CSMTSP Text Searching and Processing - Solutions

1. (a) The periods and borders of the string abaababaabaababaababa
are:
po = 5, by = abaababaabaababa
p1 = 13,b; = abaababa
po = 18,by = aba

p3 = 20, b3 =a
py=21,b5 =€
(b) The table Border of the string abaababaabaababaababa:
Border[0 : 21] =[-1,0,0,1,1,2,3,2,3,4,5,6,4,5,6,7,8,9,10,11, 7, 8]
(c) procedure COMPUTE_BORDERS(z : string ;m : integer) ;
begin

Border[0] :== —1;
for s := 1 to m do begin
j := Border[i — 1] ;
while j > 0 and z[i] # z[j + 1] do j := Border[j] ;
Borderli] :=j+1;
end ;
end ;

Since we know already the borders of the prefixes of the word u
and that a border of a border is also a border, we try to extend the
border of u with the symbol a. If this is successful then we just
increment the border by one, if not we fail and try and increment
the border of the border of u and so on until we have a match or
we find an empty border.

(d) To find if some prefix of x is a square one needs to scan the table
Border for values such that Border[i]| =i/2.

2. (a) See last pages.

(b) The search procedure of the AC automaton is defined by the fol-
lowing procedure for moving from one state to another according
to the current symbol being read from the text. Let p € @ be
a state of the automaton, § be the transition function, f be the
failure link and a € 3 be a symbol of the alphabet.

Next_State(p, a)

if 0(p, «) is defined then return §(p, @)

else if f(p) is defined then return Next_State(f(p),)
else return ¢y (initial state)

For each node in the automaton, one needs two pointers (one for
the failure link and one for the next node by following the tran-
sition function) and one variable for storing the data (a symbol
of the alphabet for example).

See last pages.

To find the number of occurrences of a given substring u of a
text x in a suffix tree of z we need to walk down the tree by
following the symbols of u. Then by doing a traversal of the
subtree starting under the last symbol of u we count the number
of terminal nodes. This number is the number of times u occurs
in z. In the case where the last symbol does not end on a node
but within a label of an edge of the tree, then we will consider
the node where this edge starts.

The k-difference approximate pattern matching problem consists
in finding all the substrings of a given text x which are at a
distance less than or equal to a given value k of a pattern y. To
solve this problem via dynamic programming one has to initialize
all values in the first row of the D P matrix to zero and all values
in the first column to 1,2,3... That is DPJ[i,0] < i for i = 0 to
m and DP|0, j] < 0 for j =0 to n.

If unit cost operation (insert,delete,substitute) are assumed then
the following relation produces the desired value for DP[i, j].
DPli,j] =min{DP[i — 1,5 — 1] if z; = y; else DP[i — 1,5 — 1] +
1,DP[i,j — 1]+ 1,DP[i — 1,7] + 1}.

011234 (5|6|7]|8|9]10
AIB|A/A|IB/A|JA|B|C|A

0 0j]0(0]0]J010]0]0]0]07]0
i1/{Bj1j140j1}|1y1j1{1j0}1]1
2/A (211|011 jO0]1|1]1]|1
3IA|3]2|2|1|0]1]1]0]|1]2]|1
41Cl4(3 13|21 (12|11 |1]2
S51A|b5 41431221]2]|2]2]|1

The string y occurs with £ = 1 error in the string x ending at
positions 6 and 10.

Recall that the D P table output all locations in a text z where a
k-difference occurrence of a pattern y ends. To locate the possible
starting position of a k-difference occurrence one has to perform
a trace-back operation through the matrix. We start in any lo-
cation of the DP matrix for which DP[i,m] < k and follow the
inverse operations that where performed to achieve the values in
the matrix. Obviously the optimal “return path” is not unique
so one chooses any minimum value from the three adjacent cells
until we hit the top of the matrix which will give us the value of
the possible starting position of the k-difference occurrence.

If weighted costs are used then one has to change the formula for
computing the value of DPJi, j]. During the main part of the dy-
namic programming algorithm, we assign D P[i, j] < min{DP[i—
1,5 = 1] 4+ Sub(z;,y;),

DPli,j — 1] + Tns(y),

DP[i—1,j] + Del(x;)}

. Where Sub(z;,y;) is the cost for substituing z; with y;, Ins(y;)
is the cost for inserting y; and Del(xz;) is the cost for deleting x;.

The asymptotic cost of a binary search for the string = of length
n in the list L of & lexicographically sorted strings y; is O(n log k)
time. A ”worst-case” example could be the search of z = aaa---a
in the list L = (aaa---a,aaa---b,aaa---bb,... bbb---b).

If information concerning the LCP’s is known then the time com-
plexity can be reduced to O(n + logk)

At each step in the algorithm of the previous question, one uses
three longest common prefixes, namely lep(z,y1), lep(x, yi) and

lep(yr,yi). Since ¢ = | (k+1)/2], we will need to preprocess log k
longest common prefixes among the y’s and two ones on z.

The suffix array of the string ababba is:

a
ababba
abba
ba
babba
bba

S

The time complexity for searching for a pattern z in a text y is
O(|] + log [y])

Figure 1: Question 2. (a) The Aho-Corasick automaton for the strings:
ababa, bab, bb. Black nodes are terminal states and failure links are dotted
lines.

b -~ a - b b - a
® (O -0O—0O—(0O—@

2@ O pOa®

\

O—5@®

Figure 2: Question 3. (a) Suffix trie without suffix links of ababba

bba

Figure 3: Question 3. (b) Suffix tree with suffix links of ababba

Q&
Ca

NN AN

e

Figure 4: Question 3. (c¢) Suffix automaton of ababba

