the suffix array of a text of length n can be done

in time O(n) with O(n) memory space.

1.3 Indexes

Indexes are data structures that are used to solve the pattern matching prob-
lem in static texts. An index for a text y of is a structure that contains all the
factors of y. It must enable to deal with the following basic operations:

String-matching: computing the existence of a pattern x of length m in the
text y;

All occurrences: computing the list of positions of occurrences of a pattern
x of length m in y;

Repetitions: computing a longest subword of y occurring at least k times;
Marker: computing a shortest subword of y occurring exactly once.
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Other possible applications includes:

• finding all the repetitions in texts;
• finding regularities in texts;
• approximate matchings.

1.3.1 Implementation of indexes

Indexes are implemented by suffix arrays or by suffix trees or suffix automata
in O(n) space. Such structures represent all the subwords of y since every
subword of y is a prefix of a suffix of y. Table 1.1 summarizes the complexities
of different operations on indexes with these structures.

suffix array suffix tree or
suffix automaton

Construction O(n) O(n× log card(V ))

String-matching O(m + log n) O(m× log card(V ))

All occurrences O(m + log n + |output|) O(m× log card(V )) + |output|)

Repetitions O(n) O(n)

Marker O(n) O(n)

Table 1.1. Complexities of different operations on indexes.

1.3.2 Efficient constructions

The notion of position tree is due to Weiner [Wei73], who presents an algo-
rithm for computing its compact version. An off-line computation of suffix
trees is given by McCreight [McC76]. Ukkonen [Ukk92] gives an on-line al-
gorithm and Farach [Far97] designs an alphabet independent algorithm for
the suffix tree construction. Other implementations of suffix trees are given
in [AN93, Kär95, Irv96, MRR01, GGV04].

The suffix automaton is also kwown as the DAWG for Directed Acyclic
Word Graph. Its linearity was discovered by Blumer et al. [BBE+83]. The
minimality of the structure as an automaton is due to Crochemore [Cro84]
who shown how to construct the factor automaton with the same complexity.

PAT arrays were designed by Gonnet [Gon87]. Suffix arrays were first
designed by Manber and Myers [MM93], for recent results see [KS03, KSPP03,
KA03].

SB-trees are used to store this structures in external memory [FG99].
Crochemore and Vérin [CV97] first introduced compact suffix automata.

An on-line algorithm for its construction is given in [IHS+01].
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1.3.3 Trie of suffixes

The trie of suffixes of y, denoted by T (y) is a digital tree which branches
are labeled by suffixes of y. Actually it is a tree-like deterministic automaton
accepting the language Suf(y).

Nodes of T (y) are identified with subwords of y. Terminal nodes of
T (y) are identified with suffixes of y. An output is defined, for each terminal
node, which is the starting position of the suffix in y.

Example 12. Suffix trie of ababbb

0 6

1 2

3 4 5 6 0

7
5

8 9 10 11 1

12 13 2

14

4

15 3

a

b

b

a

b

b b b

a

b

b b b

b

b

Starting with an empty tree, the trie T (y) is build by successively inserting
the suffixes of y from the longest one (y itself) to the shortest one (the empty
word).

Forks

Let us examine the insertion of u = y[i . . n − 1] in the structure accepting
longer suffixes (y, y[1 . . n − 1], . . . , y[i − 1 . . n − 1]). The head of u is the
longest prefix y[i . . k− 1] of u occurring before i. The tail of u is the the rest
y[k . . n− 1] of suffix u.

Example 13. With y = ababbb, the head of abbb is ab and its tail is bb.

0

1 2

3 4 5 6 0

7

8 9 10 11 1

12 13 2
a

b

b

a

b

b b b

a

b b b

b
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A fork is any node that has out-degree 2 at least, or that has both out-
degree 1 and is terminal. The head of a prefix of y is a fork. The initial node
is a fork if and only if y is non empty.

The insertion of a suffix u = y[i . . n − 1] consists first in finding the fork
corresponding to the head of u and then in inserting the tail of u from this
fork.

Suffix link

A function sy, called suffix link is defined as follows: if node p is identified
with subword av, a ∈ V, v ∈ V ∗ then sy(p) = q where node q is identified with
v.

Example 14. Suffix links are represented by dotted arrows.

0 6

1 2

3 4 5 6 0

7
5

8 9 10 11 1

12 13 2

14

4

15 3

a

b

b

a

b

b b b

a

b

b b b

b

b

The suffix links create shortcuts that are used to accelerate heads com-
putations. It is useful for forks only. If node p is a fork, so is sy(p). If the
head of y[i − 1 . . n − 1] is of the form au (a ∈ V, u ∈ V ∗) then u is a prefix
of the head of y[i . . n − 1]. Then, using suffix links, the insertion of the suf-
fix y[i . . n − 1] consists first in finding the fork corresponding to the head of
y[i . . n− 1] (starting from suffix link of the fork associated with au) and then
in inserting the tail of y[i . . n− 1] from this fork.

