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Kronecker products and vertex operators

Summary of yesterday’s lecture

@ Hopf:
o Af=£f(X+Y)
o (f- g, h)y =(f® g, Ah)
4] Ch( ) = S
e product = induction, coproduct = restriction
Q Vertex:

Z Sinyy =T18y = a1Dx_; Sy
nez
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Kronecker products and vertex operators

Summary of today’s lecture

@ Kronecker

Q@ Kronecker + Hopf

© Reduced notation = Kronecker + Hopf + Vertex

© Application to Hilbert series of some invariant algebras
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Kronecker products and vertex operators

The internal product of Sym

Can be defined without reference to characters

()

@ Remember Cauchy’s identity
a1(XY) =D s\(X)sa(Y)
A

@ §: f— f(XY)is acoproduct
@ Obviously, 6p, = p, ® pu
@ The dual product is p, * p, = Z,0,,Py

@ It corresponds under ch to the pointwise product of class
functions

Su* Sy = GuSr=ch(x'x")
A
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Kronecker products and vertex operators

The splitting (or Mackey) formula |

@ There is a compatibility between x, - and A
@ It reflects a general formula in group theory
@ Again, it has a direct and elementary proof
@ Thisis
(19) « h = p[(f ® g) = Ah]
where p(u ® v) = uv and
(aeb)x(d@b)=(axd)x (bxb)
@ Generalization (fifo---f;) x h
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Kronecker products and vertex operators

The splitting (or Mackey) formula Il

Proof (Hopf style):

((fg) = h, u) = ((fg)(X)h(Y), u(XY))
= (f(X")g(X")h(Y), u(X"Y + X"Y))
= Z (F(XNG(X"A(Y), uty (XY )ue) (X"Y))

(the right part is a Y product that we can dualize)

= Z f(X/ X//)h Y + Y//), U(1)(X/ Y,)U(g)(X” Y”)>
— Z X/ X// ,.'(1)(\//),7(2)(\///)7 u(xly/ +X//y//)>
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Kronecker products and vertex operators

The splitting (or Mackey) formula Il

= > ((f ha))(X)(g * h))(X"), u(X" + X))

(now XY — X" and X"Y" — X")
= (ul(f® g) = Ah,u).
Example:

h,*h, = Z hw
MeM(p,v)
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Kronecker products and vertex operators
The reduced notation |

@ Murnaghan, Littlewood:

means
Sufrl * Suf] = Y G Sap
A

@ But what is (\), precisely ?
@ Answer: image of s\ by the vertex operator

(A) =T18\, = Z S(m,\)

mez

That is, a generating series ...
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Kronecker products and vertex operators
The reduced notation Il

@ This follows from

(017) * (919) = o1 )_(Dy, 1) (D, g) (U * )

where (u, v) is any pair of adjoint bases of Sym

Proof:
(01f)  (019) = pl(or ® f) x Ao1Ag]

wul(oq @ f) (ZDVv ®U~/> (01 ®01)]
U1®f) (ZU1 v, g >®U1U7]

—me% ® (f+oquy)]
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Kronecker products and vertex operators
The reduced notation IlI

= Z 1Dy, 9)ul(o1 ® u,) ZDv5f® Us|
B!

= Z 1Dy, 9)(Dy, F)(Uy * Us).

Applyingthistou=v=sandf=s,(X—-1),g=s,(X—-1),
we get Littlewood’s formula, which reads now

Ms,*ls, = Zgﬁyﬂ S)
A

or, more explicitely

M8, %718, =1 Y (Ds,Ds,Su) (Ds,Ds,8,) (Sa * Sp)
afy
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Kronecker products and vertex operators

The reduced notation IV

Example: Two-row shapes, Si,_k k) * S(n—1,)

min(k,/) p

FiskxTisi=T1 Y ) Sk_pSi—pSp-q
p=0 qg=0

The triple product of one-part Schur functions is easily
evaluated. With k =2,/ = 3, we get

1(828350 + S152(S1 + So) + S0S1(S2 + S1 + Sp))

= [1(S32+541+S5+S211+S22+2831+54+2521 +253+S11+S2+51)
so that

Sg2* S73 = S532+ S541+ 555+ Sg211 + Se22 1 S631 + Sea +25721 +2573 4 Sg11 + Sg2 + Sot
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Some Hilbert series

Schur functions and GL(n, C)

@ |. Schur (1901) The irreducible polynomial representations
of GL(n, C) are parametrized by partitions in at most n
parts

e if V = C" the representations of degree k are those

occuring in V&K
VoK _ @ V)E\Bf)\
Ak, I(M)<n
(£, = nb of standard tableaux of shape \)
@ Character formula:
trpa(g) = sA(9)

(as a symmetric function of the eigenvalues of g)

@ Examples: symmetric tensors = hy, alternating tensors =
ek, determinant = e,

@ Proof: Schur-Weyl duality
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Some Hilbert series

Schur functions and SL(n, C)

@ V) remains irreducible, but now e, = 1

@ So V)\+(1n) ~ V)

@ In particular, V;» is the trivial representation

@ Invariants of SL(n) come from rectangular shapes
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Some Hilbert series

Invariants of multilinear forms |

@ Irreducible representations of a product group
G= Hf-‘:1 GL(nj): the characters are Hf-‘:1 Sy (Xi)

@ We are interested in the relative invariants of G in
SYVy ®---® V), where V; = C", i.e., homogeneous
polynomials F in the coordinates such that

g-F = (detgy)"(detgo)? - (detg)F

forany g =(91,...,9x) € G
@ A covariant of degree d = (dy, d4, . . . dk) is a relative
invariant of G in the representation space

