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Proposition
Introduction (01 4+ 09) oy i = (01,09) o5 i.

, _ _ Let the map X: s, X &,, — &,,, defined by
In a relatively recent paper, Bender, Brody and Meister introduce

a special Field Theory described by o1 X o9 =[[e; X ¢

1,]

where o1 = ¢;--- ¢ and oy = ¢} - - - ¢, are the decompositions of
o1 and o5 In a product of cycles and

IN—1

in order to prove that any sequence of numbers {a, } can be gen- cXd= T (6(s,0),(s+1,1)-- ,dp(s +IVI— 1,1V —1)),
erated by a suitable set of rules applied to some type of Feynman 5=0
diagrams . These diagrams actually are bicoloured multigraphs (A :=gcd, vV :=lem, ¢ = (ig, - -+ ,i1-1), ¢ = (Jo,- - - , jy_1) are two
with no isolated vertex. cycles and ¢(k, k") = i, mod ; + "I mod 1)
The cartesian action is compatible with the natural action.
Proposition

Actions of adirect product of (01 X o) o i = (01,0) o

permutation groups

1 =(0,2,3,1), ¢ = (7,6,5,4,3,2).
Direct product actions cy X ¢

Two pairs (G, X;) and (Gs, X5), each G; is a permutation group

acting on X;.
Intransitive action of G; x Gy on X; U X5 :
(01, 03) = {01:)5 ?fx c X |
’ ox If x € X5

(Gl, Xl) —+> (GQ, XQ) = (Gl X GQ, X1 || X2>
Cartesian action of G; x G5 on X; x Xo:
(01702)(%,1’2) — (01371702372).

(Gl,Xl) >< (GQ,XQ) = (G1 X GQ,Xl X XQ)

(28, 26,23, 17, 12, 10, 31, 25, 20, 18, 15, 9)

Explicit realization (30,27,21,16, 14, 11,29, 24,22, 19,13, 8).
Denote /
e by oy the natural action of s, on {0,...,n — 1},
e Dby o; the intransitive action of s,, x &,, on {0,--- ,n+m — 1} Algebraic structure
e Dby oc the cartesian action of ,, x s, 0n {0, ..., nm — 1}.

Proposition Associativity
Let o) € s, 09 € &, and o3 € &, be 3 permutations

1.0 —|—>(O'2 —903) = (0'1 —PO'Q> —+ 03
2.0’1 >< (0'2 >< 0'3) = <0'1 X 0'2) ><‘ 03

Proposition Semi-distributivity
o1 € 6, 02 € G, and 03 € 6

More precisely,

aori= |

and

O'lON’i IfO§z§n—1
gooy(i—n)+nifn<i<n4+m-—1"

(01,09) o¢ (j +nk) = (01 0n j) +n(oyon k)
foro<:<n+m-1,0<3<n—-1land0 <k <m—1.
et the map + : &, X &, — Gpam defined by o1 ><‘ (0'2 _|»0'3) — (0'1 ><‘ 0'2> _|—>(O'1 ><‘ O‘3>

o1 —+ 09 = 0109(n]

o1 = 1320 € &4, 09 = 534120 € .
o1 b o9 = 1320978564, 09 - 01 = 5341207986




Cycle index algebra

Cartesian product in Sym

Let c;(o) be the number of cycles of o of length ;5

3(0) = [[ 5" (1)
j=0
where 1); 1S a power sum symmetric function.
One defines
Q; ﬁj O‘iﬁj 1\]
I »i'x 11 Y = 11 %’v]’(])
1<i<o00 1<j<o0 1<4,57<00

Proposition i) 3 : &,>0Q|s,| — Sym is a morphism sending the
two laws + X respectively to x; .
More precisely, for o, 7 € L,,>¢5,, 0ne has

3(0 +7) =3(0)3(7) ; 3(0 X 7) = 3(0) *3(7) (2)
I1) x IS commutative and distributive over x.

