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Original motivation: plethysm

@ Irreducible tensor representations of GL(n, C):
pr: GL(n,C) — GL(Vy), Vi C (CM®K

@ )\ partition of k with at most n parts
@ Character: Schur function sy = ch(p,)

@ Composition of two representations p of character f and
of character g:

ch(nop)=:gof plethysm of f by g, also denoted by g[f]

@ The problem: compute

salsu] = d%,sy
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@ More precisely, find a combinatorial description
@ if \FFd, s)[s,] is a part of

Sg - Z Clup-pSv = Z 8,5

vknd ARd

where Clryionopy ATE the Littlewood-Richardson coefficients,

and f* the number of standard tableaux of shape \.
@ For d = 2, no multiplicities

Ve V=_S8%V)aN(V) s sh = h[s,] + es,]

@ First problem: split the Littlewood-Richardson tableaux into
two sets, corresponding to the symmetric and
antisymmetric parts of the square.

@ |dea (B.L.) Formulate a version of the LR-rule with domino
tableaux, and split according to the parity of half the
number of horizontal dominos.
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2
S51 = Sa2 + S411 + S33 + 28321 + S3111 + Spoo + Seo11
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ho[s21] = Sap + Ssp1 + S3111 + S22
€2[S21] = Sa11 + S33 + S321 + So211

[C. Carré, B. Leclerc, Séminaire Lotharingien de Combinatoire, B31c (1993),
8 pp; J. Alg.Combin. 4 (1995), 201-231]
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What about higher powers?

Next step suggested by previous LLT results on Hall-Littlewood
functions at roots of unity

@ Hall-Littlewood functions

PP, = £ (t)Py
A

such that g, (q) = "W ="=0)f3 (g=1) (Hall algebra)
@ Kostka numbers

Sy =Y _ Kyu(t)Pu
M

@ Kostka numbers are special LR coefficients
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@ Dual HL functions

<Q//w P,,) = 5#!/ (<S)n Su> = 5>\u)

are t-analogues of products h,,

Q. => Kult)sy — h, (t—1)
A

@ The Kostka-Foulkes polynomials K}, (t) € N[t]

@ The RAu(q) are (parabolic) Kazhdan-Lusztig polynomials
for the affine symmetric group
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Roots of unity and plethysm formulae

@ { =1 is not the only interesting value
@ For t = ¢ a primitive rth root of unity

Q\(X:¢) = Qu(X: O T [ Qi (X: )]

i>1

where A = (1™2M2 . .n™) m;=rqi+rwith0<r <r,
and p = (112%2...nM).

@ and for rectangular partitions, we obtain plethysms with
power-sums

Q) (X ¢) = (=) D"pr[hy(X)]
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Interpretation

Consider the (reducible) GL(n, C)-module
V=NC"eoN2C"®---@ N C"
and the cyclic shift operator v : V®9 — y®d
TV RVe®: - R Vg) =Vg@ VI @ ® Vg1

lts eigenspaces W) are representations of GL(n, C).
The previous formulae imply a combinatorial description of their
characters Egk)[el,].
Can we do the same starting with V = V, irreducible ?
Answer: ribbon tableaux
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Ribbon tableaux and products of Schur functions

A Schur function s, (X) is a sum over semi-standard Young
tableaux t of shape A

sX)= > X
t€Tab (A)
where X' =TT, x™, m; number of occurences of i in t.

i
A product of r Schur functions S,.0) is a sum over r-tuples of
tableaux

e = hxt ... Xt
S8, S = > XXX
(t17"'7tf)

r-tuples of tableaux «+— r-ribbon tableaux
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Ribbons (rim-hooks) and ribbon tableaux

Here are the (23 = 8) 4-ribbons

and a 4-ribbon tableau of shape (87661) and weight (3211)

2

3
2
11 l4
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r-core and r-quotient

The partition A = (87241°) has as 3-core v = (211)

\_‘

AL

}

ksl

and as 3-quotient the triple ((21), (22), (2))

NE Al



The Stanton-White bijection

Choosing as 3-core k = (211), the triple
4] 2[4
3[3] [1]3] [2]3]

)

with weights (0021),(1111), (0110) corresponds to the 3-ribbon
tableau of shape \ = (87241°) and weight 1 = (1242).

