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Original motivation: plethysm

Irreducible tensor representations of GL(n,C):

ρλ : GL(n,C) −→ GL(Vλ), Vλ ⊆ (Cn)⊗k

λ partition of k with at most n parts
Character: Schur function sλ = ch(ρλ)

Composition of two representations ρ of character f and η
of character g:

ch(η ◦ ρ) =: g ◦ f plethysm of f by g, also denoted by g[f ]

The problem: compute

sλ[sµ] =
∑
ν

dνλµsν
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More precisely, find a combinatorial description
if λ ` d , sλ[sµ] is a part of

sd
µ =

∑
ν`nd

cνµµ···µsν =
∑
λ`d

f λsλ[sµ]

where cνµµ···µ are the Littlewood-Richardson coefficients,
and f λ the number of standard tableaux of shape λ.
For d = 2, no multiplicities

V ⊗ V = S2(V )⊕ Λ2(V )⇔ s2
µ = h2[sµ] + e2[sµ]

First problem: split the Littlewood-Richardson tableaux into
two sets, corresponding to the symmetric and
antisymmetric parts of the square.
Idea (B.L.) Formulate a version of the LR-rule with domino
tableaux, and split according to the parity of half the
number of horizontal dominos.
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s2
21 = s42 + s411 + s33 + 2s321 + s3111 + s222 + s2211

{
h2[s21] = s42 + s321 + s3111 + s222

e2[s21] = s411 + s33 + s321 + s2211

[C. Carré, B. Leclerc, Séminaire Lotharingien de Combinatoire, B31c (1993),
8 pp; J. Alg.Combin. 4 (1995), 201–231]

J.-Y. Thibon



What about higher powers?

Next step suggested by previous LLT results on Hall-Littlewood
functions at roots of unity

Hall-Littlewood functions

PµPν =
∑
λ

f λµν(t)Pλ

such that gλµν(q) = qn(λ)−n(µ)−n(ν)f λµν(q−1) (Hall algebra)
Kostka numbers

sλ =
∑
µ

Kλµ(t)Pµ

Kostka numbers are special LR coefficients

Kλµ = cλµ1,µ2,...,µr
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Dual HL functions

〈Q′µ,Pν〉 = δµν (〈sλ, sµ〉 = δλµ)

are t-analogues of products hµ

Q′µ =
∑
λ

Kλµ(t)sλ −→ hµ (t → 1)

The Kostka-Foulkes polynomials Kλµ(t) ∈ N[t ]

The K̃λµ(q) are (parabolic) Kazhdan-Lusztig polynomials
for the affine symmetric group
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Roots of unity and plethysm formulae

t = 1 is not the only interesting value
For t = ζ a primitive r th root of unity

Q′λ(X ; ζ) = Q′µ(X ; ζ)
∏
i≥1

[
Q′(i r )(X ; ζ)

]qi

where λ = (1m12m2 . . . nmn ), mi = rqi + ri with 0 ≤ ri < r ,
and µ = (1r12r2 . . . nrn ).
and for rectangular partitions, we obtain plethysms with
power-sums

Q′(nr )(X ; ζ) = (−1)(r−1)npr [hn(X )]
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Interpretation

Consider the (reducible) GL(n,C)-module

V = Λν1 Cn⊗Λν2 Cn⊗ · · · ⊗ Λνr Cn

and the cyclic shift operator γ : V⊗d 7→ V⊗d

γ(v1 ⊗ v2 ⊗ · · · ⊗ vd ) = vd ⊗ v1 ⊗ · · · ⊗ vd−1

Its eigenspaces W (k) are representations of GL(n,C).
The previous formulae imply a combinatorial description of their
characters `(k)

d [eν ].
Can we do the same starting with V = Vλ irreducible ?

Answer: ribbon tableaux
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Ribbon tableaux and products of Schur functions

A Schur function sλ(X ) is a sum over semi-standard Young
tableaux t of shape λ

sλ(X ) =
∑

t∈Tab (λ)

X t

where X t =
∏

i xmi
i , mi number of occurences of i in t .

