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Summary. We construct an A-infinity structure on the tensor product of two A-
infinity algebras by using the simplicial decomposition of the Stasheff polytope.
The key point is the construction of an operad AA-infinity based on the simplicial
Stasheff polytope. The operad AA-infinity admits a coassociative diagonal and the
operad A-infinity is a retract by deformation of it. We compare these constructions
with analogous constructions due to Saneblidze-Umble and Markl-Shnider based on
the Boardman-Vogt cubical decomposition of the Stasheff polytope.
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Introduction

An associative algebra up to homotopy, or A∞-algebra, is a chain complex
(A, dA) equipped with an n-ary operation µn for each n ≥ 2 verifying µ◦µ = 0.
See [13], or, for instance, [3]. Here we put

µ := dA + µ2 + µ3 + · · · : T (A) → T (A),

where µn has been extended to the tensor module T (A) by derivation. In
particular µ2 is not associative, but only associative up to homotopy in the
following sense:

µ2 ◦ (µ2 ⊗ id)− µ2 ◦ (id⊗ µ2) = dA ◦ µ3 + µ3 ◦ dA⊗3 .

Putting an A∞-algebra structure on the tensor product of two A∞-algebras
is a long standing problem, cf. for instance [10, 2]. Recently a solution has been
constructed by Saneblidze and Umble, cf. [11, 12], by constructing a diagonal
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A∞ → A∞ ⊗ A∞ on the operad A∞ which governs the A∞-algebras. Recall
that, over a field, the operad A∞ is the minimal model of the operad As gov-
erning the associative algebras. The differential graded module (A∞)n of the
n-ary operations is the chain complex of the Stasheff polytope. In [9] Markl
and Shnider give a conceptual construction of the Saneblidze-Umble diagonal
by using the Boardman-Vogt model of As. This model is the bar-cobar con-
struction on As, denoted ΩBAs, in the operadic framework. It turns out that
there exists a coassociative diagonal on ΩBAs. This diagonal, together with
the quasi-isomorphisms q : A∞→ΩBAs and p : ΩBAs→A∞ permit them to
construct a diagonal on A∞ by composition:

A∞
q→ ΩBAs → ΩBAs⊗ΩBAs

p⊗p−→ A∞ ⊗A∞ .

The aim of this paper is to give an alternative solution to the diagonal
problem by relying on the simplicial decomposition of the Stasheff polytope
described in [6]. It leads to a new model AA∞ of the operad As, whose dg
module (AA∞)n is the chain complex of a simplicial decomposition of the
Stasheff polytope. Because of its simplicial nature, the operad AA∞ has a
coassociative diagonal (Alexander-Whitney map) and therefore we get a new
diagonal on A∞ by composition:

A∞
q′→ AA∞ → AA∞ ⊗AA∞

p′⊗p′−→ A∞ ⊗A∞ .

Since A∞ is the minimal model of As the quasi-isomorphisms q and q′ are
well-defined. However for p and p′ one has choices. The choice for p taken in
[9] has a nice geometric interpretation as a factorization through the cube.
We describe a choice for p′ which factorizes through the simplex. It is related
to the shortest path in the Tamari poset structure of the planar binary trees.

Moreover we provide an explicit comparison map between the two models
ΩBAs and AA∞ by using the simplicialization of the cubical decomposition
of the Stasheff polytope.

Acknowledgement I thank Bruno Vallette for illuminating discussions on
the algebras up to homotopy and Samson Saneblidze for sharing his drawings
with me some years ago. Thanks to Emily Burgunder, Martin Markl, Samson
Saneblidze, Jim Stasheff and Ron Umble for their comments on a first version
of this paper.

This work is partially supported by the French agency ANR.

1 Stasheff polytope (associahedron)

We recall briefly the construction of the Stasheff polytope, also called associ-
ahedron, and its simplicial realization, which is the key tool of this paper. All
chain complexes in this paper are made of free modules over a commutative
ring K (which can be Z or a field).
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1.1 Planar binary trees

We denote by PBTn the set of planar binary trees having n leaves:

PBT1 := {|}, PBT2 := { ��
?? }, PBT3 := {

�� ����

???? ,
??����

???? },

PBT4 := {
�� ����

������

?????? ,

??����
������

?????? ,
�� ??������

?????? ,
��???? ������

?????? ,

?????? ������

?????? } .

So t ∈ PBTn has one root, n leaves, (n− 1) internal vertices, (n− 2) internal
edges. Each vertex is binary (two inputs, one output). The number of elements
in PBTn+1 is known to be the Catalan number cn = (2n)!

n! (n+1)! . There is a
partial order on PBTn called the Tamari order and defined as follows. On
PBT3 it is given by

�� ����

???? →
??����

???? .

