
A
N

SW
ER

SKing’s College London
UNIVERSITY OF LONDON

DRAFT VERSION
This paper is part of an examination of the College counting towards the award of a degree.
Examinations are governed by the College Regulations under the authority of the Academic
Board.

Enter your candidate number in the box provided above and

on the answer book(s) provided. Do this now.

MSc EXAMINATION

CSMTSP – TEXT SEARCHING AND PROCESSING

MAY 2002

TIME ALLOWED: TWO HOURS.

ANSWER THREE OF THE FIVE QUESTIONS.

NO CREDIT WILL BE GIVEN FOR ATTEMPTING ANY FURTHER

QUESTIONS.

ALL QUESTIONS CARRY EQUAL MARKS.

THE USE OF ELECTRONIC CALCULATORS IS NOT PERMITTED.

BOOKS, NOTES OR OTHER WRITTEN MATERIAL MAY NOT BE BROUGHT INTO

THIS EXAMINATION.

NOT TO BE REMOVED FROM THE EXAMINATION HALL

TURN OVER WHEN INSTRUCTED

 2002 UNIVERSITY OF LONDON

A
N

SW
ER

SDRAFT VERSION
2002 2 CSMTSP

1. Aho-Corasick automaton

a. Design the Aho-Corasick (AC) automaton over the alphabet � = fa;b;cg for the

dictionary of strings: fabababa;aaba;baba;babg.
[15 marks]

See last page.

b. Define and explain the data structures used to implement an AC automaton for

dictionary matching.
[15 marks]

The Aho-Corasick automaton is a deterministic finite automaton together with a
failure function (link) f . Data structures for nodes and arcs of an AC automaton can
be defined as:

typedef struct ARC {
int letter;
struct ARC * next;

} arc;
typedef struct NODE {

int final;
struct NODE * f;
arc * list;

} node;

An AC automaton is accessible from its initial state; its type can be declared as:

typedef node * automaton;

c. Describe in pseudo-code the search procedure for finding all the occurrences of

patterns of the dictionary in a text using the implementation of 1.b.
[10 marks]

The search procedure using the AC automaton is defined by the following proce-
dure for moving from one state to another according to the current symbol being
read from the text. Let p 2 Q be a state of the automaton, f be the failure link andÆ 2 � be a symbol of the alphabet.Next State(p; Æ)

if (Æ; q) in the list p! list then

return q;
else if p! f non NULL then

return Next State(p! f; Æ)
else return initial state;

SEE NEXT PAGE

A
N

SW
ER

SDRAFT VERSION
2002 3 CSMTSP

d. State the time and space complexity for building the AC automaton of a set of

strings X, as well as the complexity of the search procedure applied to a text of

length n. State the maximum time spent by the search procedure on a single

symbol of the text
[10 marks]

Preprocessing the AC automaton for a set X of strings has a time and space com-
plexity O(jX j log j�j). The time complexity for the search procedure on a text of
length n is O(n log j�j). The maximum time spent on a single symbol of the text dur-
ing the search procedure is O(maxfjxj : x 2 Xg).

2. Borders of strings

a. Report all periods and borders of the string aabbaaabbaaabbaaa.
[10 marks]

The periods and the borders of the string aabbaaabbaaabbaaa are:p0 = 5; b0 = aabbaaabbaaap1 = 11; b1 = aabbaaap2 = 16; b2 = aap3 = 17; b3 = ap4 = 16; b4 = �
b. Prove that the border of a border of a string x is also a border of x. Let border (x)

be the longest (proper) border of x. Prove that a (proper) border of x is eitherborder (x) or a (proper) border of border (x).
[15 marks]

Recall that a border of x is both a prefix and a suffix of x. Let b1 be a border of x
and b2 be a border of b1. Then, by definition, b2 is a prefix of b1. By transitivity of the
notion of prefix, b2 then also a prefix of x. Similarly, b2 is a suffix of b1,, hence a suffix
of x. Thus b2 is both a prefix and a suffix of x, which implies that b2 is also border of x.

Let border(x) be the longest proper border of x. Let b be a (proper) border of x. If it
is the longest border, it is border(x) by definition. Otherwise, b is a prefix of x shorter
than its prefix border(x). Thus b a (proper) prefix of border(x). Similarly, it is a (proper)
suffix of border(x), therefore a border of it.