2 4
2 3

s ]
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If 11 is the partition with r-quotient (19, ..., u("=1)) and empty

r-core
-
() Sy = Z X
TETab r(11,")

where Tab ,(u, -) is the set of r-ribbon tableaux of shape

A natural statistic on ribbon tableaux is the sum of the heights
of the ribbons

Example: r =11, h(R) =6

h(R)
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Spin and cospin

The relevant statistic is rather h(R) — 1, and for compatiblity
with Hall-Littlewood functions, one introduces the spin

s(R) = %(h(ﬁ’) —1), s(T)=3_s(R)

ReT

(a half-integer in general) and the cospin (an integer)
5(T)=s;(n) —s(T) for T € Tab (y,-)

The most general g-LR coefficients are defined by

éuz Z T)XT ZC (), = 1 (q)sr(X)

TETab (p, )
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The 3-quotient of A = (33321) is ((1),(1,1),(1)) and the
g-analogue of 5151157 (in this order) is

Mgy + (14 q)Ma2+ (242G + G°)M211 + (3+ 59+ 3%+ G°) M1

= (S31 — So2 — S211 + 2S1111) + (1 + q)(S22 — S211 + St111)
+(2+2q+ G°)(S211 — 351111) + (3+5q + 3% + 0°) 1111
= 831 + GSa2 + (G + G°)S211 + G°S1111

)\ . . .
The c;, ..., (q) are defined by an alternating sum but are in

N[q].
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The monomial expansion above is given by the 3-ribbon
tableaux of shape (33321) and dominant weight

A=
Il 1I 11 |1 Il ll 11 |\1_‘2 123 124
o Py B g P P B P
1} IITB I—|i 'L‘ ‘2—‘ ‘\2_‘ '2 ‘2 ‘Z
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The H-functions

@ Family of spin t-analogues related to HL functions.

@ A partition of the form A = ru = (rp, ..., rus) has empty
r-core

@ Its r-quotient is obtained by grouping the parts of u
according to their class modulo r

M) =A{wjlj=—i mod r}
@ For any r, the symmetric functions

HOx: = Y xT

T€ETab ((rp,)

form a basis which is unitriangular on Schur functions
@ It can be proved that for r > ¢(u),

HO(X: 1) = Q,(X: 1)
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Some conjectures for H-functions

@ Monotonicity H\'"") — H\” is positive on the Schur basis,
that is, the coefficients are in N[t].

@ Plethysm When p = v', for ¢ a primitive r-th root of unity,
HAQ) = () pys,]
and when d|r and ( is a primitive d-th root of unity,
HP(Q) = (=)@ M9p s, )

@ Equivalently,
r—1 o
HO(t) mod1—t = > tes,]
i=0

@ Proved by Kazuto lijima [European J. Combin. 34 (2013)
968-986]
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The H-functions associated with the partition A = (3211) are

2
Héz% = Sz211 + [ S322 + 15331 + 154111
+(t+ 17) St + 12 Saz + 12 8511 + 12 S50
3
HS) = Sapr1 + tSapo + (¢ + 2) Saat + t Sap11

+(t+21%) Sap1 + (12 + 1°) sug + (1 + £°) 8511
+213 555 + t* 51
Hé21 = Szp11 + 1S3+ (t+ tz) Saz1 + tSq111 + (t+ 22 + ts) S421
F(2 4 12+ t4) 843 + (12 4 12 + 1*) 8514
+@E+t + ) s+ (1P + P+ 18) 561 + 1 57
= Q§211
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The plethysms of s, with the cyclic characters ég') are given by
the reduction modulo 1 — 3 of Hg)zm

HS) 14 = 19863 + (£ + 1)t S601 + 86111 + (t + 1)t S54
+ (B + 202 + 2t + 1)%ss31 + (12 + 2t + 1) S50
+ (£ + 262 + 2t + 1)t*ss11 + (t+ 1)t S51111
+ (242t + 1)Os4q1 + (2 + 22 + 3t + 2)t*s430
+ (263 + 312 + 3t + 1) 1354311 + (12 + 312 4 3t + 2) 1354901
+ (£ + 262 + 2t 4+ 1) 840111 + BSa11111 + (2 + 1)38333
+ (213 4+ 312 + 2t + 1)t2533p1 + (12 + 2t + 1) 2833114
+ (12 + 2t + 1) P00 + (13 4 212 + 2t + 1)tS30011
+ (t+ 1)ts321111 + (T + 1)IS20201 + S222111
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0
€§)=Ss+3m

