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Abstract

We prove that subrectangular skew Macdonald polynomials are
Macdonald polynomials.

1 Introduction

Macdonald polynomials are a (g,t)-deformation of the Schur functions and
appear in the representation theory of the affine Hecke algebra (see e.g.
[4, 6, 7]). The Macdonald polynomials considered in this paper are the ho-
mogeneous symmetric polynomials Py(X; ¢, t) defined by orthogonality condi-
tion w.r.t. a deformation of the usual scalar product on symmetric functions.
Our aim consists in proving that the skew Macdonald polynomial Pnj/x(Y; g, 1)
is equal (up to an explicit multiplicative constant) to the polynomial P

[r)- X"
where K” denotes the partition (A,,..., A1) if A = (A,...,A,). We show
that this equality is a consequence of properties relying the Macdonald poly-
nomials on a finite alphabet X = {x1,...,z,} and the alphabet of the oppo-
site variables XV := {x7', ..., 2!

The paper is organized as follows. After recalling the classical definition
and properties of Macdonald polynomials. We repeat, in Section 2 a theorem
shown in [5]. In Section 3, we investigate the polynomials Py(X";q,t) for a

finite alphabet X. Finally, Section 4 is devoted to our main theorem.



2 Background and notations

One considers the (g, t)-deformation (see e.g. [6]) of the usual scalar product
on symmetric functions defined for a pair of power sum functions ¥* and ¥*
(in the notation of [3] by

(PR
LI OIS SIVEN | Eares (1)
=1

The family of Macdonald polynomials (Py(X;q,t)), is the unique basis of
symmetric functions orthogonal w.r.t. (, ), verifying

Pr(X;q,t) = mp(X) + Z Uy (X)), (2)

H<A

where m, denote, as usual, a monomial function [3, 6]. Denote by Q(X; g, t)
the dual basis of P\(Y;q,t) for (, ),;. One has

Qx(X;q,t) = (Py, Pr) 1 PA(X; ¢, 1). (3)
The coefficient by(g,t) = (Py, Py),¢ is known to be

_ it

l—gq
ba(g,t) = H 1 — Q-ithi—i+L (4)
(4,5)eX

see [6] VI.6.
Let us define as in [6] VI 7, the skew @ functions by

<Q)\/m PV>q,t = (Qx, PuPV>q,t' (5)
Straightforwardly, one has

Quu(Xiq, ) = (Qx, PuP)gsQu(X5 4, 1) (6)

v

Let X = {xy,...,2,} be a finite alphabet and Y be an other (potentially
infinite) alphabet. Let us define as in [1] and [5] the transformation

/Yxp = SP(Y), (7)
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for each x € X and each p € Z. Set Y = i%;Y and consider the substitution

/ ¥ =57 (YY) = Qy(Ysq,0). (8)
yta
Setting
n 1
S Viat) = [ AGaOQ0AK ) ()
Py
where XV = {z7*,...,2;'}. In [5], the following property is shown.

Theorem 2.1 Let X = {z1,...,x,} be an alphabet and X\ = (A,...,\,)
be a partition and p C X. The polynomial f)z’/];(Ytq; q,t) is the Macdonald
polynomial

nk /vt 1 1- qiiltnﬁ#l
o300 = — T g CTHAK 4. 0)}Quu(Y.q.1) (10)
(i,9)EX

3 Macdonald polynomials for the alphabet
X\/

In this section X = {xy,...,x,} will denote an alphabet of size n. If A\ and
w are two partitions of length at most n, we denotes by (A u), the partition
defined by

()\ i ,u)n = SOI't(/\l + Mo /\2 + Hn—1,---, >‘n + ,ul)

where \; = p; = 0if {(A) +1 < i <nand {(g) +1 < j <n and sort(v) is
the unique (decreasing) partition obtained by a permutation of the elements
of v. One need the following result.

Proposition 3.1

PA(X;q,)PuXiq.t) = > fia.)P(X;q.t). (11)
(Mu)n<v

Proof First, let us prove the similar identity for Schur functions. That is,

SA(X)S;L<X): Z f:ASu(X)- (12)

(Afp)n<v
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The product of the two Schur functions can be written as the determinant

S\ (X)S,(X) = det (SN~ (X)) (13)

1<i,j<n*

The complete function S?#)(X) is the product of the diagonal elements and
(A1) is the minimal partition having a contribution in the expansion of the
determinant. Hence, one has

SHX)SX) = Y (1)SU(X). (14)
(/\ill)nSV
But, for each partition v, S"(X) =3 ., 5,(X), hence Equality (12) holds.