More generally, if t and s are two planar binary trees with the same number
of leaves, there is a covering relation t → s if and only if s can be obtained

from t by replacing a local pattern like
�� ����

???? by
??����

???? . In other words

s is obtained from t by moving a leaf or an internal edge from left to right
over a fork.

Examples:

yyy
EEE

•
1

sss
KKKwwwww

GGGGG
wwwww

GGGGG

//

12 21

123

xxqqqqqq

##GGGGGGGGGG

213

��
{{wwwwwwwwww 141

312
&&MMMMMM

321

where the elements of PBT4 (listed above) are denoted 123, 213, 141, 312, 321,
respectively (coordinates in R4, cf. [5]).

The Tamari poset admits an initial element: the right comb, and a terminal
element: the left comb. There is a shortest path from the initial element to
the terminal element. It is made of the trees which are the grafting of some
right comb with a left comb. In PBTn there are n− 1 of them. This sequence
of planar binary trees will play a significant role in the comparison of different
cell realizations of the Stasheff polytope.

Example: the shortest path in PBT4:
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�� ����
������

?????? →
�� ??������

?????? →
?????? ������

??????

1.2 Planar trees

We now consider the planar trees for which an internal vertex has one root
and k leaves, where k can be any integer greater than or equal to 2. We denote
by PTn the set of planar trees with n leaves:

PT1 := {|}, PT2 := { ��
?? }, PT3 := {

�� ����

???? ,
??����

???? ,
����

???? },

PT4 := {
�� ����

������

?????? , . . . ,
����

������

?????? , . . . ,
������

??????

****
���� } .

Each set PTn is graded according to the number of internal vertices, i.e. PTn =⋃
n≥k PTn,k where PTn,k is the set of planar trees with n leaves and k internal

vertices. For instance PTn,1 contains only one element which we call the n-
corolla (the last element in the above sets). It is clear that PTn,n−1 = PBTn.

1.3 The Stasheff polytope, alias associahedron

The associahedron is a cellular complex Kn of dimension n, first constructed
by Jim Stasheff [13], which can be realized as a convex polytope whose ex-
tremal vertices are in one-to-one correspondence with the planar binary trees
in PBTn+2, cf. [5] for details. The edges of the polytope are indexed by the
covering relations of the Tamari poset.

Examples:

• //
wwooooo

$$JJJ
JJJ

JJ

��
zzttt

ttt
tt

''OOOOO

//cc

GGGGGG
����
�

��

gg OOO
::

ttt
tt

����
��
��
��
�cc

GGGGGG

��/
//

//
/

//
����
�

����
��
��

��/
// //__

??
??

?? gg
//

�� ��
??

��
��
//

K0 K1 K2 K3

Its k-cells are in one-to-one correspondence with the planar trees in
PTn+2,n+1−k. For instance the 0-cells are indexed by the planar binary trees,
and the top cell is indexed by the corolla.

It will prove helpful to adopt the notation Kt to denote the cell in Kn in-
dexed by t ∈ PTn+2. For instance, if t is the corolla, then Kt = Kn. As a space
Kt is the product of p associahedrons (or associahedra, as you like), where p
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is the number of internal vertices of t. For instance, if t =
����

��������

������

???????? , then

Kt = K1 ×K1.

1.4 Chain complex of the simplicial associahedron

In [6] we constructed a simplicial set Kn
simp whose geometric realization gives

a simplicial decomposition of the associahedron. In other words the associa-
hedron Kn is viewed as a union of n-simplices (there are (n + 1)n−1 of them).
For n = 1, we have K1

simp = K1.
Examples: K2

simp and K3
simp

s{ ooooooo
ooooooo

 (JJJJJJJJJJJ

JJJJJJJJJJJ
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4

zztttttttttttt

''OOOOOOOO
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tttttttttt
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��
��_g
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//

//
//

//
//

//

wwooooooo

''OOOOOOOOOOOOO
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??
??

??
??

??
??

??
??

??
??

??
??

+3

��

jjTTTTTTTTT

$$JJJJJJJJJJJ

��

//6>

tttttttttt

tttttttttt

+3

This simplicial decomposition is constructed inductively as follows. We fatten
the simplicial set Kn−1

simp into a new simplicial set fatKn−1
simp, cf. [6]. Then Kn

simp

is defined as the cone over fatKn−1
simp (as in the original construction of Stasheff

[13]). In the pictures the fatten space as been indicated by double arrows.
Since, in the process of fattenization, the new cells are products of smaller
dimensional associahedrons we get the following main property.

