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Abstract

We investigate the homogeneous symmetric Macdonald polyno-
mials Py(X;q,t) for the specialization t = ¢*. We show an identity
1—q
1—qk
sequence, we describe an operator whose eigenvalues characterize the

polynomials Py (X;q, ¢*).

relying the polynomials Py(X;q,¢") and Py < X q, qk). As a con-

1 Introduction

Macdonald polynomials are (g, t)-deformations of Schur functions which play
an important role in the representation theory of the double affine Hecke
algebra [8, 10] since they are the eigenfunctions of the Cherednik elements.
The polynomials considered here are the homogeneous symmetric Macdonald
polynomials Py(X;gq,t) and are the eigenfunctions of the Sekiguchi-Debiard
operator. For (q,t)-generic, these polynomials are completely characterized
by its eigenvalues, since the dimensions of the eigenspaces is 1. It is no
longer the case when t is specialized to a rational power of q. Hence, rather
than using eigenvalues, one characterizes the Macdonald (homogeneous sym-
metric) polynomials by orthogonality (w.r.t. to a (g,t)-deformation of the
usual scalar product on symmetric functions) and by some conditions on
their dominant monomials (see e.g. [9]). In this paper, we consider the
specialization t = ¢* where k is a strictly positive integer. One of our moti-
vations is to generalize an identity given in [1], which shows that even powers
of the discriminant are rectangular Jack polynomials. Here, we show that
this property follows from deeper relations between the Macdonald polyno-

mials Py\(X; ¢, ¢*) and Py (f_;qqu; q, qk> (in the A-ring notation). This result
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is interesting in the context of the quantum fractional Hall effect[5], since
it implies properties of the expansion of the powers of the discriminant in
the Schur basis [3, 4, 11]. It implies also that the Macdonald polynomials
(for t = ¢*) are characterized by the eigenvalues of an operator 9t described
in terms of isobaric divided differences and whose the dimension of each
eigenspace is 1.

The paper is organized as follow. After recalling notations and back-
ground (Section 2) for Macdonald polynomial, we give, in Section 3, some
properties of the operator which substitutes a complete function to each
power of a letter. These properties allow to show our main result in Section 4

which is an identity relying the polynomial Py (X;q, ¢*) and P (11__qqk X; q, qk> )
As a consequence, we describe (Section 5) an operator 9t whose eigenvalues
characterize the Macdonald polynomials P\(X; ¢, ¢*). Finally, in Section 6,

we give an expression of 91 in terms of Cherednik elements.

2 Notations and background

Consider an alphabet X potentially infinite. We will use the notations of
[7] for the generating function o, (X) of the complete homogeneous functions

SP(X), '
0. (X) = Zsi(X)zi =11 —

The algebra Sym of symmetric function has a structure of A-ring [7]. We
recall that the sum of two alphabets X 4+ Y is defined by

0:(X+Y) = 0.(X)o.(Y) = Y S (X+ V)2

In particular, if X = Y one has ¢,(2X) = ¢,(X)?. This definition is extended
for any complex number a by o,(aX) = 0,(X)®. For example, the generating
series of the elementary function is

AX) = S AX)Z =T],(1 +z2)
= LX) = ¥, (C1S (=X)2,
The complete functions of the product of two alphabets XY are given by the
Cauchy kernel

KO Y) = () = 37 5068) = [] [] 7= = s,

zeXyeY 1- LL’yt




where S\ denote, as in [7], a Schur function. More generally, one has
= ANX)BA(Y
A

for any pair of basis (A,)x and (B)), in duality for the usual scalar product

(: )

2.1 Macdonald polynomials

One considers the (g, t)-deformation (see e.g. [9]) of the usual scalar product
on symmetric functions defined for a pair of power sum functions ¥* and W*
(in the notation of [7]) by

(N 1 B q)‘i
<\I])\ qt—(SAuZ)\H 1_t>\z (1)

The familly of Macdonald polynomials (Py\(X;q,t)), is the unique basis of
symmetric functions orthogonal for (, ), and such that

Py(X; q,t )+ > uaumy, (X (2)

u<A

where m) denote, as usual, a monomial function [7, 9]. The reproducing
kernel associated to this scalar product is