6§D = sy
féz) = Sp1
In general,
6= 3 swan

teSTab (n)
maj(t)=k mod n

(h3 + €3)[S21] = Sz22111 + 2833111 + 384311 + 2832211 + 2842111
+ 384201 + 283002 + 283321 + Sa411111
+ 28333 + Sp111 + 28531 + 2S5211 + 28432
S21[S21] = S3202 + 383321 + 2832211 + 2842111 + S22021 + S33111
+ S301111 + 3S4311 + 3S4221 + Saa1 + Ss22
+ 285211 + S51111 + 28531 + 35432 + Se21 + S54
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Ribbons tableaux and the Fock space

@ The algebra of symmetric functions can be identified with
the Fock space representation of g/ ..

Sy |A) =V, AV AV Ao where ix = A\ — K+ 1

@ This induces actions of EI, = sl, + H, where H, is a
Heisenberg algebra

@ Bosonic Fock space F = C[x1, Xz, ...] ~ Sym (xx = +px)

@ Action of EI, on F:
e the generator By of #, acts by rk% for k > 0 and as the
multiplication by p_ for k < 0.

e Action of the generators of sl particularly simple in the
basis of Schur functions s,.
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For a node ~ in ith row and jth column of A let r(y) =j — i
mod r.

Then,
esx=> 5, fisx=)_ s,

where v (resp. p) runs through all partitions obtained from A by
removing (resp. adding) a node of residue /.
For example, £, of s/3 acts on sg300 by

-[=]v

2|0
2Jo]1]2
o1 201 ]2
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@ U(H,) = pr o Symis as well generated by the

Vi = ‘multiplication by p, o hy’

Visy =Y (-1 Vs,

sum over all partitions p such that x/\ is a horizontal
r-ribbon strip of weight k, where

h(u/A) =Y _(h(R) — 1)

R

sum over all the r-ribbons R tiling 1/ \.
@ and their adjoints Uy

Uks,, = Z(_1 RGEN

sum over all partitions A such that p/\ is a horizontal
r-ribbon strip of weight k.
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A horizontal 5-ribbon strip of weight 4 and spin %

J.-Y. Thibon



q-Fock space representation of Ugy(g/,)

@ In the Q(q)-vector space

F=EPQa) N

AeP

v=(a,b) € Z; x Z4 is an indent i-node of X if a box of
residue i = a— b mod r can be added to A at position
(a,b)

@ Similarly, a node of residue i/ which can be removed is
called a removable i-node.

@ie{0,1,....r—1}
° )\,ysuchthaty/)\:y:
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Defining some numbers associated with a partition
@ N;(\) = t{ indent i-nodes of A } — #{ removable i-nodes of A },

@ N!/()\,v) = t{ indent i-nodes of X on the /eft of v (not counting ~)
+ —t{ removable i-nodes of X on the leftof v },

@ N/(\,v) = t{ indent /-nodes of A on the right of v (not counting
v) } — #{ removable i-nodes of A on the right of v },

@ NO(\) = #{ 0-nodes of A }.

One can construct g-analogues of the previous representations
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iwa 1990
r l
A =D gy ey =D gMOIN)
n A

") = g"MN) and o) =g MO
defines an action of Uq(sA/,)

@ Can be extended to Uq(ﬁlr) (g-wedges and g-bosons of
[Kashiwara-Miwa-Stern 1996].)

