Free Quasi-Symmetric Functions, Product Actions and Quantum Field Theory of Partitions

G. H.E. Duchamp¹ J.-G. Luque², K. A. Penson³ and C. Tollu¹

Institut Galilée, LIPN
 Université Paris 13
 F- 93430 Villetaneuse, France
 e-mail: {ghed,ct}@lipn-univ.paris13.fr

² Institut G. Monge UMR-CNRS 8049 Univ. Marne la Vallée F-77454 Marne la Vallée, Cedex 2, France e-mail: luque@univ-mlv.fr ³ LPTCM CNRS UMR 7600 Univ. Marne Pierre et Marie Curie, F 75252 Paris Cedex 05, France. e-mail: penson@lptl.jussieu.fr

Introduction

In a relatively recent paper, Bender, Brody and Meister introduce a special Field Theory described by

$$G(z) = \left(e^{\left(\sum_{n\geq 1} L_n \frac{z^n}{n!} \frac{\partial}{\partial x}\right)}\right) \left(e^{\left(\sum_{m\geq 1} V_m \frac{x^m}{m!}\right)}\right)\Big|_{x=0}$$

in order to prove that any sequence of numbers $\{a_n\}$ can be generated by a suitable set of rules applied to some type of Feynman diagrams. These diagrams actually are bicoloured multigraphs with no isolated vertex.

Actions of a direct product of permutation groups

Direct product actions

Two pairs (G_1, X_1) and (G_2, X_2) , each G_i is a permutation group acting on X_i .

Intransitive action of $G_1 \times G_2$ on $X_1 \sqcup X_2$:

$$(\sigma_1, \sigma_2)x = \begin{cases} \sigma_1 x & \text{if } x \in X_1 \\ \sigma_2 x & \text{if } x \in X_2 \end{cases}.$$

 $(G_1, X_1) \rightarrow (G_2, X_2) := (G_1 \times G_2, X_1 \sqcup X_2).$

Cartesian action of $G_1 \times G_2$ on $X_1 \times X_2$:

$$(\sigma_1, \sigma_2)(x_1, x_2) = (\sigma_1 x_1, \sigma_2 x_2).$$

$$(G_1, X_1) \times (G_2, X_2) := (G_1 \times G_2, X_1 \times X_2).$$

Explicit realization

Denote

- by \circ_N the natural action of \mathfrak{S}_n on $\{0,\ldots,n-1\}$,
- by \circ_I the intransitive action of $\mathfrak{S}_n \times \mathfrak{S}_m$ on $\{0, \cdots, n+m-1\}$
- by \circ_C the cartesian action of $\mathfrak{S}_n \times \mathfrak{S}_m$ on $\{0, \dots, nm-1\}$. More precisely,

$$(\sigma_1,\sigma_2)\circ_I i = \left\{ egin{array}{ll} \sigma_1\circ_N i & ext{if } 0\leq i\leq n-1 \ \sigma_2\circ_N (i-n)+n ext{ if } n\leq i\leq n+m-1 \end{array}
ight.$$

and

$$(\sigma_1, \sigma_2) \circ_C (j + nk) = (\sigma_1 \circ_N j) + n(\sigma_2 \circ_N k)$$

for $0 \le i \le n + m - 1$, $0 \le j \le n - 1$ and $0 \le k \le m - 1$.

Let the map $+: \mathfrak{S}_n \times \mathfrak{S}_m \to \mathfrak{S}_{n+m}$ defined by

$$\sigma_1 \rightarrow \sigma_2 = \sigma_1 \sigma_2[n]$$

$$\sigma_1 = 1320 \in \mathfrak{S}_4, \, \sigma_2 = 534120 \in \mathfrak{S}_6.$$

$$\sigma_1 \to \sigma_2 = 1320978564, \, \sigma_2 \to \sigma_1 = 5341207986$$

Proposition

$$(\sigma_1 \rightarrow \sigma_2) \circ_N i = (\sigma_1, \sigma_2) \circ_I i.$$

Let the map \times : $\mathfrak{S}_n \times \mathfrak{S}_m \to \mathfrak{S}_{nm}$ defined by

$$\sigma_1 \times \sigma_2 = \prod_{i,j} c_i \times c'_j$$

where $\sigma_1 = c_1 \cdots c_k$ and $\sigma_2 = c'_1 \cdots c'_{k'}$ are the decompositions of σ_1 and σ_2 in a product of cycles and

