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Abstract

We prove that subrectangular skew Macdonald polynomials are
Macdonald polynomials.

1 Introduction

Macdonald polynomials are a (q, t)-deformation of the Schur functions and
appear in the representation theory of the affine Hecke algebra (see e.g.
[4, 6, 7]). The Macdonald polynomials considered in this paper are the ho-
mogeneous symmetric polynomials Pλ(X; q, t) defined by orthogonality condi-
tion w.r.t. a deformation of the usual scalar product on symmetric functions.
Our aim consists in proving that the skew Macdonald polynomial P[rn]/λ(Y; q, t)
is equal (up to an explicit multiplicative constant) to the polynomial P

[rn]−←−λ n

where
←−
λ n denotes the partition (λn, . . . , λ1) if λ = (λ1, . . . , λn). We show

that this equality is a consequence of properties relying the Macdonald poly-
nomials on a finite alphabet X = {x1, . . . , xn} and the alphabet of the oppo-
site variables X∨ := {x−1

1 , . . . , x−1
n }.

The paper is organized as follows. After recalling the classical definition
and properties of Macdonald polynomials. We repeat, in Section 2 a theorem
shown in [5]. In Section 3, we investigate the polynomials Pλ(X∨; q, t) for a
finite alphabet X. Finally, Section 4 is devoted to our main theorem.
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2 Background and notations

One considers the (q, t)-deformation (see e.g. [6]) of the usual scalar product
on symmetric functions defined for a pair of power sum functions Ψλ and Ψµ

(in the notation of [3] by

〈Ψλ, Ψµ〉q,t = δλ,µzλ

l(λ)∏
i=1

1− qλi

1− tλi
. (1)

The family of Macdonald polynomials (Pλ(X; q, t))λ is the unique basis of
symmetric functions orthogonal w.r.t. 〈 , 〉q,t verifying

Pλ(X; q, t) = mλ(X) +
∑

µ≤λ

uλµmµ(X), (2)

where mλ denote, as usual, a monomial function [3, 6]. Denote by Qλ(X; q, t)
the dual basis of Pλ(Y; q, t) for 〈 , 〉q,t. One has

Qλ(X; q, t) = 〈Pλ, Pλ〉−1
q,t Pλ(X; q, t). (3)

The coefficient bλ(q, t) = 〈Pλ, Pλ〉−1
q,t is known to be

bλ(q, t) =
∏

(i,j)∈λ

1− qλj−i+1tλ
′
i−j

1− qλj−itλ
′
i−j+1

(4)

see [6] VI.6.
Let us define as in [6] VI 7, the skew Q functions by

〈Qλ/µ, Pν〉q,t := 〈Qλ, PµPν〉q,t. (5)

Straightforwardly, one has

Qλ/µ(X; q, t) =
∑

ν

〈Qλ, PνPµ〉q,tQν(X; q, t). (6)

Let X = {x1, . . . , xn} be a finite alphabet and Y be an other (potentially
infinite) alphabet. Let us define as in [1] and [5] the transformation

∫

Y
xp = Sp(Y), (7)
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for each x ∈ X and each p ∈ Z. Set Ytq = 1−t
1−q
Y and consider the substitution

∫

Ytq

xp = Sp
(
Ytq

)
= Qp(Y; q, t). (8)

Setting

Hn,k
λ/µ(Y; q, t) :=

1

n!

∫

Y
Pλ(X; q, t)Qµ(X∨; q, t)∆(X, q, t) (9)

where X∨ = {x−1
1 , . . . , x−1

n }. In [5], the following property is shown.

Theorem 2.1 Let X = {x1, . . . , xn} be an alphabet and λ = (λ1, . . . , λn)
be a partition and µ ⊂ λ. The polynomial Hn,k

λ/µ(Ytq; q, t) is the Macdonald
polynomial

Hn,k
λ/µ(Ytq; q, t) =

1

n!

∏

(i,j)∈λ

1− qi−1tn−j+1

1− qitn−j
C.T.{∆(X, q, t)}Qλ/µ(Y, q, t) (10)

3 Macdonald polynomials for the alphabet

X∨

In this section X = {x1, . . . , xn} will denote an alphabet of size n. If λ and
µ are two partitions of length at most n, we denotes by (λ ‡µ)n the partition
defined by

(λ ‡ µ)n := sort(λ1 + µn, λ2 + µn−1, . . . , λn + µ1)

where λi = µj = 0 if l(λ) + 1 ≤ i ≤ n and l(µ) + 1 ≤ j ≤ n and sort(v) is
the unique (decreasing) partition obtained by a permutation of the elements
of v. One need the following result.

Proposition 3.1

Pλ(X; q, t)Pµ(X; q, t) =
∑

(λ‡µ)n≤ν

f ν
µλ(q, t)Pν(X; q, t). (11)

Proof First, let us prove the similar identity for Schur functions. That is,

Sλ(X)Sµ(X) =
∑

(λ‡µ)n≤ν

f ν
µλSν(X). (12)
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The product of the two Schur functions can be written as the determinant

Sλ(X)Sµ(X) = det
(
Sλi−i+µn−j+1+j(X)

)
1≤i,j≤n

. (13)

The complete function S(λ‡µ)(X) is the product of the diagonal elements and
(λ ‡µ) is the minimal partition having a contribution in the expansion of the
determinant. Hence, one has

Sλ(X)Sµ(X) =
∑

(λ‡µ)n≤ν

(∗)Sν(X). (14)

But, for each partition ν, Sν(X) =
∑

ρ≥ν Sρ(X), hence Equality (12) holds.
Now, each polynomial Pλ(X; q, t) can be written as

Pλ(X; q, t) =
∑

ρ≥λ

(∗)Sρ(Xqt) (15)

(see [2] for a determinantal expression). Hence, from (12),

Pλ(X; q, t)Pµ(X; q, t) =
∑

ρ≥(λ‡µ)

(∗)Sρ(Xqt). (16)

The result follows.
¤

Example 3.2 If X = {x1, x2, x3}, one has (21 ‡ 211) = [322] and

P21(X; q, t)P211(X; q, t) =
(−1+q)(t+1)(qt3−1)(q2t−1)

(qt2−1)(qt+1)(qt−1)2
P322(X; q, t)

+ (−1+q)(t+1)
qt−1

P331(X; q, t) + P421(X; q, t).