A product of r Schur functions sµ(i) is a sum over r -tuples of
tableaux

sµ(1)sµ(2) · · · sµ(r) =
∑

(t1,...,tr )

X t1X t2 · · ·X tr

r -tuples of tableaux←→ r -ribbon tableaux
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Ribbons (rim-hooks) and ribbon tableaux

Here are the (23 = 8) 4-ribbons

and a 4-ribbon tableau of shape (87661) and weight (3211)
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r -core and r -quotient

The partition λ = (872415) has as 3-core ν = (211)

and as 3-quotient the triple ((21), (22), (2))

, ,
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The Stanton-White bijection

Choosing as 3-core κ = (211), the triple

4
3 3 ,

2 4
1 3 , 2 3

with weights (0021), (1111), (0110) corresponds to the 3-ribbon
tableau of shape λ = (872415) and weight µ = (1242).
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If µ is the partition with r -quotient (µ(0), . . . , µ(r−1)) and empty
r -core

sµ(0)sµ(1) · · · sµ(r−1) =
∑

T∈Tab r (µ,·)

X T

where Tab r (µ, ·) is the set of r -ribbon tableaux of shape µ
A natural statistic on ribbon tableaux is the sum of the heights
of the ribbons
Example: r = 11, h(R) = 6

h(R)
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Spin and cospin

The relevant statistic is rather h(R)− 1, and for compatiblity
with Hall-Littlewood functions, one introduces the spin

s(R) =
1
2

(h(R)− 1), s(T ) =
∑
R∈T

s(R)

(a half-integer in general) and the cospin (an integer)

s̃(T ) = s∗r (µ)− s(T ) for T ∈ Tab r (µ, ·)

The most general q-LR coefficients are defined by

G̃µ =
∑

T∈Tab r (µ,·)

qs̃(T )X T =
∑
λ

cλ
µ(0),µ(1),...,µ(r−1)(q)sλ(X )
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The 3-quotient of λ = (33321) is ((1), (1,1), (1)) and the
q-analogue of s1s11s1 (in this order) is

m31 + (1 + q)m22 + (2 + 2q + q2)m211 + (3 + 5q + 3q2 + q3)m1111

= (s31 − s22 − s211 + 2 s1111) + (1 + q)(s22 − s211 + s1111)

+(2 + 2q + q2)(s211 − 3 s1111) + (3 + 5q + 3q2 + q3)s1111

= s31 + qs22 + (q + q2)s211 + q3s1111

The cλµ1,µ2,...,µr (q) are defined by an alternating sum but are in
N[q].
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The monomial expansion above is given by the 3-ribbon
tableaux of shape (33321) and dominant weight
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The H-functions

Family of spin t-analogues related to HL functions.
A partition of the form λ = rµ = (rµ1, . . . , rµs) has empty
r -core
Its r -quotient is obtained by grouping the parts of µ
according to their class modulo r

λ(i) = {µj |j ≡ −i mod r}

For any r , the symmetric functions

H(r)
µ (X ; t) =

∑
T∈Tab r (rµ,·)

ts(T )X T

form a basis which is unitriangular on Schur functions
It can be proved that for r ≥ `(µ),

H(r)
µ (X ; t) = Q′µ(X ; t)
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Some conjectures for H-functions

Monotonicity H(r+1)
µ − H(r)

µ is positive on the Schur basis,
that is, the coefficients are in N[t ].
Plethysm When µ = νr , for ζ a primitive r -th root of unity,

H(r)
νr (ζ) = (−1)(r−1)|ν| pr [sν ]

and when d |r and ζ is a primitive d-th root of unity,

H(r)
νr (ζ) = (−1)(d−1)|ν|r/dpr/d

d [sν ] .