SH(Vy@---@ V)@ SH(Vi)® - @ 8% (V)
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Kronecker p ()

ertex operators
e Hilbert series

Invariants of multilinear forms Il
Ifwewrite Ac Vi®- - @ Vi as

i i i
A(X1 ye .Xk) = /4,'1,'2,_.,',(X11 X22 .- 'ka
The coordinate functions x/, j =1, ..., n;, form a basis of V;
1 ]

and the components A;,_; are regarded as a basis of

(Vi ®---® V)" = V. Aninvariant F is a homogeneous
polynomial in the coefficients of the “groundform” A, such that
F = 0 defines a G-invariant hypersurface of P(V). Similarly, a
covariant is a multi-homogeneous polynomial in the original
vector variables x;, whose coefficients are homogenous
polynomials in the A;, ;,, of which the simultaneous vanishing
defines a G-invariant subvariety of P(V).
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Some Hilbert series
Invariants of multilinear forms Ili

A covariant is a G-equivariant map from S%(V; ® --- ® V) to
the irreducible representation S% (V4) @ --- @ S%( V).

In general, a concomitant of degree dy and of type

A= (M, XK where the \() are partitions, is an
equivariant map from the same space to the irreducible
representation S, (V4) ® - - - ® Sy (Vi) of G.
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Some Hilbert series

Invariants of multilinear forms IV

Characters of the irreducible polynomial representations of the
product group G

Sy = 8,1 (X1) - -~ S\ (Xk)

A are partitions, X; = {xj1, ..., Xin, } is a set of n; variables.
The character of the one dimensional representation

det/(g) = (detgy)" (detgo)? - - - (det gi)k

is the product of rectangular Schur functions
S(l1n1 )(X1 )S(lgz)(XZ) R S(/:k)(Xk)
The character of G in SY(V) is hy(Xi Xz - - - Xk).
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Some Hilbert series

Invariants of multilinear forms V

Hence, the dimension of the space of invariants of degree d
and weight /, which is also the multiplicity of the one
dimensional character det’ in SY(V), is

dimIl’lV(d, /) = <hd(X1 X2 T Xk) ’ S(/1’71 )(X1 )S(ISZ)(XQ) T S(/:k)(Xk»G

Replace the X; by infinite sets of independent variables, and
compute in Sym®k is dual to the internal product *

dimlnv(d, ) = (5(hq), vy @ -+ @ Sne)) symen
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Some Hilbert series
Invariants of multilinear forms VI

The internal product of two homogenous symmetric functions
being zero if these are not of the same degree, we see that
Inv(d, /) can be nonzero only if the conditions

n1l1 :n2/2:~-:nk/k:d

are satisfied. In particular, if all the n; are equal, the /; must also
be all equal.
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Some Hilbert series

Invariants of multilinear forms VII

Let c(d; /) be the dimension of the space of covariants of
degree d = (dy, 041, ..., dx) and weight I = (h, ..., I).

c(dil) = (hay(Xi Xz~ Xi), (Smyha )(X1) - (S(m) ha ) (X1 )

= <hd0 R (S(/1n1)hd1) K oooe ok (5(/£k)hdk)>8ym .

For SL(2), s(1,)yhg = S(i44,1)» SO that the covariants are in
bijection with highest weight vectors.
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Some Hilbert series

Multilinear binary forms (qubit systems) |

If all V; = C? we need only two-part partitions
For the size (2,2,2), we have

0 /odd

dimInv(2/; 1,1,1) = (hy;, $3°) = (s * 8y, §)) =
imInv( ) = (hay, 83°) = (Si* S, Si) {1  even

using first the property (f x g, h) = (f, g = h) and the formula for
Sy x Sy. Hence,

.1

: d Gyd _

d>0

The algebra of invariants is in this case C[A], where
A = Det(A) is the hyperdeterminant.
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Some Hilbert series

Multilinear binary forms (qubit systems) Il

The generating series for the covariants can be written in the
form

Cltiuv) = o(d, Nt%uftuu vy vevy
d./
= (o4[tus 81 + vy S11], 01[UnSt + VaSi1] % o1 [UsSt + V3S11])

since with two variables,

oq[vsiy] = Z v'sy

>0

and
o1[usy + vsy4] = Z uM T2y (X).
o(N)<2
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Some Hilbert series

Multilinear binary forms (qubit systems) Il|

The last sum can be obtained by combining vertex operators
and MacMahon’s linear operator Q<, which maps any
monomial containing a negative power of u to 0.

Z MM —2v2g, (X) = Tulyu(1)

MEZ , X220
- (- B)mller 4.

Hence, if QY denotes the MacMahon operator annihilating any
monomial containing a negative power of any of the vu;,

C(t; u; v) H( > [ﬁ(uﬁ:)
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Some Hilbert series

Multilinear binary forms (qubit systems) IV

Here, Q is easily computed with the help of a computer algebra
system by decomposing the right-hand side into partial
fractions, and throwing away the terms leading to negative
powers of the u; in the Laurent expansion.

Setting the v; equal to 1, one finds

1—tou2uius
(1 — turupug)(1 — t2u2)(1 — 2us)(1 — ud)(1 — tBuruouz)(1 — t4)

The structure of the generating series is the same for k qubits:

C(t;u;v) H( ) [ﬁ(uﬁ—:)
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Some Hilbert series

Multilinear binary forms (qubit systems) V

For k = 4, the result is huge, and can be obtained only with
more subtle algorithms (e.g., Xin’s), but setting u; = 0 after
each QY gives easily the Hilbert series of invariants.

For k = 5, this still works for the invariants.

Similar (but harder) calculations would give the Hilbert series of
unitary or special unitary invariants.
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