Proposition P := {1172 ;" }4,),.,encr 1S closed by x and .
More precisely: (P, x,%) is isomorphic to a subsemiring of the
semiring N[(n®), sup)] (p := the set of prime numbers).

Cycle index polynomial

Polya cycle index polynomial :

1. Symmetric group s,, : Z(s,) = hy.
2. Alternating group A, : Z(A,) = h, + e,.

J

As 3 Is a morphism of 2-assoclative algebra, one recovers the clas-
sical relations

Z(G1 - Gy) = Z(G)Z(Ga), Z(Gh X Gy) = Z(Gy) * Z(G)

1. Intransitive product of &,, and s,,:
Z(&, + 6m) = hyhy,.

2. Cartesian product of s,, and s,, :

1 AAD;
Z(&n X &) = hp K hyy = > —H¢Aiv5jv
A=n, “AZp i,j

|p|l=m

where z, = [17"n;! If n; Is the number of parts of A\ equal

to 1.

Enumeration of a type of Feynman diagrams related to
guantum field theory of partitions

Thetypet(f)of f : X — L ={lp <ly--- <l---}Isthe vec-
tor (2o, ..., %, ... ) Where ¢ is the number of elements of X whose
Image by f 1s ;.

The shape s(f) of f is the partition obtained by sorting in the de-
creasing order t( f) and erasing the zeroes.

The number d3(G, L) of G-classes on L+ with the shape X is the
coefficient of m, in the expansion of Z((G) in the basis of mono-
mial symmetric functions:

2(G) = S d3(G, Lymy

Let us define the generating series of the type of our Feynman di-
agrams

where f}(n, m) denotes the number of Feynman diagrams of type
1.

Theorem One has the following decomposition of the cycle index
polynomial.

Z(&n X &m) = 2. F(k, p)yy™ ™ 4y,

(171) Slex(kyp) Slew(nam)

F<27 3) — 2(63 ><( 62) o F<17 3>y(:))) o F<27 Q)y(%
_F(Qv 1)y§ o F(17 Q)y(l)L o F<17 1)y(5) o yg
= yS + Y5y + 3ysy1 + 3ysyiyo + 2955
+3y3y7 + 6Ysyyo + SYsyivs + Yy + 3y3yi
+3y517 Y0 + SYsyiys + 3Ysyivs + Yot + 3Yayio
+5y275 + 3yaytye + ¥ + iy + vyl + 2uiy0.

For example, there is 8 (2,2,2)- Feynman diagrams:

A

Non commutative realizations

Free quasi-symmetric cycle index algebra

Recall that the algebra FQSym is defined by one of its bases, in-
dexed to & and defined as follows

F,= > wez{(A))
Std(w)=c""!
One has
FO’FT — FO'—HT.

This induces naturally a morphism of algebra

3 (@ Q6. +>,+) — (FQSym, ., +)

c— F°.

One defines the product x on FQSym by F7 x F7 := F°/5T, By
this way, 3 becomes a morphism of 2-associative algebra. Fur-
thermore, ~ 1S associative, distributive over the sum and semi-
distributive over the shifted concatenation .

Free quasi-symmetric Polya cycle index polynomial

Z(G):=3 (1 0) .
Proposition

Let Gy, G2 € &, be two permutation groups, one has
1.Z(Gy -+ Go) = Z(G1)Z(Go).
ZZ(Gl >< GQ) — Z(Gﬁ *Z(Gg)

Gsg N FQSym

Z\1lz/ 13
Symﬁ@@[@?n]

1. Free quasi-symmetric cycle index of s, :

1 o

0e6,
Analogous of z(H,) = Z(s,) = h,,.
2. Free cycle index polynomial of the alternative groups:

E, =Z(A,) — Z(s,).
analogous of elementary symmetric functions :

2(En) = Z(A,) — Z(s,) = e,.