Proposition 1.5 The simplicial decomposition of a face Ki1 × · · · × Kik of
Kn is the product of the simplicializations of each component Kij .

Proof. It is immediate from the inductive procedure which constructs Kn out
of Kn−1. �

Considered as a cellular complex, still denoted Kn
simp, the simplicialized

associahedron gives rise to a chain complex denoted C∗(Kn
simp). This chain

complex is the normalized chain complex of the simplicial set. It is the quo-
tient of the chain complex associated to the simplicial set, divided out by the
degeneracies (cf. for instance [7] Chapter VIII). A basis of C0(Kn

simp) is given
by PBTn+2 and a basis of Cn(Kn

simp) is given by the (n + 1)n−1 top simplices
(in bijection with the parking functions, cf. [6]). It is zero higher up.
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2 The operad AA∞

We construct the operad AA∞ and compare it with the operad A∞ governing
the associative algebras up to homotopy.

2.1 Differential graded non-symmetric operad [8]

By definition a differential graded non-symmetric operad, dgns operad for
short, is a family of chain complexes Pn = (Pn, d) equipped with chain com-
plex morphisms

γi1···in : Pn ⊗ Pi1 ⊗ · · · ⊗ Pin → Pi1+···+in ,

which satisfy the following associativity property. Let P be the endofunctor
of the category of chain complexes over K defined by P(V ) :=

⊕
n Pn⊗V ⊗n.

The maps γi1···in
give rise to a transformation of functors γ : P ◦ P → P.

This transformation of functors γ is supposed to be associative. Moreover we
suppose that P0 = 0,P1 = K (trivial chain complex concentrated in degree
0). The transformation of functors Id → P determined by P1 is supposed to
be a unit for γ. So we can denote by id the generator of P1. Since Pn is a
graded module, P is bigraded. The integer n is called the “arity” in order to
differentiate it from the degree of the chain complex.

2.2 The fundamental example A∞

The operad A∞ is a dgns operad constructed as follows:

A∞,n := C∗(Kn−2) (chain complex of the cellular space Kn−2).

Let us observe that Ck(Kn−2) = K[PTn,n−1−k].
Let us denote by As¡ the family of one dimensional modules (As¡

n)n≥1

generated by the corollas (unique top cells). It is easy to check that there is
a natural identification of graded (by arity) modules A∞ = T (As¡), where
T (As¡) is the free operad over As¡. This identification is given by grafting on
the leaves as follows. Given trees t, t1, . . . , tn where t has n leaves, the tree
γ(t; t1, . . . , tn) is obtained by identifying the ith leaf of t with the root of ti.
For instance:

γ( ��
?? ;

??����

???? , ��
?? ) =

?? ??����
��������

???????? .

Moreover, under this identification, the composition map γ is a chain map,
therefore A∞ is a dgns operad.

This construction is a particular example of the so-called “cobar construc-
tion” Ω, i.e. A∞ = ΩAs¡ where As¡ is considered the cooperad governing the
coassociative coalgebras (cf. [8]).
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For any chain complex A there is a well-defined dgns operad End(A) given
by End(A)n = Hom(A⊗n, A). An A∞-algebra is nothing but a morphism of
operads A∞ → End(A). The image of the corolla is the n-ary operation µn

alluded to in the introduction.

2.3 Hadamard product of operads, the diagonal problem

Given two operads P and Q, their Hadamard product, also called tensor
product, is the operad P⊗Q defined as (P⊗Q)n := Pn⊗Qn. The composition
map is simply the tensor product of the two composition maps.

It is a long-standing problem to decide if, given two A∞-algebras A and B,
there is a natural A∞-structure on their tensor product A⊗B which extends
the natural dg nonassociative algebra structure, cf. [10, 2]. It amounts to
construct a diagonal on A∞, i.e. an operad morphism ∆ : A∞ → A∞ ⊗ A∞,
since, by composition, we get an A∞-structure on A⊗B:

A∞ → A∞ ⊗A∞ → End(A)⊗ End(B) → End(A⊗B) .

Let us recall that the classical associative structure on the tensor product of
two associative algebras can be interpreted operadically as follows. There is a
diagonal on the operad As given by

Asn → Asn ⊗Asn, µn 7→ µn ⊗ µn .