Ko(X,Y) o= (0 0 0, (X)WL (Y) = 0y (%XY)

see e.g. [9] (VI. 2). In particular, one has

Ko (X, Y) ZPA (X; g, )Qx(Y; 4, 1), (3)

where Q(X; ¢, 1) is the dual basis of Py(Y;q,t) for (, ),
(X5 q,t) = (Pr, PA)  PA(X; g, 1). (4)
The coefficient by(g,t) = (Py, Py),¢ is known to be

NN

l—q
b)\(qvt) = H 1 — q)\j—itkg—j—i-l (5)

(4,7)EX
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see [9] VI.6. Writing

Ky (G - q) X Y) K(X,Y), (6)

one finds that (PA ((l—q) X;q, )))\ is the dual basis of (Qx(X;q, 1)), for the
usual scalar product ( , ).
Note that there exists an other Kernel type formula which reads

A ( ZPX X;t,q)Pr(Y; g, t ZQN Xit,)QA(Y;q,t).  (7)

where X denotes the conjugate partition of X\. This formula can be found in
[9] VL5 p 329.
From Equalities (6) and (3) , one has

on060) = Ko (1051 ) = Z@A( Ui0t) BT 0. (9

Applying (7) to
Ul(XY) = >\_1(—XY>,

one obtains

a1(XY) =) (=D)MQu (=X, )Qx(Y; g, 1). (9)

A

Identifying the coefficient of P\(Y;¢,¢) in (8) and (9), one finds the property
below.

Lemma 2.1
. By l—gq .
Q)\(_th7Q) = (_1) P)\’ 1 _tXa qat . (10)

Unlike the usual (¢ = ¢t = 1) scalar product, there is no expression as a
constant term for the product (, ),+ when X = {21, ..., 2, } is finite. But the

Macdonald polynomials are orthogonal for an other scalar product defined
by

(F, 9yt = TS (K)g(K)8,,(5)) (1)



where C.T. means constant term, A,(X) = — , (a3D)ee =
" 1;[ (b2 s 0)ee
H(l —ab') and XY = {a7',...,2;'}. The expression of (Pr, Qx)gin 18
i>0
given by ([9] VI1.9)
1 1_ qz 1tn 7+1
(P @y = OB 00) TT S (12)
(4,7)EN
2.2 Skew symmetric functions
Let us define as in [9] VI 7, the skew @ functions by
Qx> Po)at = (@x, Puby)q (13)
Straightforwardly, one has
Q)\//J(X; q, t) = Z<Q)\7 PVP/J,>q,tQI/(X; q, t) (14>

Classically, one has *

Proposition 2.2 Let X and Y be two alphabets, one has
AKX+ Y;0,8) =D QulX5 ¢, )Qu/u(Yq,1),
o

or equivalently

w
The following identities generalize Equalities (3) and (7) and can be found
in [9] example 6 p.352

ZPP//\ (X;q, )QP/H(Y q,t) = Ku(X,Y) Zpu/p (X;q, )Q/\/p(Y q,t), (15)

P p
D Quin (Kt )Qpu(Yiq,t) = M(XY) D Quy (X, t,9) Qs (Vi 0, 1). (16)
P p

1See e.g. [9] VL.7 for a short proof of this identity
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3 The substitution 2¥ — SP(Y) and the Mac-
donald polynomials

Let X = {x1,...,x,} be a finite alphabet and Y be an other (potentially
infinite) alphabet. For simplicity we will denote by fY the substitution

/x” = SP(Y), (17)
¢
for each x € X and each p € Z.

3.1 Substitution formula

Set Yt = 11—:le and consider the substitution

/ a? = 5P (Y") = Qu(Y;q,1). (18)
yta
Setting
" 1
A Viat) = [ AGaDQ00AK e (1)
FJy
where XV = {z*,...,2;'}, one has the following property.