SEE NEXT PAGE

A
N

SW
ER

SDRAFT VERSION
2002 4 CSMTSP

c. Design an algorithm that computes the lengths of borders of all non-empty pre-

fixes of a string x.
[20 marks]

procedure COMPUTE BORDERS(x : string ; m : integer);
begin

Border[0] := -1;
for i:= 1 to m do begin

j:= Border[i-1];
while j � 0 and x[j℄ 6= x[j + 1℄ do j := Border[j℄;
Border[i] := j +1;

end;
end;

d. Give the output of your algorithm of 2.c for aabbaaabbaaa.
[5 marks]

Output of the above algorithm for aabbaaabbaaa
Border[0 : 12] = [-1, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7]

3. Searching a list of strings Consider a list of strings L = (y1; y2; : : : ; yk) in lexico-

graphic order: y1 � y2 � � � � � yk. Let x be another string that is to be found in the

list L. All strings x and y’s have the same length.

a. What is the asymptotic running time of a binary search for x in L if no extra

information on the strings y’s is known? Give a “worst-case” example to your

answer.
[15 marks]

The asymptotic cost of a binary search for the string x of length n in the list L of k lex-
icographically sorted strings yi is O(n log k) time. A ”worst-case” example could be
the search for x = aaa : : : a in the listL = (aaa : : : a; aaa : : : b; aaa : : : bb; aaa : : : bbb; : : : ; bbb : : : b)

b. For two strings u and v, l
p(u; v) denotes the maximum length of their common

prefixes. Let ` = l
p(x; y1), r = l
p(x; yk), and i = b(k + 1)=2
. Assume thaty1 � x � yk and ` > r. How does x compare with yi when ` < l
p(y1; yi) and` > l
p(y1; yi) respectively?
[15 marks]

Assume that l > r and that l < l
p(y1; yi). Let u = y1[1 : : : l℄, � = y1[l + 1℄, � = x[l + 1℄.
Then u� is a prefix of x and � < � . This implies that yi < x < yk.
Now assume that l > r and l > l
p(y1; yi). Let k = l
p(y1; yi), u = y1[1 : : : k℄, � = y1[k+1℄,i
and � = yi[k + 1℄. Then u� is a prefix of x and � < � which implies that y1 < x < yi.

SEE NEXT PAGE

A
N

SW
ER

SDRAFT VERSION
2002 5 CSMTSP

c. State the cost of the binary search algorithm based on the use of longest common

prefixes of y’s.
[10 marks]

Running a binary search for a string x of length n by using the longest common
prefixes of the k sorted strings y’s would take O(n+ log k) time.

d. How many longest common prefixes of y’s need to be preprocessed to run the

binary search of 3.c?
[10 marks]

At each step in the algorithm of the previous question, one uses three longest com-
mon prefixes, namely l
p(x; y1), l
p(x; yk) and l
p(y1; yi). Since i = b(k + 1)
, we will
need to process log k longest common prefixes among the y0s and two ones on x.

4. Approximate matching

a. Define the k-differences approximate pattern matching problem. How would

you initialize the dynamic programming matrix for this problem?
[10 marks]

The k-difference approximate pattern matching problem consists in finding all the
substrings of a given text x which are at a distance less than or equal to a given
value k of a pattern y. To solve this problem via dynamic programming one has to
initialize all values in the first row of the DP matrix to zero and all values in the first
column to 1,2,3 . . . That is DP [i; 0℄ i for i = 0 to m and DP [0; j℄ 0 for j = 0 to n.

b. Let DP be the k-differences dynamic programming matrix of two strings x andy of respective lengths m and n. Give the recurrence relation to compute DP [i; j℄
for 0 � i < m, 0 � j < n when unit costs are applied for each edit operation.

Give the DP matrix for x = aaababaabbab, y = ababb and k = 1.
[15 marks]

If unit cost operations (insert, delete, substitute) are assumed then the following re-
lation produces the desired value for DP [i; j℄.DP [i; j℄ = DP [i� 1; j � 1℄ if xi = yi,DP [i; j℄ = minfDP [i� 1; j � 1℄ + 1; DP [i� 1; j℄ + 1; DP [i; j � 1℄ + 1g otherwise.

0 1 2 3 4 5 6 7 8 9 10 11 12

a a a b a b a a b b a b

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 a 1 0 0 0 1 0 1 0 0 1 1 0 1

2 b 2 1 1 1 0 1 0 1 1 0 1 1 0

3 a 3 2 1 1 1 0 1 0 1 1 1 1 1

4 b 4 3 2 2 1 1 0 1 1 1 1 2 1

5 b 5 4 3 3 2 2 1 1 2 1 1 2 2

The string y occurs with k = 1 error in the string x ending at position 6,7,9 and 10.