1.3.4 Suffix Tree

The suffix tree of y, denoted by S(y), is a compact trie accepting the language
Suf(y). It is obtained from the suffix trie of y by deleting all nodes having out-
degree 1 that are not terminal. Edges are then labeled by subwords of y instead
of symbols.

Example 15. S(ababbb)
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0 6

1 0

2 1

3

4 2

5
5

6 37

4

ab

b

abbb

bb

abbb

b

b

The number of nodes of S(y) is not more than 2n (if n > 0) since all
internal nodes either have two children at least or are terminal and there are
at most n terminal nodes.

Labels of edges

The edge labels are represented by pairs (j, ℓ) representing subwords y[j . . j +
ℓ− 1] of y.

Example 16. S(ababbb)

i 0 1 2 3 4 5
y[i] a b a b b b

0

1

2

3

4

5

67

(0, 2)

(1, 1)

(2, 4)

(4, 2)

(2, 4)

(4, 1)
(5, 1)

This technique requires to have y residing in main memory. Thus the size
of S(y) is O(n).

Scheme of suffix tree construction

The algorithm for building the suffix tree of y is given in Figure 1.25. It uses
algorithms Fast-Find and Slow-Find that are described next. Starting with
an empty tree, S(y) is built by successively inserting the suffixes of y from
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the longest one (y itself) to the shortest one (the empty word). Using suffix
links, the insertion of the suffix y[i . . n − 1] consists first in finding the fork
corresponding to the head of y[i . . n− 1] (starting from suffix link of the fork
associated with the head of y[i− 1 . . n− 1]) and then in inserting the tail of
y[i . . n− 1] from this fork.

Suffix-tree(y, n)
1 T ← New-automaton()
2 for i← 0 to n− 1 do

3 find fork of head of y[i . . n− 1] using
4 Fast-Find from node sy(fork), and then Slow-Find
5 k ← position of tail of y[i . . n− 1]
6 if k < n then

7 q ← New-state()
8 Adj [fork]← Adj [fork] ∪ {((k, n− k), q)}
9 output[q]← i

10 else output[fork]← i
11 return T

Fig. 1.25. Scheme of the construction of the suffix tree of string y of length n.

This scheme requires an adjacency-list representation of labeled arcs.
Let us examine more closely the insertion of the suffix y[i . . n − 1] in the

tree. The search for the node associated with the head of y[i . . n−1] proceeds
in two steps:

1. Assume that the head of y[i − 1 . . n − 1] is auv = y[i − 1 . . k − 1] (a ∈
V, u, v ∈ V ∗) and let fork be the associated node. If the suffix link of fork

is defined, it leads to node s, then the second step starts from this node.
Otherwise, the suffix link from fork is found by rescanning as follows. Let
r be the parent node of fork and let (j, ℓ) be the label of edge (r, fork).
For the ease of description, assume that auv = au(y[k − ℓ . . k]) (it may
happened that auv = y[k − ℓ . . k]). There is a suffix link from node r to
node p associated with v. The crucial observation here is that y[k− ℓ . . k]
is the prefix of the label of some branch starting at node p. Then the
algorithm rescans y[k − ℓ . . k] in the tree: let q be the child of p along
that branch and let (h,m) be the label of the edge (p, q). If m < ℓ then a
recursive scan of y[k−ℓ+m. . k] starts from node q. If m > ℓ then the edge
(p, q) is broken to insert a new node s; labels are updating correspondingly.
If m = ℓ, s is simply set to q. This search is performed by the algorithm
Fast-Find given in Figure 1.26. The suffix link of fork is then set to s.

2. A downward search starts from node s to find the fork associated with
the head of y[i . . n− 1]. This search is dictated by the symbols of the tail
of y[i . . n − 1], one by one from left to right. If necessary a new internal
node is created at the end of this scanning (see Figure 1.27).
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Fast-Find(r, j, k)
1 if j ≥ k then

2 return r
3 else q ← Target(r, y[j])
4 (j′, ℓ)← label(r, q)
5 if j + ℓ ≤ k then

6 return Fast-Find(q, j + ℓ, k)
7 else Adj [r]← Adj [r] \ {((j′, ℓ), q)}
8 p← New-state()
9 Adj [r]← Adj [r] ∪ {((j, k − j), p)}

10 Adj [p]← Adj [p] ∪ {((j′ + k − j, ℓ− k + j), q)}
11 return p

Fig. 1.26. Search for y[j . . k] from node r.