Theorem 3.1 Let X = {z1,...,x,} be an alphabet and X = (A,...,\,)
be a partition and p C X. The polynomial ﬁzﬁ(Ytq;q,t) is the Macdonald
polynomaial

1 1 — qi—ltn—j-i-l
n,k . .
ﬁ)\/u(ytq7 Q7t) - ﬁ H 1 — qitn_j

T (,5)EN

C.TAAX, ¢,1)}Qxr/u(Y, g, 1) (20)

Proof From the definition of the @, one has
/Yt 2P =Q,(Y;q,t) = CTAxPK, (x,Y)}. (21)
Hence, the polynomial Y)Z’/Z(th, q,t) is the constant term
G (Y1 g, ) = %C.T.{PA(XV; 0 (X 4, ) K (X, Y)ACK, 0, )}
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Equality (15) admits

th(x Y Qu X Q> Z p/,u Y 1q,t Qp(x q, )

as a special case. Hence,

ﬁA/u(Yt ,q, ) = ,q, Z /,u Y 1q,t QP(X 4, )>q,t;n

(22)
= <P)\(XV7 q, t)> Q)\(Xa 4, t)>:1,t;nQ)\/,u(Y> q, t)
Equality (12) allows to conclude. [J
3.2 Substitution dual formula
Setting Y = {—y1,..., ~Ym,... } if Y ={y1, ..., Ym,... } 2, one observes the

following propery.

Theorem 3.2 Let X = {xy,...,z,} be an alphabet and A = (Ay,..., \,) be
a partition and p C X. One has

5 (=Yiq,1) = 957, (Y5, q) (23)
where Y& = 229y,

1-t

Proof It suffices to show that
k() = L q T A gt Y, t
5A/u(_ 145 )—ﬁ H W TA{AX, ¢, 1) }Qxn/w (Y, 1, q).

" (i,5)EX
The proof of this identity is almost the same than the proof of (20) except
than one uses the formula

[T+ i) Qu(Xit,q) ZQp X;q,8)Qp (Yt q),

which is a special case of identity (16). O]

Note that in the case of partitions, one has

2The operation Y « Y makes sense for virtual alphabet since it sends any homogeneous
symmetric polynomial P(Y) of degree p to (—1)?P(Y).
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Corollary 3.3
1— qi—ltn—j—l-l

WC-T-{A(X,q,t)}Qx(Y,t,q) (24)

R 1
f.))\’k(_Y7Q7t) = m H

" (i.g)EX
Example 3.4 Consider the following equality
55?11?}3(_Y5 q,t) = (x)C.T{A(X, ¢,t)}Qa111/111(Y; £, 9).

where X = {21, x2}. The coefficient (x) is computed as follows. One writes
the partition 41 in a rectangle of height 2 and length 4.

X
X | X | X | X

1—qi—143—7

Each x of coordinate (i, j) is interpreted as the faction [i,j] := S5

Hence

(1—t)(1 —)(1 —gt*)(1 — ) (1 — ¢°F)

(*) = [172“17 1“27 1“37 1][47 1] = (1 . q)(l - qt)(l o q%)(l _ q3t)<1 _ q4t)

4 A formula relying the polynomials P (f_;qqu; q, qk)
and P, (X; q, qk)
When t = ¢* with k € N, Corollary 3.3 gives
Corollary 4.1
(=Y, 4.0") = Y5 (@)Qn (Y: ¥, ). (25)

where

. i — L+ k(i + 1)
k—1

1=0

and [Z] = (1_("17:);)'.(.1.(_1"_;3“) denotes the q-binomial.
q



Proof From Corollary 3.3, it remains to compute C.T.{A(X, ¢,t). The eval-
uation of this term is deduced from the g-Dyson conjecture 3

C.TA{A(z;q,¢")} = ”!ilj {Zlf—_llL

and can be found in [9] examples 1 p 372.

Hence, B
ﬁz7k(_Y> q, qk) = ;L’k(Q)Q)\’(Ya qka Q),
where "
1 — g =gt =1 2 T — 1
n,k q
Vo Il e U] @
(i,5)EA i=1 q
But,
H 1 — githn—i+)=1 ﬁ)ﬁz 1 — gitk+D)-1
1 1 — gitk(n—j) 1 — githi
(3,7)EX =0 j=1

Hence, rearranging the factors appearing in the right hand side of Equality
(26), one obtains

_ An—i . .
ik i+ 1 -1 1— qj+k(z+1)—1
ila) = H <{ ] H 1 — githi

=0 q j=1 (27>
n—1 .
B lM4—1+k@+U}

i=0 k—1 q

This ends the proof.[]

Example 4.2 Set kK = 2, n = 3 and consider the polynomial

— 1
5?530}(_Y§ 4,9°) = ol /_Y Pisg)(x1422+x3; 4,4, ) H(l T;x )(1 qr;r; ).

i#j
One has,

< 1=-¢)1-¢)

5?3120} (=Y;q, qz) = 3 Q[221] (Y; q2, q).
(1—-q)

3see [12] for a proof.



