CSMTSP Text Searching and Processing - Solutions

- 1. In the following we consider the binary alphabet $\Sigma = \{a, b\}$.
 - (a) Describe in pseudo-code a linear-time construction of the *KM*-*P_next* array used in the Knuth-Morris-Pratt (KMP) string-matching algorithm. [10 marks]

[Ans]

```
1 procedure ComputeKMPNext(p) {m = |p|}

2 begin

3 j \leftarrow KMPnext[1] \leftarrow 0

4 for i \leftarrow 1 to m do

5 while j > 0 and p[i] \neq p[j] do j \leftarrow KMPnext[j]

6 j \leftarrow j + 1

7 if i = m or p[i + 1] \neq p[j] then KMPnext[i + 1] \leftarrow j

8 else KMPnext[i + 1] \leftarrow KMPnext[j]

9 end
```

(b) Give the KMP_next array for the pattern x = "bbabbabaaa". [10 marks]

	[Ans]												
	0	1	2	3	4	5	6	7	8	9	10	11	i
	ϵ	ъ	ъ	a	b	ъ	а	b	a	a	a		p[i]
-	-1	0	1	0	1	2	3	4	0	0	0		BorderArray[i]
		0	1	2	1	2	3	4	5	1	1	1	$MPnext[i] \\ KMPnext[i]$
		0	0	2	0	0	2	0	5	1	1	1	KMPnext[i]
													•

(c) Describe in pseudo-code the search procedure of the KMP stringmatching algorithm. [10 marks]

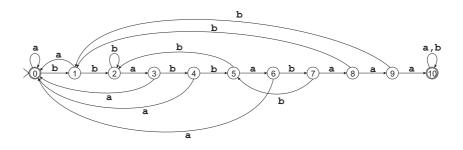
[Ans]

1 procedure
$$\text{KMP}(t, p) \quad \{ n = |t|, m = |p| \}$$

2 begin

- (d) For x ∈ Σ*, the string-matching automaton of x, SMA(x), is the minimal deterministic automaton accepting the language Σ*x. Design the following string-matching automaton: SMA("bbabbabaaa"). [10 marks]

[Ans]



(e) State the maximal time spent by the KMP search procedure on a single letter of a text for a pattern of length m (over Σ), when the text is over Σ, and when the text is over the alphabet {a, b, c}. [10 marks]

 $[\mathbf{Ans}]$ It is constant in the first case because each mismatch is immediately followed by a match, and in the second case it is $O(\log m)$ because the delay is $\leq \log_{\Phi}(m+1)$, where $\Phi = (1 + \sqrt{5})/2$.

- **2.** It is recalled that Suf[j] is the longest suffix of x ending at position j on x.
 - (a) Compute the table Suf for x = "aaabbabbabbabbabbabbabbab". [10 mark-s]

[Ans]

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	i
ϵ	а	a	a	b	b	a	b	b	a	Ъ	a	b	а	a	b	b	a	b	p[i]
	0	0	0	2	1	0	6	1	0	5	0	3	0	0	2	1	0	18	Suf[i]

(b) Let k, j, k', ℓ be positions on the word x such that $1 \le k < j < k' \le \ell < m$. Assume that x[k..j] and $x[k'..\ell]$ are the longest suffixes of x ending at respective positions j and ℓ on x, and that k' > k + (m - j). Give the value $Suf[\ell - (m - j)]$. [15 marks]

[Ans]

 $Suf[\ell - (m - j)] = Suf[\ell]$

(c) Write a procedure that computes table Suf.

[15 marks]

[Ans]

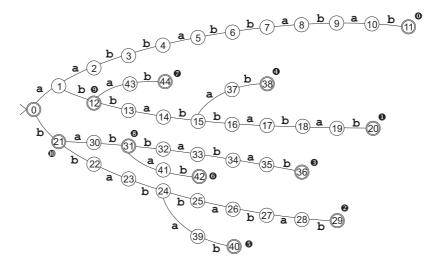
1 procedure ComputeSuf(p) { m = |p| } 2 begin $Suf[m] \leftarrow m; j \leftarrow m-1; k \leftarrow m$ 3 for $i \leftarrow m-1$ downto 1 do 4 if i - Suf[i + m - j] > k then $Suf[i] \leftarrow Suf[i + m - j]$ 5 else 6 $j \leftarrow i; k \leftarrow \min(i,k); kk \leftarrow k+m-i$ 7 while $k \ge 0$ and x[k] = x[kk] do 8 $k \leftarrow k-1; \ kk \leftarrow kk-1$ 9 $Suf[i] \leftarrow m - kk$ 10 11 end

(d) What is the time complexity of your procedure in **2(c)**. Is it optimal? Justify the answer. [10 marks]

[Ans]

 ${\cal O}(m)$ because i or k are decremented at each step, and these variables take ${\cal O}(m)$ values.

3. (a) Give the trie of suffixes of the word "aabbabbabab". [15 marks][Ans]



(b) Give an example of a word of length m on the alphabet $\{a, b\}$ having a trie of suffixes of size $\Omega(m^2)$. [10 marks]

[Ans]

 $a^{m/4}b^{m/4}a^{m/4}b^{m/4}$ for two distinct letters a and b.

(c) Design an algorithm to compact the trie of suffixes of a word into its suffix tree. [15 marks]

[Ans]

The following procedure compacts a trie ${\cal T},$ even if suffix links are defined on states.