Since we want the diagonal ∆ to be compatible with the diagonal on As, there
is no choice in arity 2, and we have ∆(µ2) = µ2 ⊗ µ2. Observe that these two
elements are in degree 0. In arity 3, since µ3 is of degree 1 and µ3 ⊗ µ3 of
degree 2, this last element cannot be the answer. In fact there is already a
choice (parameter a):

∆(
����

???? ) = a
( ����

???? ⊗
�� ����

???? +
??����

???? ⊗
����

????
)

+(1− a)
( ����

???? ⊗
??����

???? +
�� ����

???? ⊗
����

????
)
.

By some tour de force Samson Saneblidze and Ron Umble constructed
such a diagonal on A∞ in [11]. Their construction was re-interpreted in [9]
by Markl and Shnider through the Boardman-Vogt construction (see section
3 below for a brief account of their work). We will use the simplicialization
of the associahedron described in [6] to give another solution to the diagonal
problem.
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2.4 Construction of the operad AA∞

We define the dgns operad AA∞ as follows. The chain complex AA∞,n is the
chain complex of the simplicialization of the associahedron considered as a
cellular complex (cf. 1.4):

AA∞,n = C∗(Kn−2
simp) .

In low dimension we take AA∞,0 = 0, AA∞,1 = K id. So a basis of AA∞,n is
made of the cells (nondegenerate simplices) of Kn−2

simp. Let us now construct
the composition map

γ = γAA∞ : AA∞,n ⊗AA∞,i1 ⊗ · · · ⊗AA∞,in → AA∞,i1+···+in .

We denote by ∆k the standard k-simplex. Let ι : ∆k � Kn−2
simp be a cell,

i.e. a linear generator of C∗(Kn−2
simp). Given such cells

ι0 ∈ AA∞,n, ι1 ∈ AA∞,i1 , . . . , ιn ∈ AA∞,in

we construct their image γ(ι0; ι1, . . . , ιn) ∈ AA∞,m, where m := i1 + · · ·+ in
as follows. We denote by ki the dimension of the cell ιi.

Let tn be the n-corolla in PTn and let s := γ(tn; ti1 , . . . , tin) ∈ PTm be
the grafting of the trees ti1 , . . . , tin

on the leaves of tn. As noted before this is
the composition in the operad A∞. The tree s indexes a cell Ks of the space
Km−2, which is combinatorially homeomorphic to Kn−2×Ki1−2×· · ·×Kin−2.
In other words it determines a map

s∗ : Kn−2 ×Ki1−2 × · · · × Kin−2 = Ks � Km−2.

The product of the inclusions ιj , j = 0, . . . , n, defines a map

ι0 × ι1 × · · · × ιn : ∆k0 ×∆k1 × · · · ×∆kn � Kn−2 ×Ki1−2 × · · · × Kin−2.

Let us recall that a product of standard simplices can be decomposed into the
union of standard simplices. These pieces are indexed by the multi-shuffles α.
Example: ∆1 ×∆1 = ∆2 ∪∆2:

//

(2, 1)

(1, 2)

OO

//

99ttttttttttttttttt

OO

So, for any multi-shuffle α there is a map

fα : ∆l → ∆k0 ×∆k1 × · · · ×∆kn ,

where l = k0 + · · ·+ kn. By composition of maps we get

s∗ ◦ (ι0 × · · · × ιn) ◦ fα : ∆l → Km−2

which is a linear generator of Cl(Km−2
simp ) by construction of the triangulation

of the associahedron, cf. [5]. By definition γ(ι0; ι1, . . . , ιn) is the algebraic sum
of the cells s∗ ◦ (ι0 × · · · × ιn) ◦ fα over the multi-shuffles.
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Proposition 2.5 The graded chain complex AA∞ and γ constructed above
define a dgns operad, denoted AA∞. The operad AA∞ is a model of the operad
As.

Proof. We need to prove associativity for γ. It is an immediate consequence of
the associativity for the composition of trees (operadic structure of A∞) and
the associativity property for the decomposition of the product of simplices
into simplices.

Since the associahedron is contractible, taking the homology gives a graded
linear map C∗(Kn−2

simp) → K µn, where µn is in degree 0. This map obviously
induces an isomorphism on homology. These maps assemble into a dgns operad
morphism AA∞ → As which is quasi-isomorphism. Hence AA∞ is a resolution
of As, that is a model of As in the category of dgns operads. �

2.6 Remark

In order to construct the operad AA∞ we could also construct, first, a simpli-
cial ns operad n 7→ Kn−2

simp (simplicial set) for n ≥ 2 and {id} (trivial simplicial
set) for n = 1. Second, we use the Eilenberg-Zilber map and the Alexander-
Whitney map to induce an operadic structure on the normalized chain com-
plex.