1
Qg = —/H(1 — za ) (28)
1 j

IR

and for each v € Z",
Sy\(X) = det (x;}ﬁ"_j) H(x, —z;)"h
i<j

Lemma 4.3 If v is a any vector of Z", one has

Qg5,(X) = 5,(X) := det(S" (X)) (29)
Proof The identity is obtain by the direct computation:

: 5 N 1 vi—j+1 1
al J oo L-zay') = — dt(#”)dt?
o LG =) et (s denta ™)
1 | |
- _'/ Z sign(o102) Vo1 () —o1(D)+02(1)—1
n! Jx I I

01,02€6, 7

1 .
= nl Z 81gn(0102) H Svgl(i)_o'l(i)"rO'Z(j)

0102 7

= det(SuH (X)),
O

In particular, Qg lets invariant any symmetric polynomial. The operator
A = Qs AM(X)™™ (30)

acts on symmetric polynomials by expanding theim in the Schur basis and
substracting m on each part.

Example 4.4 If X = {x, 29,23} consider the polynomial, and A = [320].
One has

(=g +1) S311(X) N (g+1)(qt* = 1) (=g +1) Sy21(X)
gt — 1 (gt — 1) (gt +1) '

P3(X;q,t) = S3(X) +

Hence,

_ L (cq+0)SaX) (@) (a2 —1) (—g+)S11 (X)
AUPp(X;q,t) = 357+ (@12 D)
(CarD(P) Puiat) | (—g+1) Pa(Kig)

(qt—1)*(gt+1) qt—1 :
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Theorem 4.5 If A\ denotes a partition of length at most n, one has

1-—
A % 0.5 [[ [ ') =B 0n (oK) G

=1 i#j

Proof From the definitions of the operators 2, (30) and s (28), one obtains

1
Ak-1)n-1) (X5 ¢, ¢" HH v — q';) /P)\<Xq ¢“)AX, q,4").
=1 i#j

Corollary 4.1 implies

1 /PA(X;q,q’“)A(X,q,qk) = 9V (Xiq,q")
X p—
= BM@)Qx(-Xid",q)
But, from Lemma 2.1, one has
_ 1—
Qv (=X:¢",q) = (1)MNQn (~X:¢", q) = Py <ﬁx; q,q’“) :
The result follows. [

Example 4.6 Set k=2, n =3 and A = [2]. One has

3

Poy(ay + w2 + 2330, ¢°) [ [ (25 — q25) = —¢*Spe2 + ¢ . 5[6 1]
i#j
20,5 2 5 7 7
g (¢° —1 ql¢+1)(¢" =1 qq" —1 q' —1
_'_%5[5,3] - ( q3 )_(1 >S[57271} - <q3 _ 1 >S[47371] + q _ 1 5[47272]
And,
2 q" -1
Ro Py (21 + 22 + 7359, ¢ )H(:cl —quj) = —— 1 St
i#j 9
Since,
al —+ i) + T3 2 1 —q
Po | ———5¢,¢° | = 5
2] ( 1+¢ 4,4 ) 1— 2]

one obtains

1 3 7 T+ X2 + 23 2
52[2P[2}($1+x2+$3;q7q2) | |($z’—q$j) = { } { } [ } P[z} (—;q,q .
iii 1 ‘ 1 ‘ 1 q 14¢



As a consequence, one has

Corollary 4.7 If A = p+ [((k — 1)(n —1))"],

(X4, 4" HH zi = q'w;) = B (@) Py (Wx;q,qk)

=1 i#j

Proof Since the size of X is n,
P\(X;q,¢") = P,(X;q, ") (.. .xn)(k_l)("_l).
Then, the result is a direct consequence of Theorem 4.5.]
Example 4.8 Set k =2, n =3 and A = [5,2]. One has,
P59 (w1 + 225 ¢, qg)(l"l — qza)(T1 — q2x22)(932 —qz1)(T9 — C_I21L"1)