Equivalently,

H(r)
νr (t) mod 1− t r =

r−1∑
i=0

t i`
(i)
r [sν ]

Proved by Kazuto Iijima [European J. Combin. 34 (2013)
968–986]
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Examples

The H-functions associated with the partition λ = (3211) are

H(2)
3211 = s3211 + t s322 + t s331 + t s4111

+(t + t2) s421 + t2 s43 + t2 s511 + t3 s52

H(3)
3211 = s3211 + t s322 + (t + t2) s331 + t s4111

+(t + 2t2) s421 + (t2 + t3) s43 + (t2 + t3) s511

+2t3 s52 + t4 s61

H(4)
3211 = s3211 + t s322 + (t + t2) s331 + t s4111 + (t + 2t2 + t3) s421

+(t2 + t3 + t4) s43 + (t2 + t3 + t4) s511

+(2t3 + t4 + t5) s52 + (t4 + t5 + t6) s61 + t7 s7

= Q′3211

J.-Y. Thibon



The plethysms of s21 with the cyclic characters `(i)
3 are given by

the reduction modulo 1− t3 of H(3)
222111

H(3)
222111 = t9s63 + (t + 1)t7s621 + t6s6111 + (t + 1)t7s54

+ (t3 + 2t2 + 2t + 1)t5s531 + (t2 + 2t + 1)t5s522

+ (t3 + 2t2 + 2t + 1)t4s5211 + (t + 1)t4s51111

+ (t2 + 2t + 1)t5s441 + (t3 + 2t2 + 3t + 2)t4s432

+ (2t3 + 3t2 + 3t + 1)t3s4311 + (t3 + 3t2 + 3t + 2)t3s4221

+ (t3 + 2t2 + 2t + 1)t2s42111 + t3s411111 + (t3 + 1)t3s333

+ (2t3 + 3t2 + 2t + 1)t2s3321 + (t2 + 2t + 1)t2s33111

+ (t2 + 2t + 1)t2s3222 + (t3 + 2t2 + 2t + 1)ts32211

+ (t + 1)ts321111 + (t + 1)ts22221 + s222111
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`
(0)
3 = s3 + s111

`
(1)
3 = s21

`
(2)
3 = s21

In general,
`

(k)
n =

∑
t∈STab (n)

maj(t)≡k mod n

sshape(t)

(h3 + e3)[s21] = s222111 + 2s33111 + 3s4311 + 2s32211 + 2s42111

+ 3s4221 + 2s3222 + 2s3321 + s411111

+ 2s333 + s6111 + 2s531 + 2s5211 + 2s432 +2s441 + 2s522 + s63

s21[s21] = s3222 + 3s3321 + 2s32211 + 2s42111 + s22221 + s33111

+ s321111 + 3s4311 + 3s4221 + s441 + s522

+ 2s5211 + s51111 + 2s531 + 3s432 + s621 + s54
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Ribbons tableaux and the Fock space

The algebra of symmetric functions can be identified with
the Fock space representation of ĝl∞.

sλ ↔ |λ〉 = vi1 ∧ vi2 ∧ vi3 ∧ · · · where ik = λk − k + 1

This induces actions of ĝl r = ŝl r +Hr where Hr is a
Heisenberg algebra
Bosonic Fock space F = C[x1, x2, . . .] ' Sym (xk = 1

k pk )

Action of ĝl r on F :
the generator Bk of Hr acts by rk ∂

∂prk
for k > 0 and as the

multiplication by p−rk for k < 0.
Action of the generators of ŝl r particularly simple in the
basis of Schur functions sλ.
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For a node γ in i th row and j th column of λ let r(γ) = j − i
mod r .
Then,

eisλ =
∑

sν , fisλ =
∑

sµ ,

where ν (resp. µ) runs through all partitions obtained from λ by
removing (resp. adding) a node of residue i .
For example, f2 of ŝl3 acts on s5322 by
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U(Hr ) = pr ◦ Sym is as well generated by the

Vk = ‘multiplication by pr ◦ hk ’

Vksλ =
∑

(−1)h(µ/λ)sµ

sum over all partitions µ such that µ/λ is a horizontal
r -ribbon strip of weight k , where

h(µ/λ) =
∑

R

(h(R)− 1)

sum over all the r -ribbons R tiling µ/λ.
and their adjoints Uk

Uksµ =
∑

(−1)h(µ/λ)sλ

sum over all partitions λ such that µ/λ is a horizontal
r -ribbon strip of weight k .
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A horizontal 5-ribbon strip of weight 4 and spin 7
2
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q-Fock space representation of Uq(ĝl r)