Proposition 2.7 The operad AA∞ admits a coassociative diagonal.

Proof. This diagonal ∆ : AA∞ → AA∞ ⊗ AA∞ is determined by its value in
arity n for all n, that is a chain complex morphism

C∗(Kn−2
simp) → C∗(Kn−2

simp)⊗ C∗(Kn−2
simp).

This morphism is defined as the composite

C∗(Kn−2
simp) ∆∗−→ C∗(Kn−2

simp ×Kn−2
simp) AW−→ C∗(Kn−2

simp)⊗ C∗(Kn−2
simp),

where ∆∗ is induced by the diagonal on the simplicial set, and where AW is the
Alexander-Whitney map. Let us recall from [7], Chapter VIII, the construction
of the AW map. Denote by d0, . . . , dn the face operators of the simplicial set.
If x is a simplex of dimension n, then we define dmax(x) := dn(x). So, for
instance (dmax)2(x) = dn−1dn(x). By definition the AW map is given by

(x, y) 7→
n∑

i=0

(
(d0)i(x), (dmax)n−i(y)

)
.

It is straightforward to check that this diagonal is compatible with the
operad structure.

The coassociativity property follows from the coassociativity property of
the Alexander-Whitney map. �
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2.8 Comparing A∞ to AA∞

Since Kn−2
simp is a simplicialization of Kn−2, there is a chain complex map

q′ : C∗(Kn−2) → C∗(Kn−2
simp),

where a cell of Kn−2 is sent to the algebraic sum of the simplices it is made
of.

Proposition 2.9 The map q′ : A∞ → AA∞ induced by the maps q′ :
C∗(Kn) → C∗(Kn

simp) is a quasi-isomorphism of dgns operads.

Proof. It is sufficient to prove that the maps q′ on the chain complexes are
compatible with the operadic composition:

q′(γAs(t; t1, . . . , tn)) = γAA∞(q′(t); q′(t1), . . . , q′(tn)).

This equality follows from the definition of γAA∞ and Proposition 1.5. �

Moreover we have commutative diagrams:

C∗(Kn−2)
q′ //

H∗

%%KKKKKKKK
C∗(Kn−2

simp)
H∗

yyssssssss

K µn

A∞
q′ //

""DD
DD

DD
D AA∞

{{xx
xx

xx
x

As

2.10 Comparing AA∞ to A∞

Let us construct an inverse quasi-isomorphism p′ : AA∞ → A∞. We construct
a quasi-isomorphism p′ : C∗(Kn

simp) → C∗(Kn) as a composite

C∗(Kn
simp)

p′1−→ C∗(∆n)
p′2−→ C∗(Kn)

where ∆n is the standard n-simplex and the first map is induced by a simplicial
map.

2.11 The simplicial map p′
1 : Kn

simp → ∆n

Since a simplex in Kn
simp is completely determined by its vertices, it suffices

to define p′1 on the vertices. Recall that the 0-cells of Kn
simp are indexed by

the planar binary trees, and that the 0-cells of ∆n are indexed by the integers
0, . . . , n (with poset structure given by the standard order). Let t ∈ PBTn+2

and let ω(t) be the number of leaves on the right side of the root of t. For
instance:

ω(
�� ����

???? ) = 1, ω(
??����

???? ) = 2 .

In Kn−2
simp we single out the (n− 2)-simplex whose vertices are on the shortest

path from the right comb to the left comb, cf. 1.1.
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Lemma 2.12 The map p′1 : Kn
simp → ∆n induced by t 7→ ω(t)− 1 on the

0-cells is a simplicial map. It maps bijectively the singled out simplex to its
image.

Proof. It suffices to check that this is a poset map. For any covering relation

t → s some local pattern
�� ����

???? is changed into
??����

???? . If the root is

not involved, then ω(s) = ω(t) and we are done. If the root is involved, then
ω(s) = ω(t) + 1 and we are done too.

The vertices of the singled out simplex are indexed by trees t, which are
the grafting of a rightcomb with a left comb. If the left comb has i leaves,
then ω(t) = i and the image of t is precisely i− 1. Hence the simplex made
out of these trees is mapped bijectively to ∆n. �

2.13 The chain complex map p′
2 : C∗(∆n) → C∗(Kn)

There is a unique chain complex map C∗(∆n) → C∗(Kn) which, geometrically,
sends the vertices of ∆n to the vertices of the shortest path. In particular the
top-cell of ∆n is sent to the top-cell of Kn.