@ Key point: ‘g-bosons’ By can be replaced by g-analogues
of Ux and Vj

Vil A = (=q) M) Uklu) =D (—q) "))
@ The relations [U;, U] = [V}, V]] = 0 prove that the

H-functions are symmetric (more elementary proofs since
then)
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@ Identify 74y ~ Q(q) ® Symby |\) = sy
@ Define a linear operator v : Fq — Fq by

bg(h) = Va Vag -+ Vi, [0)

@ Then,
Q;Z)g(hli) = Z (_q)—ZS( T)Sshape( T)

Tetab (- ,p)

@ The image {vg(gx)} of any basis {g,} is a basis of the
space of Uq(sAI,)-highest weight vectors in Fg.
@ Taking g\ = s), we have

(04(81),5) = (0P W ke, (@)

(@ ..., u=1) r-quotient of ).
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Canonical bases

@ As an Uq(gl,)—module, Fq is irreducible.
@ But as Uq(;l,)—module,

Fq~ @ L(no — ms)®Ptm™

m>0

@ Each simple Uq(sA/,)-moduIe L(Ag — md) has a canonical
basis but these cannot be pieced together to form a
canonical basis of the whole 74 under Ug(g/,).

@ Such a basis (G, ) was defined in [Leclerc-T. 1996].

@ All the g-plethysms (s, ) are members of this basis.

@ The coefficients of the dual basis on Schur functions were

conjectured to give the decomposition matrices of
quantized Schur algebras at roots of unity.
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@ The proof of this conjecture [Varagnolo-Vasserot 1999]
allows one to identify the g-LR coefficients with parabolic
KL polynomials [Leclerc-T. 2000]

@ Then, a result of [Kashiwara-Tanisaki 1999] shows that
02(0)_..7M(r71)(Q) € N[q]

@ A combinatorial proof is still wanted for general r.

@ Combinatorial formula for r = 3 [J. Blasiak, Math. Z. 283
(2016), 601-628]

@ LLT polynomials have been defined for other root systems
by Lecouvey [European J. of Combin. 30 (2009) 157—-191],
and Grojnowski-Haiman (unpublished)

@ In both versions, the coefficients are parabolic KL
polynomials
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Upper and lower canonical bases of 7,

@ There is a unique g-semi-linear endomorphism x — X of
Fq such that |0) = |0), fix = fix and Vx = VjX.
@ In terms of g-wedges, reverse a prefix and normalize

|)\>:U/:U,'1 Ng U, Ng -+~ Ui, Ng - -

_ k
b = (=) g Dy, Aqui,  Age - AqUi AqUi,,, AU, Mg+

@ Let

Lt =Pzlqll)) and £ =EPzZg N
A A

@ There exists bases G,” and G, of 7 characterized by

()Gl = Gf, G, = Gy
(ii) Gj =|\) mod q£ G, =|\) mod g 'L~
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o Let
G =Y dw(q)N)
A

and
Gy = en(-q )n
w
@ Then,

exu(@) = Y (-9 Puxw(9)
xe6(a)

(@) = > (—)MPy, 4,9
YeGnm

(parabolic KL polynomials of Deodhar).
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Quantized Schur algebras at roots of 1

@ Sp(¢) with ¢ a primitive r-th root of 1
W(X) Weyl modules. L(x) simple modules
Conjecture [LLT] let {W()\)'} be the Jantzen filtration

Ay () = STIWO) /WO - L)lg’

i>0

Extends the LLT conjecture proved by Ariki.

Proved by Varagnolo-Vasserot for g = 1.

Proved by P. Shan [ Represent. Theory 16 (2012),
212-269] for ¢ = e?"/K k < -3

One has [dh.(q)] = [exw (-a)] .
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Back to Hall-Littlewood functions

-----

@ One can now deduce it from an earlier result of Lusztig

enxnu(9) = Kou(g?) (N> m)

@ Original proof [LLT97]: cell decompositions of unipotent
varieties

@ Open problem: similar interpretation for other LLT
polynomials ?

@ Cospin g-analogues é#(X ; 1+ q) of products of arbitrary
vertical strips are e-positive [P. Alexandersson,
arXiv:1903.03998; M. d’Adderio, JCTA 172 (2020)],

@ Not true in general. Known for (NDL(X;1 + q), special case
of a property of Hall polynomials
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Unipotent varieties

@ The coefficients g,,(q) of the monomial expansions
Q. (X;q) ZK)\M q)s) = Zgw

are the Poincaré polynomials of certain algebraic varieties.