In the Q(q)-vector space

F =
⊕
λ∈P

Q(q) |λ〉

γ = (a,b) ∈ Z+×Z+ is an indent i-node of λ if a box of
residue i = a− b mod r can be added to λ at position
(a,b)

Similarly, a node of residue i which can be removed is
called a removable i-node.
i ∈ {0,1, . . . , r − 1}

λ, ν such that ν/λ = γ = i
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Defining some numbers associated with a partition

Ni (λ) = ]{ indent i-nodes of λ } − ]{ removable i-nodes of λ },

N l
i (λ, ν) = ]{ indent i-nodes of λ on the left of γ (not counting γ)
} −]{ removable i-nodes of λ on the left of γ },

N r
i (λ, ν) = ]{ indent i-nodes of λ on the right of γ (not counting

γ) } − ]{ removable i-nodes of λ on the right of γ },

N0(λ) = ]{ 0-nodes of λ }.

One can construct q-analogues of the previous representations
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Hayashi 1990, Misra-Miwa 1990
fi |λ〉 =

∑
µ

qN r
i (λ,µ)|µ〉 , ei |µ〉 =

∑
λ

qN l
i (λ,µ)|λ〉

qhi |λ〉 = qNi (λ)|λ〉 and qD|λ〉 = q−N0(λ)|λ〉

defines an action of Uq(ŝl r )

Can be extended to Uq(ĝl r ) (q-wedges and q-bosons of
[Kashiwara-Miwa-Stern 1996].)
Key point: ‘q-bosons’ Bk can be replaced by q-analogues
of Uk and Vk

Vk |λ〉 =
∑

(−q)−h(µ/λ)|µ〉 Uk |µ〉 =
∑

(−q)−h(µ/λ)|λ〉

The relations [Ui ,Uj ] = [Vi ,Vj ] = 0 prove that the
H-functions are symmetric (more elementary proofs since
then)
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Identify Fq ' Q(q)⊗ Sym by |λ〉 = sλ
Define a linear operator ψr

q : Fq −→ Fq by

ψr
q(hλ) = Vλ1Vλ2 · · ·Vλr |∅〉

Then,
ψn

q(hµ) =
∑

T∈tab r ( · ,µ)

(−q)−2s(T )sshape(T )

The image {ψr
q(gλ)} of any basis {gλ} is a basis of the

space of Uq(ŝl r )-highest weight vectors in Fq.
Taking gλ = sλ, we have

〈ψr
q(sλ), sµ〉 = (−q)2s∗r (µ)cλ

µ(0)...,µ(r−1)(q2)

((µ(0) . . . , µ(r−1)) r -quotient of µ).
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Canonical bases

As an Uq(ĝl r )-module, Fq is irreducible.

But as Uq(ŝl r )-module,

Fq '
⊕
m≥0

L(Λ0 −mδ)⊕p(m)

Each simple Uq(ŝl r )-module L(Λ0 −mδ) has a canonical
basis but these cannot be pieced together to form a
canonical basis of the whole Fq under Uq(ĝl r ).
Such a basis (G−λ ) was defined in [Leclerc-T. 1996].
All the q-plethysms ψr

q(sν) are members of this basis.
The coefficients of the dual basis on Schur functions were
conjectured to give the decomposition matrices of
quantized Schur algebras at roots of unity.
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The proof of this conjecture [Varagnolo-Vasserot 1999]
allows one to identify the q-LR coefficients with parabolic
KL polynomials [Leclerc-T. 2000]
Then, a result of [Kashiwara-Tanisaki 1999] shows that
cλ
µ(0)...,µ(r−1)(q) ∈ N[q]

A combinatorial proof is still wanted for general r .
Combinatorial formula for r = 3 [J. Blasiak, Math. Z. 283
(2016), 601–628]
LLT polynomials have been defined for other root systems
by Lecouvey [European J. of Combin. 30 (2009) 157–191],
and Grojnowski-Haiman (unpublished)
In both versions, the coefficients are parabolic KL
polynomials
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Upper and lower canonical bases of Fq