Composing p′1 and p′2 we obtain the map p′ : C∗(Kn
simp) → C∗(Kn) for all

n.
Example n = 2 :

•
wwppppppp

$$IIIIIIIIIII

��
��

��3
33

33
33

33
33

3

•

zzuuuuuuuuuuu �

''NNNNNNN

•

•

$$IIIIIIIIIII

��

•

zzuuuuuuuuuuu �

•

•
ppppppp

$$IIIIIIIIIII

•

zzuuuuuuuuuuu

''NNNNNNN

•

The double line indicates that an entire square is mapped to this interval.
The maps p′ assemble into a morphism p′ : AA∞ → A∞ of graded chain

complexes. It is obviously a quasi-inverse of q′.

Theorem 2.14 The map p′ : AA∞ → A∞ is a morphism of dgns operads.
The composite

A∞
q′→ AA∞

∆−→ AA∞ ⊗AA∞
p′⊗p′−→ A∞ ⊗A∞ .

is a diagonal for the operad A∞.

Proof. Recall from section 2 that the operad structure of AA∞ is esssentially
defined by the operad structure of A∞. Except for the cells of the singled
out simplex the image of the cells of AA∞ are 0. Since the top-cell of the
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singled out simplex is the top-cell of the associahedron, the compatibility of
the operadic structure follows.

From the properties of q′,∆ and p′, it follows that this composition is
compatible with the diagonal on As, therefore this composite permits us to
put an A∞-structure on A ⊗ B (A and B being A∞-algebras) such that the
product µ2 is as expected. �

2.15 The first formulas

Let us give the explicit form of ∆(µn) for n = 2, 3, 4:

∆( ��
?? ) = ��

?? ⊗ ��
??

,

∆
( ����

????
)

=
??����

???? ⊗
����

???? +
����

???? ⊗
�� ����

???? ,

∆
( ������

??????

****
����

)
=

?????? ������

?????? ⊗
������

??????

****
���� −

???? ������

?????? ⊗
??�� ������

??????

+
??������

?????? ⊗
�� ������

?????? +
������

??????

****
���� ⊗

�� ����
������

??????

−
( ����

������

?????? +
??�� ������

?????? +
???? ������

??????
)
⊗

����
������

?????? .

2.16 Remarks

Though the diagonal of AA∞ that we constructed is coassociative, the diag-
onal of As is not because of the behavior of p′. In fact it has been shown in
[9] that there does not exist any coassociative diagonal on A∞. However the
diagonal on A∞ is coassociative up to homotopy.

Proposition 2.17 If A is an associative algebra and B an A∞ algebra, then
the A∞-structure on A⊗B is given by

µn(a1 ⊗ b1, . . . , an ⊗ bn) = a1 · · · an ⊗ µn(b1, . . . , bn).

Proof. In the formula for ∆ we have µn = 0 for all n ≥ 3, that is, any tree
with a k-valent vertex for k ≥ 3 is 0 on the left side. Hence the only term
which is left is comb⊗ corolla, whence the assertion. �

3 Comparing the operads AA∞ and ΩBAs

We first give a brief account of [9, 11] where a diagonal of the operad A∞ is
constructed by using a coassociative diagonal on ΩBAs. Then we compare
the two operads AA∞ and ΩBAs.
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3.1 Cubical decomposition of the associahedron [1]

The associahedron can be decomposed into cubes as follows.
For each tree t ∈ PBTn+2 we take a copy of the cube In (where I = [0, 1]

is the interval) which we denote by In
t . Then the associahedron Kn is the

quotient
Kn :=

⊔
t

In
t / ∼

where the equivalence relation is as follows. We think of an element τ =
(t;λ1, . . . , λn) ∈ In

t as a tree of type t where the λi’s are the lengths of the
internal edges. If some of the λi’s are 0, then the geometric tree determined by
τ is not binary anymore (since some of its internal edges have been shrinked
to a point). We denote the new tree by τ̄ . For instance, if none of the λi’s is
zero, then τ̄ = t ; if all the λi’s are zero, then the tree τ̄ is the corolla (only
one vertex). The equivalence relation τ ∼ τ ′ is defined by the following two
conditions:

- τ̄ = τ̄ ′,
- the lengths of the nonzero-length edges of τ are the same as those of τ ′.
Hence Kn is obtained as a cubical realization denoted Kn

cub.
Examples:

� � � ,

��
�� ??

??

��
��

//
//

//

��
��
��

??
??

??
?

��
��
��

//
//

//

��
��

��
�

??
??

??
??