@ Let u € GL(n,C) be a unipotent element of Jordan type .,
and let 7, be the variety of v-flags in V = C"

Vi, c Vo4, C...C Vs 1, =V

where dimV; = |.
@ The unipotent variety 7! is the set of fixed points of u in
Fo.
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Cell decompositions

@ Cell decomposition of F involving only cells of even real
dimensions ~ C? [Shimomura 1980].

@ Hence, the Poincaré polynomial has the form
Muu(1?) =) PldimHy(FY, Z)
i
and M,,(q) = | FY[Fq]|, which can be shown (by means of

the Hall algebra) to be

77 [Fqll = 9uu(q)

@ Cells are parametrized by tabloids.
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Tabloids

@ For u, v arbitrary compositions of n, a pu-tabloid of shape v
is a filling of the diagram with row lengths v4,15, ..., 1
such that i occurs p; times, each row nondecreasing.

@ For example,

—

m—x—noo|

wW|l—=|—=
w

is a (5,1, 3)-tabloid of shape (2,3,3,1)
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Inversion statistic on tabloids

@ Dimension d(t) of the cell ¢; explicitly given by Shimomura.

@ A slightly modified version e(t) (having the same
distribution) can be interpreted as a kind of ‘inversion
number’ on r-tuple of rows (e-inversions) [Terada 1993]

@ Tabloid t = (wy,...,w,) ~ r-tuple of row tableaux.
@ y the k-th letter of w;
@ x the k-th letter of w;

@ For x < y (y, x) is an e-inversion if either (a) i < j or (b)
i > j and there is on the right of x in w; a letter u < y

@ ¢(t) is equal to the number of inversions (y, x) in t.
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Inversions and cospin

Stanton-White correspondence maps t to T such that
5(T) = e(t) For example,

.o <|z|s| , [11112] | [4]5] | )

1 1 0 0O 3 1 1

has e(T) = 7 and is mapped to

fli=t

1

of cospin 7.
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Recent progress

@ The generalized inversion number e(t) has been extended
to arbitrary r-tuples of tableaux
[Schilling-Shimozono-White, Adv. Applied Math. 30 (2003)
258-272]

@ Another version working with tuples of skew tableaux has
been found by Haglund,Haiman, and Loehr [ J. Amer.
Math. Soc. 18 (2005), 735-761]

@ It allowed these authors to prove the Schur positivity of
Macdonald polynomials H,(x; g, t) by expressing them as
N[g~, {] linear combination of special LLT polynomials

@ These special polynomials are g-analogues of products of
ribbon Schur functions

@ The proof uses quasi-symmetric functions

@ This suggests connections with noncommutative
symmetric functions and combinatorial Hopf algebras
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Macdonald J functions and unicellular LLT-polynomials

@ Haglund and Wilson [arXiv:1701.05622]: Macdonald’s
Ju(x; g, t) in terms of the quasi-symmetric chromatic
polynomials [Shareshian-Wachs] of certain graphs

@ Here, these chromatic polynomials are symmetric

@ They are related to unicellular LLT-polynomials
(t-analogues of s given by tuples of skew partitions with a
single box) by

Xg(t,X) = (t —1)""LLTg(t, (t — 1)X)

[Carlsson and Mellit, J. Amer. Math. Soc. 31 (2018),
661-697]
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Dyck graphs

@ The graphs G are simple graphs with vertices labelled
1,...,n, such that if there is an edge (/,j) with i < j, then
all the (7', ") with i < i’ < j' < j are also edges of G.

@ The number of such graphs is the Catalan number c;,.

@ Encoding by partitions contained in a staircase

X | X 5
X | X 4
X 3
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@ A coloring is proper if ¢; # ¢; whenever (i,j) € E(G). We
denote by C(G) the set of proper colorings of G.