Now, each polynomial P)\(X;¢q,t) can be written as

Py(X;q,t) =) (%) S,(X") (15)

pP=A
(see [2] for a determinantal expression). Hence, from (12),
PG4, ) Pu(Xq.t) = ) (1) S,(X7). (16)
p= (M)

The result follows.
O

Example 3.2 If X = {x1, 29,23}, one has (21 { 211) = [322] and

(—1+q)(t+1) (g3 1) (¢%t—1) ‘
a7 LX)

+ R Pyt (X;.0,1) + P (K5 . 8).

P (X;q,8) P (X ¢, t) =

Corollary 3.3 Letn,r € N and X be an alphabet of size n, for any partition
A C [r"], one has

1 — gy 1pN—

A" X)Xt = ]

(i,5)EN

. q)‘j_it)\;_j+1 ‘P[Tn]_(Xn (X’ Q7 t)

Proof Consider the scalar product
(A"(X)"Qa(X 5 q,1), Pu(X;q,1)) = (A"(X), A(X; ¢, ) Pu(X5 ¢, 1)) (17)
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But A*(X)" = P,»(X;q,t) and [r"] is the minimal partition of length n
and weight rn for the dominance order. Hence, Lemma 3.1 implies that if

[7"] # (A T p) then (A™(X), Qr(X;q,t)P,(X;q,t)) = 0. It follows
(AP Qa4 8), Pul(Xs 0,)) = ()80 50 (18)

Hence, the polynomials A™(X)"Q(XY;¢q,t) and P[rn]JXn (X;q,t) are propor-

tional. Computing the coefficient of m, in the expansion of the two

T‘n] _Tn
polynomials, one finds

A (X Qu(XY:0.8) = (Po PP, 5. (Kia.t). (19)

The result follows. O

4 Subrectangular skew-Macdonald polynomi-
als are Macdonald polynomials

Theorem 4.1

1 — txi_qu;—i-s-l
Q[r”}/)\(Yv q, t) = H 1 — t)\i,j+1q)\j,i X
(3,7)EXN
1— qr ]tz
X H 1_qr ]+1t1 1Q[T'n] )\n(Y q’ )
(i.4)€lrm)/[rm]= X

(20)

Proof From Theorem 2.1 the proportionality of Qpnj/A(Y) and Q[rn]_‘in (Y)
is equivalent to the proportionality of ﬁf:;f]“ ) (Y g, t) and ﬁ?ﬁl}f,‘yn (Y': q,t)

for a m > n. More precisely, it suffices to show the property when n = m.
Writing

(0.0 = [ R0, 00K 0.1
and
a0 = [ P 5 ()
where X = {z1,...,z,}. Let us prove that

P[r"](X7Q7t)Q>\(Xv7Q7t) = (*)P[rn] )\n(X Q»t)
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where (x) is a constant coefficient. Since the size of X is n, Pn(X;q,t) =
(x1...z,)", we need only to prove

([L’l . l’n)rQ)\(Xv; q, t) = (*)P[rn]_in(x7 q, t)

This is a consequence of Corollary 3.3. One obtains

v 1— q)\jfi+1t)\;7j '
ﬁ[rn]/)\(x 4, t) = H 1 _ q)\jfit)\;—j—&-lfj[rn}—(xn (X7 9 t) (21>
(3,5)€AX

And by Theorem 2.1, one has find the result. [

Example 4.2 Let us explain how to obtain the following result

Qpuy(X;q,t) (-1 +q) (t+1)
Qa2 (X5 ¢, 1) = —22 pr—

The first product of Equality (20) can be graphically interpreted as

X | X
X | X | X

.. .o 1—tNi—Jd )‘;'71‘+1
and each marked cell (i, 7) by (4,7) := !

— T T ..
1—thi—it1g

Hence, the first product reads

(1 -1 —¢*t)(1 —q)(1 = ¢*)(1 —q) (22)
(1 =@ t2)(1 —qt?)(1 —t)(1 — qt)(1 = t)

The second product of (20) can be interpreted as

(1, 1)(2,1)(3,1)(1,2)(2,2) =

X | X | X
X | X

1—g4=it!

T Hence, the second product is

and each cell (7, 5) by (i,7) :=

(1—=¢**)(1 —qt*)(1 = *)(1 = qt)(1 — t)
(1—-¢*t)(1—¢?t)(1 —qt)(1 —¢*)(1 —q)

Multiplying (22) and (23), one recovers the result after simplifications

(23)

(2,2)(3,2)(4,2)(3,1)(4,1) =

(—1+q)(t+1)‘

(1,1)(2,1)(3,1)(1,2)(2,2)(2,2)(3,2)(4,2)(3,1)(4,1) = pra
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