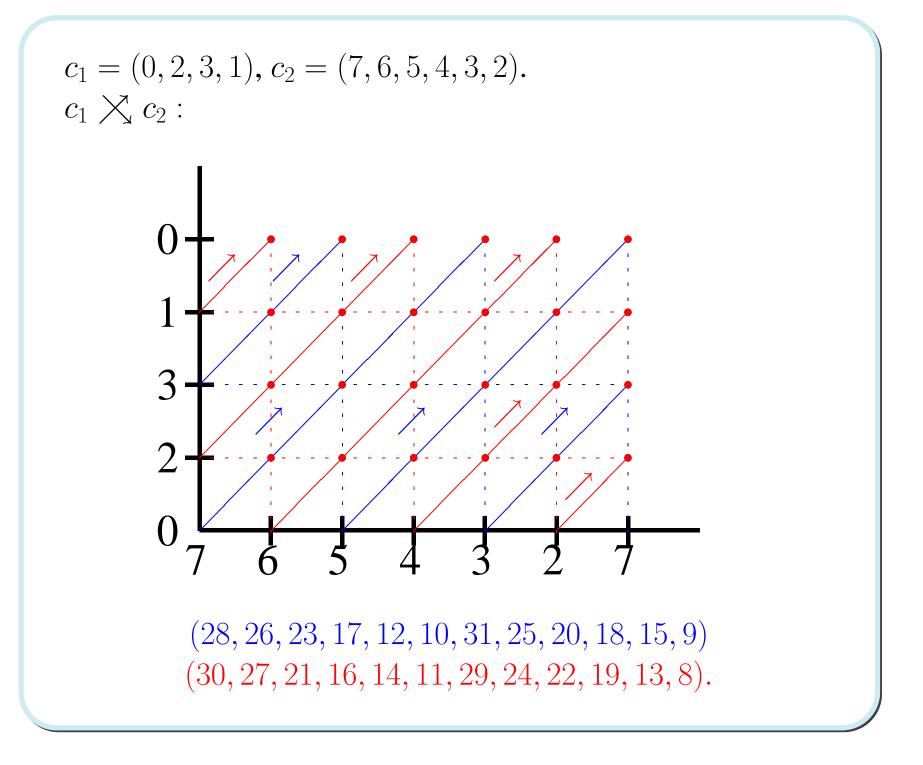
$$c \bowtie c' = \prod_{s=0}^{l \wedge l'-1} (\phi(s,0), \phi(s+1,1) \cdots, \phi(s+l \vee l'-1, l \vee l'-1)),$$

 $(\land := \gcd, \lor := lcm, c = (i_0, \cdots, i_{l-1}), c' = (j_0, \cdots, j_{l'-1}) \text{ are two cycles and } \phi(k, k') = i_{k \bmod l} + nj_{k' \bmod l'}.)$

The cartesian action is compatible with the natural action.

Proposition

$$(\sigma_1 \times_{\iota} \sigma_2) \circ_N i = (\sigma_1, \sigma_2) \circ_C i$$
.



Algebraic structure

Proposition Associativity

Let $\sigma_1 \in \mathfrak{S}_n$, $\sigma_2 \in \mathfrak{S}_m$ and $\sigma_3 \in \mathfrak{S}_p$ be 3 permutations

$$1. \sigma_1 \rightarrow (\sigma_2 \rightarrow \sigma_3) = (\sigma_1 \rightarrow \sigma_2) \rightarrow \sigma_3$$

$$2. \sigma_1 \times (\sigma_2 \times \sigma_3) = (\sigma_1 \times \sigma_2) \times \sigma_3$$

Proposition Semi-distributivity

$$\sigma_1 \in \mathfrak{S}_n, \, \sigma_2 \in \mathfrak{S}_m \text{ and } \sigma_3 \in \mathfrak{S}_p$$

$$\sigma_1 \times (\sigma_2 \to \sigma_3) = (\sigma_1 \times \sigma_2) \to (\sigma_1 \times \sigma_3)$$