1 pi	1 procedure Compact(Trie T)									
2 b	egin									
3	$r \leftarrow \text{root of } T$									
4	for each arc (r, a, p) do									
5	Compact(subtree of T rooted at p)									
6	${f if}\ p\ {f has}\ {f exactly}\ {f one}\ {f child}\ {f then}$									
7	$q \leftarrow \text{that child}$									
8	$u \leftarrow \text{label of } (p,q)$									
9	replace p by q as child of r									
10	set $a \cdot u$ as label of (r, q)									

(d) Describe possible data structures required to implement the suffix tree of a word y. [10 marks]

[Ans]

Each node or state p of the automaton can be implemented as a structure containing two pointers: the first pointer is to implement the suffix link; the second pointer gives access to the list of arcs outgoing state p. The list can contain 4-tuples in the form (a, i, ℓ, q) where a is a letter, i and ℓ rae integers, and q is a pointer to a state. They are such that (p, u, q) is an arc of the automaton with a = y[i] and $u = y[i..i + \ell - 1]$.

4. (a) Define the Longest Common Subsequence (LCS) problem. What is the Longest Common Subsequence of "longest" and "large"? [10 marks]

[Ans]

The Longest Common Subsequence (LCS) of two strings, x and y, is a subsequence of both x and of y of maximum possible length. For x="longest" and y="large", LCS(x, y) = "lge".

(b) Give the recursive relation to compute the length of LCS[x, y], using notation m = |x|, n = |y| and condition $m \le n$. [15 marks]

[Ans]

$$L[i,j] = \begin{cases} 0, & \text{if either } i = 0 \text{ or } j = 0\\ L[i-1,j-1] + 1, & \text{if } x[i] = y[j]\\ \max\{L[i-1,j], L[i,j-1]\}, & \text{if } x[i] \neq y[j] \end{cases}$$

(c) Design an algorithm using Dynamic Programming to compute |LCS[x, y]| in space O(m). [15 marks]

[Ans]

```
1 procedure LCS(x, y) = \{m = |x|, n = |y|\}
 2 begin
         for i \leftarrow 0 to m do L[i] \leftarrow L'[i] \leftarrow 0
 3
         for j \leftarrow 1 to n do
 4
               for i \leftarrow 1 to m do
 5
                   if x_i = y_j then L[i] \leftarrow L'[i-1] + 1
 6
 7
                   else
                        \begin{array}{l} \mathbf{if} \ L'[i] > L[i-1] \ \mathbf{then} \ L[i] \leftarrow L'[i] \\ \mathbf{else} \ L[i] \leftarrow L[i-1] \end{array}
 8
 9
               L' \leftarrow L
10
         return L[m]
11
```

12 end

(d) Explain how to recover an LCS using $O(m \times n)$ space.[10 marks] [Ans]

To recover an LCS one has to perform a trace-back operation through the matrix. We start in location [m, n] and follow recursively to the location [m', n'] which value L[m', n'] has been used to get L[m, n]. The process ends on the first line or first column of the matrix. Letters collected at places on the path corresponding to equalities form an LCS.

- 5. Recall that, for a word u, $First_k(u)$ is u if $|u| \leq k$ and is u[0..k-1] otherwise. Recall also that $R_k[i]$ is the rank of $First_k(y[i..n-1])$ inside the ordered list of all $First_k(u)$, u non-empty suffix of y (ranks are numbered from 0).
 - (a) Compute R_1, R_2, R_3, R_4, R_8 for the word "aabbabbabab". [15 mark-s]

[Ans]											
0	1	2	3	4	5	6	7	8	9	10	i
a	а	ъ	b	а	b	b	а	ъ	a	b	$\stackrel{i}{y[i]}$
0	0	1	1	0	1	1	0	1	0	1	$R_1[i]$
0	1	4	3	1	4	3	1	3	1	2	$R_2[i]$
0	3	8	7	3	8	6	2	5	1	4	$R_4[i]$
0	4	10	8	3	9	7	2	6	1	5	$egin{array}{c} R_1[i] \ R_2[i] \ R_4[i] \ R_8[i] \end{array}$

(b) State the doubling lemma and prove it.

[10 marks]

[Ans] Let d be a symbol smaller than all symbols of the alphabet of y. For each position i on y and each k > 0, $R_{2k}[i]$ is the rank of $(R_k[i], R_k[i+k])$ in the ordered list of these pairs after padding y by enough d's.

Proof: it is sufficient to prove that, for two positions i and j, $R_{2k}[i] \leq R_{2k}[j]$ if and only if $(R_k[i], R_k[i+k]) \leq (R_k[j], R_k[j+k])$ in the lexicographic order. This is a simple verification.

(c) Design an algorithm to compute R_{2k} from R_k . [15 marks]

[Ans]

Using R_k , create the array L such that $L[i] = (R_k[i], R_k[i+k])$ for $0 \le i \le m$. Then $R_{2k}[i] =$ rank of L[i] into the ordered list of elements of L, according to the doubling lemma.

(d) State the complexity of the algorithm based on question 5(c) to compute $R_1, R_2, \ldots, R_{2^k}$, where k is the smallest integer satisfying the inequality $m \leq 2^k$. Explain your answer. [10 marks]

[Ans]

 $O(m \log m)$ because there are O(logm) steps, and each step can be implemented in linear time using bucket sorting in the procedure described in answer **5(c)**.

Final Page