��
��

K1 , K2

3.2 Markl-Shnider version of Saneblidze-Umble diagonal [9, 11]

In [1] Boardman and Vogt showed that the bar-cobar construction on the
operad As is a dgns operad ΩBAs whose chain complex in arity n can be
identified with the chain complex of the cubical decomposition of the associ-
ahedron:

(ΩBAs)n = C∗(Kn−2
cub ) .

In [9] (where Kn−2
cub is denoted Wn and Kn−2 is denoted Kn) Markl and Shnider

use this result to construct a coassociative diagonal on the operad ΩBAs.
There is an obvious quasi-isomorphism q : A∞ → ΩBAs. They construct
an inverse quasi-isomorphism p : ΩBAs → A∞ by giving explicit algebraic
formulas. At the chain level the map p : C∗(Kn

cub) → C∗(Kn) is the composite
of two maps

C∗(Kn−2
cub )

p1−→ C∗(In−2)
p2−→ C∗(Kn−2) .



14 Jean-Louis Loday

In the next section we give a geometric interpretation of these maps following
a cubical description of the associahedron given in the Appendix. These maps
p assemble to give the morphism of operads p : ΩBAs → A∞.

Markl and Shnider claim that the composite

A∞
q→ ΩBAs → ΩBAs⊗ΩBAs

p⊗p−→ A∞ ⊗A∞

is the Saneblidze-Umble diagonal.

3.3 The geometric maps p1 and p2

The map p1 : C∗(Kn
cub) → C∗(In) is induced by a cellular (in fact cu-

bical) map which is completely determined by the image of the vertices
of Kn. Let t be such a vertex. In the cubical description of Kn given
in the Appendix, it has coordinates (α1, . . . , αn). For instance the trees

�� ����
������

?????? ,
��???? ������

?????? ,

?????? ������

?????? have coordinates (0, 0), (0, 1
2 ), (1, 1) respec-

tively. The tree t is sent under p1 to the vertex with coordinates (ᾱ1, . . . , ᾱn)
of In, where ᾱj = 0 if αj = 0 and ᾱj = 1 if αj 6= 0. Under this map the cube
of Kn

cub indexed by the left comb is mapped bijectively to In. All the other
ones are shrinked to smaller cubes.

The map p2 : C∗(In) → C∗(Kn) is induced by a cellular map which sends
the vertices of the cube to some vertices of the associahedron under the fol-
lowing rule. We consider the cube of Kn

cub indexed by the right comb. Each
of its vertices is indexed by a planar tree. For instance one of them is the
right comb and one of them is the corolla. For each such tree t we define t̃ as
follows: starting with t we replace each vertex by a left comb. Therefore we
get a planar binary tree, which we denote by t̃. For instance, if the arity of the
vertex is 2, then we do nothing. If the arity of the vertex is 3, then, locally,

����

???? is replaced by
??����

???? . Examples:

t =
�� ����

������

?????? ,
����

������

?????? ,
�� ������

?????? ,
������

??????

****
���� ,

t̃ =
�� ����

������

?????? ,

??����
������

?????? ,
�� ??������

?????? ,

?????? ������

?????? .

The chain map p2 : C∗(In) � C∗(Kn) is precisely obtained by identifying the
cube to the decorated cube. For instance the image of the cell {1} × I is the

sum
??�� ������

?????? +
???? ������

?????? (compare with [9] Example 9).
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These constructions determine the chain maps p : C∗(Kn−2
cub ) → C∗(Kn−2).

Example:

•
��~~

~
��@

@@

•

��1
11

11
11

•

��


??����

�� // •

����
��

��
��

��

^^=========
�

!!CC
CC

C

OO EE�������

YY2222222ccGGGGGG
;;wwwwww

•

����
��

��
��

��?
??

??
??

?

•

�#
??

??
??

??

??
??

??
??

•

{� ��
��

��
��

��
��

��
��

�

•

•
xxqqqqqq

##FFFFFFFFFFF

•

•

zzuuuuuuuuuuu

''OOOOOOOO

•

3.4 Comparison of the operads AA∞ and ΩBAs

From the geometric nature of AA∞ and ΩBAs we can deduce an explicit
quasi-isomorphism of operads

ΩBAs → AA∞

as follows. A cube admits a simplicial decomposition. Hence we can simpli-
cialize the cubical decomposition of Kn−2

cub to obtain a new cellular complex
Kn

cub,simp. There are explicit quasi-isomorphisms

C∗(Kn
cub) � C∗(Kn

cub,simp) � C∗(Kn
simp) .

We leave it to the reader to figure out the explicit formulas from the 2-
dimensional case:

����
��

�
��?