There is a unique q-semi-linear endomorphism x 7→ x̄ of
Fq such that |∅〉 = |∅〉, fix = fi x̄ and Vkx = Vk x̄ .
In terms of q-wedges, reverse a prefix and normalize

|λ〉 = uI = ui1 ∧q ui2 ∧q · · · uim ∧q · · ·

uI = (−1)(k
2)qαn,k (I)uik∧quik−1∧q · · ·∧qui1∧quik+1∧quik+2∧q · · ·

Let

L+ =
⊕
λ

Z[q]|λ〉 and L− =
⊕
λ

Z[q−1]|λ〉

There exists bases G+
λ and G−λ of Fq characterized by

(i) G+
λ = G+

λ , G−λ = G−λ
(ii) G+

λ ≡ |λ〉 mod qL+, G−λ ≡ |λ〉 mod q−1L−
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Let
G+
µ =

∑
λ

dλµ(q)|λ〉

and
G−λ =

∑
µ

eλµ(−q−1)|µ〉

Then,
eλµ(q) =

∑
x∈Ŝ(a)

(−q)`(x)Pwv x ,wu (q)

dλµ(q) =
∑

y∈Sm

(−q)`(y)Pyŵu ,ŵv (q)

(parabolic KL polynomials of Deodhar).
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Quantized Schur algebras at roots of 1

Sn(ζ) with ζ a primitive r -th root of 1
W (λ) Weyl modules. L(µ) simple modules
Conjecture [LLT] let {W (λ)i} be the Jantzen filtration

dλ′µ′(q) =
∑
i≥0

[W (λ)i/W (λ)(i+1) : L(µ)]qi

Extends the LLT conjecture proved by Ariki.
Proved by Varagnolo-Vasserot for q = 1.
Proved by P. Shan [ Represent. Theory 16 (2012),
212-269] for ζ = e2iπ/k , k ≤ −3
One has [dλµ(q)] = [eλ′µ′(−q)]−1.
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Back to Hall-Littlewood functions

Why do we have K̃λµ(q) = cλµ1,...,µr (q) ?
One can now deduce it from an earlier result of Lusztig

eNλ,Nµ(q) = K̃λµ(q2) (N ≥ m)

Original proof [LLT97]: cell decompositions of unipotent
varieties
Open problem: similar interpretation for other LLT
polynomials ?
Cospin q-analogues G̃µ(X ; 1 + q) of products of arbitrary
vertical strips are e-positive [P. Alexandersson,
arXiv:1903.03998; M. d’Adderio, JCTA 172 (2020)],
Not true in general. Known for Q̃′µ(X ; 1 + q), special case
of a property of Hall polynomials
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Unipotent varieties

The coefficients g̃νµ(q) of the monomial expansions

Q̃′µ(X ; q) :=
∑
λ

K̃λµ(q)sλ =
∑
ν

g̃νµ(q)mν

are the Poincaré polynomials of certain algebraic varieties.
Let u ∈ GL(n,C) be a unipotent element of Jordan type µ,
and let Fν be the variety of ν-flags in V = Cn

Vν1 ⊂ Vν1+ν2 ⊂ . . . ⊂ Vν1+...νr = V

where dimVi = i .
The unipotent variety Fu

ν is the set of fixed points of u in
Fν .
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Cell decompositions

Cell decomposition of Fu
ν involving only cells of even real

dimensions ' Cd [Shimomura 1980].
Hence, the Poincaré polynomial has the form

Πνµ(t2) =
∑

i

t2idimH2i(Fu
ν ,Z)

and Πνµ(q) = |Fu
ν [Fq]|, which can be shown (by means of

the Hall algebra) to be

|Fu
ν [Fq]| = g̃νµ(q)

Cells are parametrized by tabloids.
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Tabloids