@ The chromatic quasi-symmetric function of G expands in
the M basis of QSym

Xa(t, X) = Y t560x xg, - Xg, = Y 15O Mg (X)),
ceC(G) c€ePC(G)

where PC(G) denotes the set of proper packed colorings,
ascg(c) is the number of edges (i < j) such that ¢; < ¢;,
and Ev(c) is the evaluation of c.
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Some combinatorial Hopf algebras

@ A={a; < a» < a3 < ---} totally ordered alphabet
@ WQSym: “Word Quasi-Symmetric functions”

MU:ZW

pack(w)=u

M.,y = aba+ aca+ ada+ bcb + bdb + cdc + - - -

@ Algebra:
MyM, = Z M,

u=vw
pack(v)=u’, pack(w)=u"’

@ Hopf algebra AM, = M, (A @ B) (ordinal sum)
@ Projection to QSym: M, (X) = M;(X)
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@ The Guay-Paquet Hopf algebra G: linear span of finite
simple undirected graphs with vertices labelled by the first
integers.

@ Product: G- H = GU H[n] where H[n] is H with labels
shifted by the number n of vertices of G.

@ Coproduct: G graph on n vertices, w € [r]", coloring of G;
G|w tensor product Gy ® - - - ® G, of the restrictions of G to
vertices colored 1,2,...,r.

A'G:= ) g, (1)

welr]?

@ The subspace D of G spanned by Dyck graphs is a Hopf
subalgebra.
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@ Given a Dyck graph G, define

Xa(t, A= > t=c(OM,(A) € WQSYm.
cePC(G)

@ Then, [Novelli, T., arXiv:1907.00077] G — Xg(A) is a
morphism of Hopf algebras from G to WQSym.

@ The (1 — t) transform and its inverse can be extended to
WQSym

@ Appliying it to X5, we find

(t—1)"Xg (z: ﬁ“) = > teealtIMy(A).

uePW,

The r.h.s. is therefore a noncommutative lift of the LLT
polynomial LLT .
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Xo o o= >, My
wePW(3)

Xo—o o) =tM21 + t Moo + tMy23 + t My32 + Mo14
+ Maio + May3 + t Moz + Msqo + Mspy

Xo o—o) =tMy12 + My21 + tMy23 + My32 + t My
+ tMz13 + Mooy + Mazq + t Mgyo + Mapy

X(o—o—0) =tMyzq + 2 My23 + t Mygz + t M2
+ tMaq3 + t Magq + t Maq2 + Maoy

= 3 My23 + 12 Myzp + 12 Moyz + t Mgy + t Mgy + Mgy

(=)
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Analogue of F-positivity

&)u = M; — F/(X)
v>u
LLTG = ; taSCG(J)q)min’%(a)

where G is the graph with n vertices and no edges.

LLTo o o) = P1os + P12 + D112 + 121 + o1p + 111,

LLTo—o o) = t 105 + t D1op + Pr1p + 1 1p + g2 + Dy14,
LLTo o) = tiog + Prop + t D112+ Prog + t Poro + Dy,
LLT 0—0—0) = 2 Pqog + tProp + tPr1o + t Dyog + tPogn + Peyq.
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Let Q(X;t) = (1 — )" “WQ(X; t).
Spin-unicellular LLT

Xg(t)=(1 —t)""LLTg((1 — ) X; 1)
Define

(1— ) "LLT(X;: 1) = > ca(hQ(X: 1)

pkEn

Conjecture (Novelli-T., in preparation)

The coefficient ci;(t) is given by an explicit statistic stg(m) on
set partitions of type u which are compatible with G, i.e. such
that the extremities of an edge are not in the same block:

- Z psta(m)

wely,

<
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For the graph G = o—o— o

LLTg = Qfqyqq + (82 + 262 + 20)Qpyq4 + (12 + 282 + 1) Qb

{1},{2,4},{3,5}} 1
{1,4},{2}, {3,5}} 2
{1,4},{2,5}, {3}} 3
{1,5},{2,4}, {3}} 2
13,42}, {3,5},{4}} 1
1}3.42,5}, {3}, {4}} 2
1}, {2,4}, {3}, {8}} 1
1,5}, {2}, {3}, {4}} 3
{{1,4}, {2}, {3}, {8}} 2
{1}, {2}, {3}, {4}, {83} ©

Thanks to the Haglund-Wilson formula, this would provide an
explicit expression of Macdonald polynomials in terms of
Hall-Littlewood functions.

{
{
{
{
{
{
{
{

e
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Conclusion

Bon anniversaire Bernard !
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