1—¢")(1+¢" 1-¢)(1+g)(1+¢*)(1+¢*
q35[9,2]+( 1z(q5 )5[7,4}_( X 1)_(q5 i )5[8,3}-

This implies

2[213[5,2](56‘1 + T2;4, q3)(~”€1 — quy) (71 — q2$2)(~”€2 — q1)(T2 — q2$1) =
(x1x2)_2p[5,2} (71 + 193 q, q3>(x1 — qry) (11 — q25€2)($2 — qr1)(T2 — qle) =
P[s](fﬁ + T2 4, q3)($1 — qr2) (71 — 92562)(562 — qwy) (T — q2$1)-

One verifies that

P (w1 + 225 q, q3)(~”€1 — qra) (w1 — q2$2)(~”€2 — qry) (19 — q2$1) =

4 10 T+ X2 3
Psog(———; .
MJ?L bl )

Remark 4.9 If i is the empty partition, Corollary 4.7 gives

l—gq
H H = q'z5) = BY(q) k-1 -1y (qx 4,9 )

=1 i#j

This equality generalizes an identity given in [1]:

((k=1)n(n—1)

e ko
R (W e

1<j
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where P)Ek) (X) = IICIII} P)EO‘) (X; q,¢") denotes a Jack polynomial (see e.g. [9]).
The expansion of the powers of the discriminant and their ¢-deformations in
the different basis of symmetric functions is a difficult problem having many
applications, for example, in the study of Hua-type integrals (see e.g. [?, ?7])
or in the context of the factional quantum Hall effect (e.g. [3, 4, 5, 11]).
Note that in [2], we gave an expression of an other ¢-deformation of the powers
of the discriminant as staircase Macdonald polynomials. This deformation
is also relevant in the study of the expansion of [],_.(z; — z;)** in the Schur

i<
basis, since we generalized [2] a result of [4].

5 Macdonald polynomials at ¢t = ¢* as eigen-
functions

Let Y = {y1, ..., Yrn} be an alphabet of cardinality kn with y; = x1, ..., y, =
Zn. One considers the symmetrizer 7, defined by

Tk W ukn) = [ [ (=)™ D sign(0) f (Wory - - Yotem)UED -+ Yothn—1)-

i<j oce6,

Note that =, is the isobaric divided difference associated to the maximal
permutation w in Gy,,.

This operator applied to a symmetric function of the alphabet X increases
its alphabet from X to Y in its expansion in the Schur basis, since

WWSA(X) = SA(Y) (32)

Indeed, the image of the monomial yi ...y*" is the Schur function S;(Y).
Since
TwSA(X) = Mot o ) = Ty YN Yo Y

one recovers Equality (32).
One defines the operator 7' which consists in applying ,, and specializing
the result to the alphabet

XY = {y, .. T, T, - QT - ¢y, T )
From Equality (32), one has

TISX) =S (14+q+ -+ ¢ HX). (33)
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Furthermore, the expansion of Sy ((14 ¢+ ---+ ¢*)X) in the Schur ba-
sis being triangular, the operator 7% defines an automorphism of the space
Sym<, generated by the Schur functions indexed by partitions whose length
are less or equal to n, i.e. for each function f € Sym<,, one has

T f(X) = f(X"). (34)
In particular, one has

Lemma 5.1 Let A\ be a partition such that [(\) < n then

th)\ < 1-—

Proof It suffices to remark that Py ( —£X:q,q ) € Sym<,(X).1
It follows from (34),

tQP)\ (11

Consider the operator 9 : f — M f defined by

M= (z;...2,)F D) tqHH —q'z)).

=1 i#j

t=gq ) = P\(X,q,q"). (35)

l—gq
) =P, (1 - qutq;q,qk) = PA(X,q,4").
O]

The following theorem shows that the Macdonald polynomials are the eigen-
functions of the operator 91.

Theorem 5.2 The Macdonald polynomials P\(X;q,q") are eigenfunctions
of M. The eigenvalue associated to P,(X;q,q") is 6Zf((k—1)(n—l))" (q). Fur-
thermore, if k > 1, the dimension of each eigenspace is 1.

Proof From Corollary 4.7, one has

P,(X;q,¢" HH i —q'x;) A’k(Q)PA(l_quq)

=1 i#j

4This can be seen as a consequence of the determinantal expression of the expansion
of P\(X, q,t) in the Schur basis evaluated on the alphabet X' (see [6]).
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where A = p+ ((k—1)(n —1))™. Applying 77 to the left and the right hand
sides of this equality, one obtains from Lemma 5.1

b, (o) [ [T~ ) = % “(a@)miepy (3%

=1 i#j
= AWM P (Xiq.4Y) .