SEE NEXT PAGE

A
N

SW
ER

SDRAFT VERSION
2002 6 CSMTSP

c. Outline the trace-back strategy for locating the starting positions of the approx-

imate occurrences of a pattern in a text.
[15 marks]

Recall that DP table output all locations in a text x where a k-difference occur-
rence of a pattern y ends. To locate the possible starting position of a k-difference
occurrence one has to perform a trace-back operation through the matrix. We
start at any location of the DP matrix for which DP [i;m℄ � k and follow the inverse
operations that where performed to achieve the values in the matrix. Obviously the
optimal ”return path” is not unique so one chooses any minimum value from the
three adjacent cells until we hit the top of the matrix which will give us the value of
the possible starting position of the k-difference occurrence.

d. Give the relation to compute DP [i; j℄ as in 4.b when weighted costs are assumed.

[10 marks]

If weighted costs are used then one has to change the formula for computing the
value of DP [i; j℄. During the main part of the dynamic programming algorithm, we
assign DP [i; j℄ minfDP [i� 1; j � 1℄ + Sub(xi; yj); DP [i� 1; j℄ +Del(xi); DP [i; j � 1℄ +Ins(yj)g.
Where Sub(xi; yj) is the cost for substitution xi with yj ,Del(xi) is the cost for deletingxi, Ins(yj) is the cost for inserting yj .

5. Suffix tree

a. Design the suffix tree of the string aaaabaaab.
[15 marks]

See last page.

b. Define and explain the data structures used to implement a suffix tree.
[15 marks]

Each node or state p of the automaton can be implemented as a structure contain-
ing two pointers: the first pointer is to implement the suffix link; the second pointer
gives access to the list of arcs outgoing from state p. The list can contain 4-tuples
in the form (a; i; l; q) where a is a letter, i and l are integers, and q is a pointer to
a state. they are such that (p; u; q) is an arc of the automaton with a = y[i℄ andu = y[i : : : i+ l � 1℄.

SEE NEXT PAGE

A
N

SW
ER

SDRAFT VERSION
2002 7 CSMTSP

c. Let sy be the suffix link function of the suffix tree of y. Prove that sy(p) is a fork

if the node p is a fork in the tree. Give the lower and upper tight bounds on the

number of nodes in the tree.
[10 marks]

Recall that in the construction of a suffix tree we insert suffixes in order of decreasing
lengths. By definition, if p is a fork then p has outdegree two at least or is a terminal
node with outdegree one and represents a suffix. Denote av as the head of at least
two suffixes ending at node p, and let Sy(p) = q, where q is the node identified withv. Then we know that in some previous iteration the suffix starting with v was inserted
in the tree and since at least two tails split at p then similarly they must be a split at q
or else it is terminal state with outdegree one.
let Ty be the suffix tree associated with the string y of length n+1. Suppose that Ty is
a complete binary tree, thus branching by two at each level. this will maximize the
number of internal nodes in Ty. By proceeding by induction we can see that the
two subtrees of Ty of size (n + 1)=2 also have n=2 internal nodes. i.e. the sequence:
1,1+2=3,3+4=7,7+8=15,15+16=31 . . . Hence for a string of length n, there are at leastn and at most 2n nodes in the tree.

d. Describe an outline in your own words of the computation of sy(p) if it is the

only one value sy(q), q node of the tree, not yet defined in the structure.
[10 marks]

Main steps:

1. Goto parent r of p.

2. Use the suffix link of r.
3. Go down the tree by the label of (r,p).

The running time of step 3 above is proportional to the number of arcs along the
path and not to the length of the label.

SEE NEXT PAGE

A
N

SW
ER

SDRAFT VERSION
2002 8 CSMTSP

Figure 1: Question 1. (a) The Aho-Corasick automaton for the strings :
{abababa,aaba,baba,bab} Failure links are doted lines and doubled line nodes are
terminal.

Figure 2: Question 5. (a) The suffix tree associated with the string aaaabaaab.
Doubled line node are terminal and the numbers next to the terminal nodes represents
the suffix index in the string

a b a b a b a

a
b a

b
a b a

aaab

b

a

a
a

abaaab

b

aaab

b

aaab

b

aaab

4

1

0

2

3

6

7

8

5

9

FINAL PAGE