Cycle index algebra

Cartesian product in Sym

Let $c_i(\sigma)$ be the number of cycles of σ of length j

$$\mathfrak{Z}(\sigma) = \prod_{j=0}^{\infty} \psi_j^{c_j(\sigma)} \tag{1}$$

where ψ_i is a power sum symmetric function. One defines

$$\prod_{1 < i < \infty} \psi_i^{\alpha_i} \star \prod_{1 < j < \infty} \psi_j^{\beta_j} = \prod_{1 < i, j < \infty} \psi_{i \lor j}^{\alpha_i \beta_j (i \land j)}$$

More precisely, for σ , $\tau \in \sqcup_{n>0} \mathfrak{S}_n$ one has

$$\mathfrak{Z}(\sigma \to \tau) = \mathfrak{Z}(\sigma)\mathfrak{Z}(\tau) \; ; \; \mathfrak{Z}(\sigma \times \tau) = \mathfrak{Z}(\sigma) \star \mathfrak{Z}(\tau) \tag{2}$$

ii) \star is commutative and distributive over \times .

Proposition $P := \{\prod_{i=1}^{\infty} \psi_i^{\alpha_i}\}_{(\alpha_i)_{i \geq 1} \in \mathbb{N}^{(\mathbb{N}^*)}}$ is closed by \times and \star . More precisely: (P, \times, \star) is isomorphic to a subsemiring of the semiring $\mathbb{N}[(\mathbb{N}^{(\mathfrak{p})}, sup)]$ ($\mathfrak{p} :=$ the set of prime numbers).

Cycle index polynomial

Polyà cycle index polynomial:

$$Z(G) = \Im\left(\frac{1}{|G|} \sum_{\sigma \in G} \sigma\right).$$

- 1. Symmetric group \mathfrak{S}_n : $Z(\mathfrak{S}_n) = h_n$.
- 2. Alternating group A_n : $Z(A_n) = h_n + e_n$.

As 3 is a morphism of 2-associative algebra, one recovers the classical relations

$$Z(G_1 \to G_2) = Z(G_1)Z(G_2), Z(G_1 \times_{\iota} G_2) = Z(G_1) \star Z(G_2)$$

1. Intransitive product of \mathfrak{S}_n and \mathfrak{S}_m :

$$Z(\mathfrak{S}_n \to \mathfrak{S}_m) = h_n h_m.$$

2. Cartesian product of \mathfrak{S}_n and \mathfrak{S}_m :

$$Z(\mathfrak{S}_n \bowtie \mathfrak{S}_m) = h_n \star h_m = \sum_{|\lambda|=n,} \frac{1}{z_{\lambda} z_{\rho}} \prod_{i,j} \psi_{\lambda_i \vee \rho_j}^{\lambda_i \wedge \rho_j},$$

where $z_{\lambda} = \prod i^{n_i} n_i!$ if n_i is the number of parts of λ equal to i.

Enumeration of a type of Feynman diagrams related to quantum field theory of partitions

The *type* t(f) of $f: X \to L = \{l_0 < l_1 \cdots < l_k \cdots \}$ is the vector $(i_0, \ldots, i_p, \ldots)$ where i_k is the number of elements of X whose image by f is l_k .

The *shape* s(f) of f is the partition obtained by sorting in the decreasing order t(f) and erasing the zeroes.

The number $d_{\lambda}^s(G,L)$ of G-classes on L^X with the shape λ is the coefficient of m_{λ} in the expansion of Z(G) in the basis of monomial symmetric functions:

$$Z(G) = \sum_{\lambda} d_{\lambda}^{s}(G, L) m_{\lambda}.$$

Let us define the generating series of the type of our Feynman diagrams

$$F(n,m) := \sum_{I=(i_0,...,i_p,...)} f_I^t(n,m) \prod_{k=0}^{\infty} y_k^{i_k},$$

where $f_I^t(n,m)$ denotes the number of Feynman diagrams of type I.