Since the cardinality of X is n, one has
Py (X;¢,¢") = (@1 ... 2,) 500Dy (X5, 7))

and

Suppose now that & > 1. It remains to prove that the dimensions of the
eigenspaces equal 1. More precisely, It suffices to show that 5,(q) = £,(¢) im-
plies A = . The denominators of 35(¢q) and 3,(q) being the same, one needs
to examine the numerators, that is the products vy = H?_Ol(q)‘” TR ) et

and 7, =[]/ (qun itk 4)r_1. One needs the following lemma.

Lemma 5.3 Let I = {iy,...,i,} and J = {jl, oy Jm} be two finite subsets
of N\{O}. Then, 47 implies [T,e;(1 — ¢) £ [Les(1 — )

Proof Without lost of generalities, one can suppose I NJ = (). Suppose that
11 <o <i,and 53 <--- < jp. Then, expanding the two products, one
finds

[[Ta-a)=1-¢"+> () #1-¢" +> (x)¢' = [[(1 - ).

el I>i1 >51 JjeJ

O
Each term (¢*»=it*%; ¢),_; is characterized by the degree of its factor of lower

degree : \,_; + ki. Hence, from Lemma 5.3, 8\(¢) = (,(¢) implies that it
exists a permutation o of G,, verifying

Ai + k(n - 7/) = fo; T+ k(n - Ui)?
for each ¢. But, since X is decreasing, one has
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And then,
fo, + k(n = 0) = poy — k(n —0i-1) < 0. (37)

But, since p is decreasing, 0,1 — 0; has the same sign than p,, — 5, ,. As a
consequence, Inequality (37) implies o; > 0;_; for each i. The only possibility
is 0 = Id, which ends the proof.[]

Example 5.4 If n = 5, the eigenvalues associated to the partitions of 4 are

ﬁallz,4k—4,4k—4,4k—4,4k—4] - [515 15} [6k 5] [m 5] [Skk 15] [glf—_llh
2

q )
ﬁa2—1,4k—3,4k—4,4k—4,4k 4 = [5k ﬂq [Gk 5}[1 [7k 5}[1 [sk ﬂq [915—_1 }q>
4 -
ﬁ[il};—2,4k—2,4k—4,4k—4,4k 4= 5 15}(1 [ 15}[1 [ 15]q [ 13]q [9:—13}q>
4 ~
ﬁ[4l}:—2,4k—3,4k—3,4k—4,4k 4] = [ 15}(1 [ 15},1 [ 14],1 [ 14]q [9:—13}q>
1, ~
Pl k=34 k-34k—34 k-84 k—4] = [ 15}(1 [ 14},1 [ 14],1 [ 14]q [9:—14}(1’

6 Expression of 91 in terms of Cherednik el-
ements

In this paragraph, we restate Proposition 5.2 in terms of Cherednik operators.
Cherednik’s operators {&;;i € {1,...,n}} =: = are commutative elements
of the double affine Hecke algebra. The Macdonald polynomials Py(X;q,t)
are eigenfunctions of symmetric polynomials f(Z) and the eigenvalues are
obtained substituting each occurrence of & in f(Z) by ¢*t"~ (see [8] for
more details).

Suppose that & > 1 and consider the operator 9 : f — M f defined by

k—1
m =[] —q)m (38)

i=1
From Proposition 5.2, one has

n—1k—1
MP:(X; q,¢") = [ ] — D) (X g, ). (39)

i=0 j=1

The following proposition shows that 9t admits a closed expression in terms
of Cherednick elements.
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Proposition 6.1 One supposes that k > 1. For any symmetric function f,
one has

o (x) = [T - o) /(. (40)

Proof From Theorem 5.2, it suffices to prove the formula (40) for f = P,.
The polynomial Py(X; ¢, t) is an eigenfunction of the operator Hfz_ll [T, (1—
q't*¢;) and its eigenvalues is Hfz_ll [T, (1 — ¢ =) Py(X; ¢, t). Hence,
setting t = ¢¥, we obtain

k—1 n k=1 n

[ITI0 - ) PXia,d") = [T — ¢ ) (X q,4").

=1 i=1 I=1 i=1

Comparing this expression to Equality (38), one finds the result. O

Acknowledgments The author is grateful to Alain Lascoux and Jean-Yves
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