For µ, ν arbitrary compositions of n, a µ-tabloid of shape ν
is a filling of the diagram with row lengths ν1, ν2, . . . , νr
such that i occurs µi times, each row nondecreasing.
For example,

3
1 1 1
1 1 3
2 3

is a (5,1,3)-tabloid of shape (2,3,3,1)
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Inversion statistic on tabloids

Dimension d(t) of the cell ct explicitly given by Shimomura.
A slightly modified version e(t) (having the same
distribution) can be interpreted as a kind of ‘inversion
number’ on r -tuple of rows (e-inversions) [Terada 1993]
Tabloid t = (w1, . . . ,wr ) ' r -tuple of row tableaux.
y the k -th letter of wi

x the k -th letter of wj

For x < y (y , x) is an e-inversion if either (a) i < j or (b)
i > j and there is on the right of x in wj a letter u < y
e(t) is equal to the number of inversions (y , x) in t.
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Inversions and cospin

Stanton-White correspondence maps t to T such that
s̃(T ) = e(t) For example,

t =

(
2 3 , 1 1 2 , 4 5 , 2

1 1 0 0 0 3 1 1

)

has e(T ) = 7 and is mapped to

1

2

2

4

1

3

5

2

of cospin 7.
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Recent progress

The generalized inversion number e(t) has been extended
to arbitrary r -tuples of tableaux
[Schilling-Shimozono-White, Adv. Applied Math. 30 (2003)
258–272]
Another version working with tuples of skew tableaux has
been found by Haglund,Haiman, and Loehr [ J. Amer.
Math. Soc. 18 (2005), 735–761]
It allowed these authors to prove the Schur positivity of
Macdonald polynomials H̃µ(x ; q, t) by expressing them as
N[q−1, t ] linear combination of special LLT polynomials
These special polynomials are q-analogues of products of
ribbon Schur functions
The proof uses quasi-symmetric functions
This suggests connections with noncommutative
symmetric functions and combinatorial Hopf algebras
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Macdonald J functions and unicellular LLT-polynomials

Haglund and Wilson [arXiv:1701.05622]: Macdonald’s
Jµ(x ; q, t) in terms of the quasi-symmetric chromatic
polynomials [Shareshian-Wachs] of certain graphs
Here, these chromatic polynomials are symmetric
They are related to unicellular LLT-polynomials
(t-analogues of sn

1 given by tuples of skew partitions with a
single box) by

XG(t ,X ) = (t − 1)−n LLTG(t , (t − 1)X )

[Carlsson and Mellit, J. Amer. Math. Soc. 31 (2018),
661–697]
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Dyck graphs

The graphs G are simple graphs with vertices labelled
1, . . . ,n, such that if there is an edge (i , j) with i < j , then
all the (i ′, j ′) with i ≤ i ′ < j ′ ≤ j are also edges of G.
The number of such graphs is the Catalan number cn.
Encoding by partitions contained in a staircase

× × 5
× × 4
× 3

2
1
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A coloring is proper if ci 6= cj whenever (i , j) ∈ E(G). We
denote by C(G) the set of proper colorings of G.
The chromatic quasi-symmetric function of G expands in
the M basis of QSym

XG(t ,X ) =
∑

c∈C(G)

tascG(c)xc1xc2 · · · xcn =
∑

c∈PC(G)

tascG(c)MEv(c)(X ),

where PC(G) denotes the set of proper packed colorings,
ascG(c) is the number of edges (i < j) such that ci < cj ,
and Ev(c) is the evaluation of c.
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Some combinatorial Hopf algebras

A = {a1 < a2 < a3 < · · · } totally ordered alphabet
WQSym: “Word Quasi-Symmetric functions”

Mu =
∑

pack(w)=u

w

M121 = aba + aca + ada + bcb + bdb + cdc + · · ·

Algebra:
Mu′Mu′′ =

∑
u=vw

pack(v)=u′, pack(w)=u′′

Mu

Hopf algebra ∆Mu = Mu(A⊕ B) (ordinal sum)
Projection to QSym: Mu(X ) = MI(X )
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The Guay-Paquet Hopf algebra G: linear span of finite
simple undirected graphs with vertices labelled by the first
integers.
Product: G · H = G ∪ H[n] where H[n] is H with labels
shifted by the number n of vertices of G.
Coproduct: G graph on n vertices, w ∈ [r ]n, coloring of G;
G|w tensor product G1 ⊗ · · · ⊗Gr of the restrictions of G to
vertices colored 1,2, . . . , r .

