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Introduction

Quantifying entanglement in multipartite systems is a fundamental
issue in Quantum Information Theory. However, for systems with
more than two parts, very little is know in this respect. For system
of up to 4 qubits, a complete classification of entanglement patterns
and of corresponding invariants under local filtering operations (also
known as SLOCC, Stochastic Local Operations assisted by Classi-
cal Communication) is know [16, 9]. Klyachko [5, 6] proposed to
associate entanglement (of pure states) in a k-partite system with
the mathematical notion of semi-stability, borrowed from geometric
invariant theory, which means that at least one SLOCC invariant is
non zero. However, even for system of k qubits, the complexity of
these invariants grows very rapidly with the number of parts. For
k = 2, they are given by simple linear algebra [15, 4]. The case
k = 3 is already nontrivial but appears in the physics literature in
[18] and boils down to a mathematical result which was known by
1880 [7]. The case k = 4 is quite recent [9], and to the best of our
knowledge, few is known for 5-qubit systems [14].

Our main result is a closed expression of the Hilbert series of the al-

gebra of SLOCC invariants of pure 5-qubit states. This result, which

determines the number of linearly independent homogeneous invari-

ants in any degree, was obtained through intensive symbolic com-

putations relying on a very recent algorithm for multivariate residue

calculations.

Hilbert series

Denote by V = C
2 the local Hilbert space of a two state particle.

The state space of a five particule system is H = V ⊗5, which will
be regarded as the natural representation of the group of invertible
local filtering operations, also known as reversible stochastic local
quantum operations assisted by classical communication

G = GSLOCC = SL(2, C )×5,

that is, the group of 5-tuples of complex unimodular 2 × 2 matrices.
We will denote by

|Ψ〉 =
1

∑

i1,i2,i3,i4,i5=0

Ai1i2i3i4i5|i1〉|i2〉|i3〉|i4〉|i5〉

a state of the system. An element g = (kgj
i ) of G maps |Ψ〉 to the

state

|Ψ′〉 = g|Ψ〉

whose components are given by

A′
i1i2i3i4i5

=
∑

j

1gj1

i1
2gj2

i2
3gj3

i3
4gj4

i4
5gj5

i5Aj1j2j3j4j5
(1)

We are interested in the dimension of the space Id of all G-invariant
homogeneous polynomials of degree d = 2m (Id = 0 for odd d) in
the 32 variables Ai1i2i3i4i5.
It is known that it is equal to the multiplicity of the trivial charac-
ter of the symmetric group S2m in the fifth power of its irreducible
character labeled by the partition [m,m]

dim Id = 〈χ2m|(χmm)5〉. (2)

The generating function of these numbers

h(t) =
∑

d≥0

dim Id td (3)

is called the Hilbert series of the algebra I =
⊕

d Id. Standard ma-
nipulations with symmetric functions allow to express it as a multi-
dimensional residue:

h(t) =
∮ du1

2πıu1
· · ·

∮ du5

2πıu5

A(u)

B(u; t)
(4)

where the contours are small circles around the origin,

A(u) =
5

∏

i=1

(

1 + 1/u2
i

)

(5)

and
B(u; t) =

∏

ai=±1

(1 − t ua1

1 ua2

2 ua3

3 ua4

4 ua5

5 ) (6)

Such multidimensional residues are notoriously difficult to evaluate.
After trying various approaches, we eventually succeded by means
of a recent algorithm due to Guoce Xin [19], in a Maple implemen-
tation. The result can be cast in the form

Hilb(Inv) =
P (t)

Q(t)

P (t) is an even polynomial of degree 104 with non negative integer
coefficients an

P (t) =
52

∑

k=0

a2kt
2k

given in table

n an

0 1
8 16
10 9
12 82
14 145
16 383
18 770
20 1659
22 3024
24 5604
26 9664
28 15594

n an

30 24659
32 36611
34 52409
36 71847
38 95014
40 119947
42 14849
44 172742
46 195358
48 214238
50 225699
52 229752

n an

54 225699
56 214238
58 195358
60 172742
62 146849
64 119947
66 95014
68 71847
70 52409
72 36611
74 24659
76 15594

n an

78 9664
80 5604
82 3024
84 1659
86 770
88 383
90 145
92 82
94 9
96 16
104 1

Interpretation

On the expression of the Hilbert series: a complete description of
the algebra by generators and relations is out of reach.
The structure of Cohen-Macaulay [2, 11, 1] of the algebra may be
more relevant:

•There must exist a set of 17 = dimH−dim SLOCC algebraically
independent invariants.

•The denominator of the series is precisely a product of 17 fac-
tors. This makes plausible that these invariants can be choosen
as five polynomials of degree 4, one polynomial of degree 6, five
polynomials of degree 8 ), one polynomial of degree 10 and five
polynomials of degree 12.

•These 17 polynomials are called the primary invariants.

•The numerator should then describe the secondary invariants: a
set of 3014400 homogeneous polynomials such that any invariant
polynomial can be uniquely expressed as a linear combination of
secondary invariants, the coefficients being themselves polynomi-
als in the primary invariants.

Using transvectants, which are classical tools of invariant theory
(see [13]), we have computed a complete set of primary invariants
of degree 4 and 6 [10].

Conclusion

This is the simplest kind of description to be expected but far too
complex for physical applications. Furthermore, the knowledge of
the invariants is not sufficient to classify entanglement patterns (see
[16, 8, 9] for smaller case). The only known general approach for
classifying orbits (entanglement patterns) requires the computation
of the algebra of covariants (already almost intractable in the case of
four qubits).
However, a closer look at the 4-qubit system, reveals that the clas-
sification of Verstraete et al. [16, 17] can be reproduced by means
of only a small set of covariants. Finally, the investigation of en-
tanglement measures requires an understanding of invariants under
local unitary transformations (LUT) [3] . In a forthcoming paper, we
will explain how to obtain LUT-invariants from SLOCC-covariants.
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