Slow-Find(p, k)
1 while k < n and Target(p, y[k]) 6= nil do

2 q ← Target(p, y[k])
3 (j, ℓ)← label(p, q)
4 i← j
5 do

6 i← i + 1
7 k ← k + 1
8 while i < j + ℓ and k < n and y[i] = y[k]
9 if i < j + ℓ then

10 Adj [p]← Adj [p] \ {((j, ℓ), q)}
11 r ← New-state()
12 Adj [p]← Adj [p] ∪ {((j, i− j), r)}
13 Adj [r]← Adj [r] ∪ {((j + i− j, ℓ− i + j), q)}
14 return (r, k)
15 p← q
16 return (p, k)

Fig. 1.27. Search of the longest prefix of y[k . . n− 1] from node p. A new node is
created when the target lies in the middle of an arc.

The insertion of the tail from the fork associated to the head of y[i . . n−1]
is done by adding a new edge labeled by the tail leading to a new node. It is
done in constant time.

Example 17. S(abababbb)
End of insertion of suffix babbb
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0

1 0

2 1

3

4 2

5

abab

bab

abbb

bb

abbb

i 0 1 2 3 4 5 6 7
y[i] a b a b a b b b

0

1 0

2 1

3

4 2

5

6 3

abab

bab

abbb

bb

abbb

bb

The head of babbb is bab so its tail is bb.

Complete algorithm

We are now able to give the complete algorithm for building the suffix tree of
a text y of length n (see Figure 1.28). A table s implements the suffix links.

Complexity

The execution of Suffix-tree(y) takes O(|y|× log card(V )) time in the com-
parison model. Indeed the main iteration increments i, which never decreases,
iterations in Fast-Find increment j, which never decreases, iterations in
Slow-Find increment k, which never decreases and basic operations run in
constant time or in time O(log card(V )) time in the comparison model.

1.3.5 Suffix Automaton

The minimal deterministic automaton accepting Suf(y) is denoted by A(y).
It can be seen as the minimization of the trie T (y) of suffixes of y.

Example 18. A(ababbb)



1 Text Searching and Indexing 31

Suffix-tree(y, n)
1 T ← New-automaton()
2 s[initial [T ]]← initial [T ]
3 (fork, k)← (initial [T ], 0)
4 for i← 0 to n− 1 do

5 k ← max{k, i}
6 if s[fork] = nil then

7 r ← parent of fork

8 (j, ℓ)← label(r, fork)
9 if r = initial [T ] then

10 ℓ← ℓ− 1
11 s[fork]← Fast-Find(s[r], k − ℓ, k)
12 (fork, k)← Slow-Find(s[fork], k)
13 if k < n then

14 q ← New-state()
15 Adj [fork]← Adj [fork] ∪ {((k, n− k), q)}
16 output[q]← i
17 else output[fork]← i
18 return T

Fig. 1.28. The complete construction of the suffix tree of y of length n.
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The states of A(y) are classes of factors (subwords) of y. Two subwords
u and v of y are in the same equivalence class if they have the same right
context in y. Formally u ≡y v iff u−1Suf(y) = v−1Suf(y).

The suffix automaton A(y) has a linear size:

• it has between n + 1 and 2n− 1 states;
• it has between n and 3n− 4 arcs.

Suffix link

A function fy, also called suffix link is defined as follows:
let p =Target(initial [A(y)], v), v ∈ V +, fy(p) =Target(initial [A(y)], u),
where u is the longest suffix of v occurring in a different right context (u 6≡y v).

Example 19. A(aabbabb)
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0 1 2 3 4 5 6 7

3′

3′′ 4′′

a a b b a b b

b

b

a

b b

a

i 1 2 3 3′ 3′′ 4 4′′ 5 6 7

fy(i) 0 1 3′′ 0 3′ 4′′ 3′ 1 3′′ 4′′

Suffix path

For a state p of A(y), the suffix path of p denoted by SPy(p) is defined as
follows:

SPy(p) = 〈p, fy(p), f2
y (p), . . .〉.

Solid arc

For a state p of A(y), we denote by Ly(p) the length of the longest string u in
the class of p. It also corresponds to the length of the longest path from the
initial state to state p (this path is labeled by u). An arc (p, a, q) of A(y) is
solid iff Ly(q) = Ly(p) + 1.