Corollary 3.3 Let n, r ∈ N and X be an alphabet of size n, for any partition
λ ⊂ [rn], one has

Λn(X)rQλ(X∨; q, t) =
∏

(i,j)∈λ

1− qλj−i+1tλ
′
i−j

1− qλj−itλ
′
i−j+1

P
[rn]−←−λ n(X; q, t).

Proof Consider the scalar product

〈Λn(X)rQλ(X∨; q, t), Pµ(X; q, t)〉 = 〈Λn(X), Qλ(X; q, t)Pµ(X; q, t)〉. (17)
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But Λn(X)r = P[rn](X; q, t) and [rn] is the minimal partition of length n
and weight rn for the dominance order. Hence, Lemma 3.1 implies that if
[rn] 6= (λ ‡ µ) then 〈Λn(X), Qλ(X; q, t)Pµ(X; q, t)〉 = 0. It follows

〈Λn(X)rQλ(X∨; q, t), Pµ(X; q, t)〉 = (∗)δ
[rn]−←−λ n,µ

. (18)

Hence, the polynomials Λn(X)rQλ(X∨; q, t) and P
[rn]−←−λ n(X; q, t) are propor-

tional. Computing the coefficient of m
[rn]−←−λ n in the expansion of the two

polynomials, one finds

Λn(X)rQλ(X∨; q, t) = 〈Pλ, Pλ〉P[rn]−←−λ n(X; q, t). (19)

The result follows. ¤

4 Subrectangular skew-Macdonald polynomi-

als are Macdonald polynomials

Theorem 4.1

Q[rn]/λ(Y; q, t) =
∏

(i,j)∈λ

1− tλi−jqλ′j−i+1

1− tλi−j+1qλj−i
×

×
∏

(i,j)∈[rn]/[rn]−←−λ n

1− qr−jti

1− qr−j+1ti−1
Q

[rn]−←−λ n(Y; q, t).
(20)

Proof From Theorem 2.1 the proportionality of Q[rn]/λ(Y) and Q
[rn]−←−λ n(Y)

is equivalent to the proportionality of Hm,k
[rn]/λ(Y

tq; q, t) and Hm,k

[rn]−←−λ n
(Ytq; q, t)

for a m ≥ n. More precisely, it suffices to show the property when n = m.
Writing

Hn,k
[rn]/λ(Y

tq; q, t) =

∫

Ytq

P[rn](X; q, t)Qλ(X∨; q, t)

and

Hn,k
[rn]/λ(Y

tq; q, t) =

∫

Ytq

P
[rn]−←−λ n(X; q, t),

where X = {x1, . . . , xn}. Let us prove that

P[rn](X; q, t)Qλ(X∨; q, t) = (∗)P
[rn]−←−λ n(X; q, t)
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where (∗) is a constant coefficient. Since the size of X is n, P[rn](X; q, t) =
(x1 . . . xn)r, we need only to prove

(x1 . . . xn)rQλ(X∨; q, t) = (∗)P
[rn]−←−λ n(X; q, t).

This is a consequence of Corollary 3.3. One obtains

H[rn]/λ(X∨; q, t) =
∏

(i,j)∈λ

1− qλj−i+1tλ
′
i−j

1− qλj−itλ
′
i−j+1

H
[rn]−←−λ n(X; q, t). (21)

And by Theorem 2.1, one has find the result. ¤

Example 4.2 Let us explain how to obtain the following result

Q[44]/[32](X; q, t) =
Q [21](X; q, t) (−1 + q) (t + 1)

qt− 1

The first product of Equality (20) can be graphically interpreted as

× ×
× × ×

and each marked cell (i, j) by (i, j) := 1−tλi−jq
λ′j−i+1

1−tλi−j+1q
λ′

j
−i

.

Hence, the first product reads

(1, 1)(2, 1)(3, 1)(1, 2)(2, 2) =
(1− q3t)(1− q2t)(1− q)(1− q2)(1− q)

(1− q2t2)(1− qt2)(1− t)(1− qt)(1− t)
(22)

The second product of (20) can be interpreted as

× × ×
× ×

and each cell 〈i, j〉 by 〈i, j〉 := 1−q4−jti

1−q5−jti−1 . Hence, the second product is

〈2, 2〉〈3, 2〉〈4, 2〉〈3, 1〉〈4, 1〉 =
(1− q2t2)(1− qt2)(1− t2)(1− qt)(1− t)

(1− q3t)(1− q2t)(1− qt)(1− q2)(1− q)
(23)

Multiplying (22) and (23), one recovers the result after simplifications

(1, 1)(2, 1)(3, 1)(1, 2)(2, 2)〈2, 2〉〈3, 2〉〈4, 2〉〈3, 1〉〈4, 1〉 =
(−1 + q) (t + 1)

qt− 1
.
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