Theorem One has the following decomposition of the cycle index polynomial.

$$Z(\mathfrak{S}_n \times \mathfrak{S}_m) = \sum_{(1,1) \leq_{lex}(k,p) \leq_{lex}(n,m)} F(k,p) y_0^{nm+kp-np-mk} + y_0^{nm}.$$

$$F(2,3) = Z(\mathfrak{S}_3 \times \mathfrak{S}_2) - F(1,3)y_0^3 - F(2,2)y_0^2$$

$$-F(2,1)y_0^4 - F(1,2)y_0^4 - F(1,1)y_0^5 - y_0^6$$

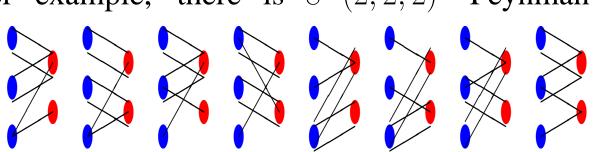
$$= y_2^6 + y_2^5y_1 + 3y_2^4y_1 + 3y_2^4y_1y_0 + 2y_2^4y_0^2$$

$$+3y_2^3y_1^3 + 6y_2^3y_1^2y_0 + 5y_2^3y_1y_0^2 + y_2^3y_0^3 + 3y_2^2y_1^4$$

$$+3y_2^2y_1^3y_0 + 8y_2^2y_1^2y_0^2 + 3y_2^2y_1y_0^3 + y_2y_1^5 + 3y_2y_1^4y_0$$

$$+5y_2y_1^3y_0^2 + 3y_2y_1^2y_0^3 + y_1^6 + y_1^5y_0 + y_1^3y_0^3 + 2y_1^2y_0^4.$$

For example, there is 8(2,2,2)- Feynman diagrams:



Non commutative realizations

Free quasi-symmetric cycle index algebra

Recall that the algebra \mathbf{FQSym} is defined by one of its bases, indexed to $\mathfrak S$ and defined as follows

$$\mathbf{F}_{\sigma} = \sum_{Std(w) = \sigma^{-1}} w \in \mathbb{Z}\langle\langle A \rangle\rangle$$

One has

$$F^{\sigma}F^{\tau} = F^{\sigma \to \tau}.$$

This induces naturally a morphism of algebra

$$\underline{\mathfrak{z}}: \left(\bigoplus \mathbb{Q}[\mathfrak{S}_n], \rightarrow, +\right) \rightarrow (\mathbf{FQSym}, ., +)$$

$$\sigma \rightarrow \mathbf{F}^{\sigma}.$$

One defines the product \star on FQSym by $F^{\sigma} \star F^{\tau} := F^{\sigma \times \tau}$. By this way, <u>3</u> becomes a morphism of 2-associative algebra. Furthermore, \star is associative, distributive over the sum and semi-distributive over the shifted concatenation.

Free quasi-symmetric Polyà cycle index polynomial

$$\underline{Z}(G) := \underline{\mathfrak{Z}}\left(\frac{1}{|G|}\sum_{\sigma \in G}\sigma\right).$$

Proposition

Let $G_1, G_2 \in \mathfrak{S}_{sg}$ be two permutation groups, one has

$$1.\underline{Z}(G_1 \rightarrow G_2) = \underline{Z}(G_1)\underline{Z}(G_2).$$

$$2.\underline{Z}(G_1 \times_{\iota} G_2) = \underline{Z}(G_1) \star \underline{Z}(G_2).$$

$$\mathfrak{S}_{sg} \xrightarrow{\underline{Z}} \mathbf{FQSym}$$

$$Z \downarrow z \swarrow \uparrow \underline{\mathfrak{Z}}$$

$$Sym \longleftrightarrow \mathfrak{Q}[\mathfrak{S}_n]$$

1. Free quasi-symmetric cycle index of \mathfrak{S}_n :

$$\mathbf{H}_n := \underline{Z}(\mathfrak{S}_n) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} F^{\sigma}.$$

Analogous of $z(\mathbf{H_n}) = Z(\mathfrak{S}_n) = h_n$.

2. Free cycle index polynomial of the alternative groups:

$$\mathbf{E}_n := \underline{Z}(A_n) - \underline{Z}(\mathfrak{S}_n).$$

analogous of elementary symmetric functions:

$$z(\mathbf{E_n}) = Z(A_n) - Z(\mathfrak{S}_n) = e_n.$$