Construction

Starting with a single state, the automaton A(y) is build by successively
inserting the symbols of y from y[0] to y[n− 1]. The algorithm is presented in
Figure 1.29. Tables f and L implements functions fy and Ly respectively. Let
us assume that A(w) is correctly build for a prefix w of y and let last be the
state of A(w) corresponding to the class of w. The algorithm Extension(a)
builds A(wa) from A(w) (see Figure 1.30). This algorithm creates a new state
new . Then in the first while loop, transitions (p, a,new) are created for the
first states p of SPy(last) that do not already have a defined transition for
the symbol a. Let q be the first state of SPy(last) for which a transition is
defined for the symbol a, if such a state exists. When the first while loop of
Extension(a) ends three cases can arise:

1. p is not defined;
2. (p, a, q) is a solid arc;
3. (p, a, q) is not a solid arc.

Case 1: This situation arises when a does not occur in w. We have then
fy(new) = initial [A(w)].

Case 2: Let u be the longest string recognized in state p (|u| = Ly(p)). Then
ua is the longest suffix of wa that is a subword of w. Thus fy(new) = q.
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Case 3: Let u be the longest string recognized in state p (|u| = Ly(p)). Then
ua is the longest suffix of wa that is a subword of w. Since the arc (p, a, q)
is not solid, ua is not the longest string recognized in state q. Then state
q is splitted into two states: the old state q and a new state clone. The
state clone has the same transitions than q. The strings v (of the form
v′a) shorter than ua that were recognized in state q are now recognized
in state clone.

Suffix-Automaton(y, n)
1 T ← New-automaton()
2 L[initial [T ]]← 0
3 f [initial [T ]]← nil
4 last ← initial [T ]
5 for j ← 0 to n− 1 do

⊲ Extension of T with the symbol y[j]
6 last ← Extension(y[j])
7 p← last

8 do

9 terminal [p]← true
10 p← f [p]
11 while p 6= nil
12 return T

Fig. 1.29. Construction of A(y).

Example 20. One step: from A(ccccbbccc) to A(ccccbbcccd)

0 1 2 3 4 5 6 7 8 9
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b

c
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Extension(a)
1 new ← New-state()
2 L[new ]← L[last ] + 1
3 p← last

4 do

5 Adj [p]← Adj [p] ∪ {(a, new)}
6 p← f [p]
7 while p 6= nil and Target(p, a) = nil
8 if p = nil then

9 f [new ]← initial [T ]
10 else q ← Target(p, a)
11 if (p, a, q) is solid, i.e. L[p] + 1 = L[q] then

12 f [new ]← q
13 else clone ← New-state()
14 L[clone]← L[p] + 1
15 for each pair (b, q′) ∈ Succ[q] do

16 Adj [clone]← Adj [clone] ∪ {(b, q′)}
17 f [new ]← clone

18 f [clone]← f [q]
19 f [q]← clone

20 do

21 Adj [p]← Adj [p] \ {(a, q)}
22 Adj [p]← Adj [p] ∪ {(a, clone)}
23 p← f [p]
24 while p 6= nil and Target(p, a) = q
25 return new

Fig. 1.30. Construction of A(wa) from A(w) for w a prefix of y.
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New arcs are created from states of the suffix path 〈9, 3, 2, 1, 0〉.
From A(ccccbbccc) to A(ccccbbcccc)
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0 1 2 3 4 5 6 7 8 9
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f [9] = 3 and (3, c, 4) is a solid arc (not a shortcut) then, f [10] = Tar-
get(3, c)= 4.

From A(ccccbbccc) to A(ccccbbcccb)

0 1 2 3 4 5 6 7 8 9

5′
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bbb

b

c

b

f [9] = 3, (3, b, 5)is a non-solid arc , cccb is a suffix but ccccb is not: state
5 is cloned into 5′′ = f [10] = f [5], f [5′′] = 5′. Arcs (3, b, 5), (2, b, 5) et (1, b, 5)
are redirected onto 5′′.

1.3.6 Compact Suffix Automaton

The suffix tree results from a compaction of the suffix trie while the minimal
suffix automaton results from a minimization of the suffix trie. Minimizing the
suffix tree or compacting the minimal suffix automaton results in the same
structure called the compact suffix automaton.

Example 21. Compact suffix automaton of ababbb

i 0 1 2 3 4 5
y[i] a b a b b b

0 12

32′

(0, 2) (2, 4)

(4, 2)

(1, 1)

(2, 4)

(4, 1)

(5, 1)

The size of the compact suffix automaton of a string y is linear in the
length of y.
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Direct construction of the compact suffix automaton

The direct construction of the compact suffix automaton is similar to both
the suffix tree construction or the suffix automaton construction [CV97]. It
consists of the sequential addition of suffixes in the structure from the longest
one (y) to the shortest one (λ).

It uses the following features:

• “slow-find” and “fast-find” procedures;
• suffix links;
• solid and non-solid arcs;
• state splitting;
• re-directions of arcs.

The compact suffix automaton can be built in O(n log card(V )) time using
O(n) space. In practice it can save up to 50% space on the suffix automa-
ton [HC02].
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