∆r G :=
∑

w∈[r ]n

tascG(w)G|w . (1)

The subspace D of G spanned by Dyck graphs is a Hopf
subalgebra.
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Given a Dyck graph G, define

XG(t ,A) =
∑

c∈PC(G)

tascG(c)Mc(A) ∈WQSym.

Then, [Novelli, T., arXiv:1907.00077] G 7→ XG(A) is a
morphism of Hopf algebras from G to WQSym.
The (1− t) transform and its inverse can be extended to
WQSym
Appliying it to XG, we find

(t − 1)nXG

(
t ,

A|
|t − 1

)
=
∑

u∈PWn

tascG(u)Mu(A).

The r.h.s. is therefore a noncommutative lift of the LLT
polynomial LLTG.
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X( ) =
∑

w∈PW (3)

Mw

X( ) =t M121 + t M122 + t M123 + t M132 + M211

+ M212 + M213 + t M231 + M312 + M321

X( ) =t M112 + M121 + t M123 + M132 + t M212

+ t M213 + M221 + M231 + t M312 + M321

X( ) =t M121 + t2 M123 + t M132 + t M212

+ t M213 + t M231 + t M312 + M321

X( ) = t3 M123 + t2 M132 + t2 M213 + t M231 + t M312 +M321
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Analogue of F -positivity

Φ̌u =
∑
v≥ū

Mv̄ 7→ FI(X )

LLTG =
∑
σ∈Sn

tascG(σ)Φ̌min′G∅
(σ)

where G∅ is the graph with n vertices and no edges.

LLT( ) = Φ̌123 + Φ̌122 + Φ̌112 + Φ̌121 + Φ̌212 + Φ̌111,

LLT( ) = t Φ̌123 + t Φ̌122 + Φ̌112 + t Φ̌121 + Φ̌212 + Φ̌111,

LLT( ) = t Φ̌123 + Φ̌122 + t Φ112 + Φ̌121 + t Φ̌212 + Φ̌111,

LLT( ) = t2 Φ̌123 + t Φ̌122 + t Φ̌112 + t Φ̌121 + t Φ̌212 + Φ̌111.
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A conjecture

Let Q̂′(X ; t) = (1− t)−`(µ)Q′(X ; t).
Spin-unicellular LLT

XG(t) = (1− t)−nLLTG((1− t)X ; t)

Define
(1− t)−nLLTG(X ; t) =

∑
µ`n

cµG(t)Q̂′(X ; t)

Conjecture (Novelli-T., in preparation)

The coefficient cµG(t) is given by an explicit statistic stG(π) on
set partitions of type µ which are compatible with G, i.e. such
that the extremities of an edge are not in the same block:

cµG(t) =
∑
π∈Πµ

t stG(π)
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For the graph G =

LLTG = Q̂′11111 + (t3 + 2t2 + 2t)Q̂′2111 + (t3 + 2t2 + t)Q̂′221

{{1}, {2, 4}, {3, 5}} 1
{{1, 4}, {2}, {3, 5}} 2
{{1, 4}, {2, 5}, {3}} 3
{{1, 5}, {2, 4}, {3}} 2
{{1}, {2}, {3, 5}, {4}} 1
{{1}, {2, 5}, {3}, {4}} 2
{{1}, {2, 4}, {3}, {5}} 1
{{1, 5}, {2}, {3}, {4}} 3
{{1, 4}, {2}, {3}, {5}} 2
{{1}, {2}, {3}, {4}, {5}} 0

Thanks to the Haglund-Wilson formula, this would provide an
explicit expression of Macdonald polynomials in terms of
Hall-Littlewood functions.
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Conclusion

Bon anniversaire Bernard !
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