??
??

��.
..

..
..

.

����
��
��
��

??�����

�� //

����
��

��
��

��

^^==========
�

��?
??

??

OO HH��������

VV........__?????
??�����

vvlllllllll

��@
@@

@@
@@

@@
@@

����3
33

33
33

33
33

33
33@@������

�� ##GGGGGGGGGGGGGGG b c

����
��

��
��

��
��

a

//

����
��

��
��

��

aaCCCCCCCCCCCCCoo �

!!DD
DD

D

OO 99rrrrrrrrrrrrrr

ddJJJJJJJJJJJJJ

CC�������������bbEEEEEEEEEEE

>>|||||||||||||||

OO

wwppppppppp

""FF
FF

FF
FF

FF
FF

FF

��

��

��
33

33
33

33
33

33
33

33
33

33
33

33
33

33 b

c

w� wwwwwwwwwwwww

wwwwwwwwwwwww

#+OOOOOOOO

OOOOOOOO a

Hint: identify the top-simplices of Kn
cub,simp which are mapped bijectively

onto their image (like a, b, c above).
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Observe that the intermediate spaces Kn
cub,simp give rise to a new dgns

operad along the same lines as before. Let us denote it by AAA∞. The operad
morphisms

ΩBAs → AAA∞ → AA∞

are quasi-isomorphisms and are compatible with the diagonals (Hopf operad
morphisms).

4 Appendix: Drawing a Stasheff polytope on a cube

This is an account of some effort to construct the Stasheff polytope that I did
in 2002 while visiting Northwestern University. During this visit I had the op-
portunity to meet Samson Saneblidze and Ron Umble, who were drawing the
same kind of figures for different reasons (explained above). It makes the link
between Markl and Shnider algebraic description of the map p, the pictures
appearing in Saneblidze and Umble paper, and some algebraic properties of
the planar binary trees.

There is a way of constructing an associahedron structure on a cube as
follows. For n = 0 and n = 1 there is nothing to do since K0 and K1 are the
cubes I0 and I1 respectively. For n = 2 we simply add one point in the middle
of an edge to obtain a pentagon:

• // •

•

OO

•

OO

// •

OO

Inductively we draw Kn on In out of the drawing of Kn−1 on In−1 as
follows. Any tree t ∈ PBTn+1 gives rise to an ordered sequence of trees
(t1, . . . , tk) in PBTn+2 as follows. We consider the edges which are on the
right side of t, including the root. The tree t1 is formed by adding a leaf which
starts from the middle of the root and goes rightward (see [4] p. XXX). The
tree t2 is formed by adding a leaf which starts from the middle of the next
edge and goes rightward. And so forth. Obviously k is the number of vertices
lying on the right side of t plus one (so it is always greater than or equal to
2).

Example:

if t =
??����

???? , then t1 =
??����

������

?????? , t2 =
��???? ������

?????? , t3 =
?????? ������

?????? .

In In = In−1 × I we label the point {t} × {0} by t1, the point {t} × {1}
by tk, and we introduce (in order) the points t2, . . . , tk−1 on the edge {t}× I.
For n = 2 we obtain (with the coding introduced in section 1.1):
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141 // 321

312

OO

123

OO

// 213

OO

For n = 3 we obtain the following picture:

//??�����

//

??����������

OO

??�����

//

OO

OO

??�����

OO

OO

//

OO

??�����

OO

//

??����������

OO

??�����

OO

(It is a good exercise to draw the tree at each vertex). Compare with [11],
p. 3). The case n = 4 can be found on my home-page. It is important to
observe that the order induced on the vertices by the canonical orientation of
the cube coincides precisely with the Tamari poset structure.

Surprisingly, this way of viewing the associahedron is related to an alge-
braic structure on the set of planar binary trees PBT =

⋃
n≥1 PBTn, related

to dendriform algebras. Indeed there is a non-commutative monoid structure
on the set of homogeneous nonempty subsets of PBT constructed in [4]. It
comes from the associative structure of the free dendriform algebra on one
generator. This monoid structure is denoted by +, the neutral element is the
tree | . If t ∈ PBTp and s ∈ PBTq, then s + t is a subset of PBTp+q−1. It is
proved in [4] that the trees which lie on the edge {t} × I ⊂ In are precisely

the trees of t + ��
?? . For instance:

�� ����

???? + ��
?? =

�� ����
������

?????? ∪
�� ??������

??????

and
??����

???? + ��
?? =

??����
������

?????? ∪
��???? ������

?????? ∪
?????? ������

?????? .
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