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A Polynomial-Time Algorithm for Breaking 
the Basic Merkle -Hellman  Cryptosystem 

AD1 SHAMIR 

Abstrucr-The Merkle-Hellman cryptosystem is one of the two major 
public-key cryptosystems proposed so far. It is shown that the basic variant 
of this cryptosystem, in which the elements of the public key are modular 
multiples of a superincreasing sequence, is breakable in polynomial time. 

I. INTRODUCTION 

I N 1976  Diffie and  Hellman publ ished their pioneering 
paper  on  public-key cryptography [2]. Their paper  

speculated that such cryptosystems exist and  surveyed their 
potential applications but did not describe actual imple- 
mentations. In late 1976  and  early 1977, the first two 
public-key cryptosystems were discovered (see [5], [6]). 
Since then many variants and  a  few new public-key 
cryptosystems have been  proposed, but for a  variety of 
reasons these first two systems continue to dominate the 
field. They have been  extensively analyzed, and  a  number  
of cryptanalytic attacks have been  proposed to try to break 
them. However, all these attacks are unlikely to succeed 
unless the cryptosystems are greatly simplified or their key 
sizes reduced. 

We  describe the first cryptanalytic attack we know of 
that can break a  full-size variant of one  of these cryptosys- 
terns in reasonable time  and  space complexities. The  variant 
is known as the single-iteration Merkle-Hellman crypto- 
system, and  it is the simplest (and presumably the least 
secure) in the family of public-key cryptosystems proposed 
in Merkle and  Hellman’s original paper. The  cryptanalytic 
attack is not directly applicable to mu lti-iteration 
MerUe-Hel lman cryptosystems, and  thus the crypto- 
graphic security of these variants remains an  open  prob- 
lem. 

The  algorithm is easy to implement, and  it is efficient 
even on  a  m icrocomputer. It always halts after polynomi- 
ally many steps, but it can sometimes fail to break a  
particular key. Heuristic arguments indicate that such 
failures are exceedingly rare, and  they are supported by 
hundreds of tests conducted on  full-size keys without a  
single failure. 

A number  of countermeasures can protect one’s knap- 
sack-based cryptosystem against the specific attack consid- 
ered here. For some of these countermeasures, there are 
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counter-countermeasures that can revitalize the attack. 
Cryptography is a  never-ending struggle between code 
makers and  code breakers, and  this paper  is not claiming 
to give any ultimate answers in this sense. 

Section II presents an  overview of the Merkle-Hellman 
cryptosystem. In Section III we describe the cryptanalytic 
attack in an  informal way, and  in Section IV we analyze its 
performance. A discussion of the results appears in Section 
V. 

II. BASIC MERKLE-HELLMAN CRYPTOSYSTEM 

The  public encryption key in any Merkle-Hellman 
cryptosystem is a  sequence of n  natural numbers a,; . . , a,. 
(A typical value of n  is 100  and  a  typical size of each a, is 
200  bits.) To  encrypt an  n-bit cleartext, X = xi; * 1, x,(x, 
E (0, l}), the sender computes a  message-dependent  par- 
tial sum of the a, elements: 

b = t xiai, 
i=l 

and sends the ciphertext b to the receiver via the (insecure) 
communicat ion channel. Both the receiver and  the poten- 
tial eavesdropper know a,; . . , a, and b, and they have to 
find which subset of the a, elements sums up  to b. This is 
an  instance of the knapsack problem, which is known to be  
nondeterministic polynomial time  complete (NP-complete). 
To  make this problem apparently difficult (for the 
eavesdropper)  but actually easy (for the receiver), the se- 
quence a,;. -, a, is chosen in a  special way. F irst, the 
receiver chooses a  sequence of numbers a;; . . , aA for 
which the associated knapsack instances are easy to solve. 
Then  he  scrambles the numbers in such a  way that only he  
knows how to change them back to their easy original 
form. F inally, he  publishes the scrambled numbers 
a,,*. ., a,, as his public encryption key. 

There are many ways in which the easy sequence can be  
chosen and  then disguised. The  basic scheme proposed in 
Merkle and  Hellman’s paper  is based on  superincreasing 
sequences and  modu lar mu ltiplications. A sequence of 
numbers a;, . . . , aA is superincreasing if each number  in it 
is larger than the sum of its predecessors: 

i-l 

aI > C al. 
j=l 

For any superincreasing sequence, there is a  linear-time 
greedy algorithm for solving all its associated knapsack 
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instances. To hide the obvious structure of such a se- 
quence, the receiver randomly chooses two numbers, M, 
(the modulus) and U, (the multiplier), such that MO is 
larger than the sum of all the ai and 17, is relatively prime 
to M,,. Each a( is then transformed into a new, randomly 
looking number between 0 and MO - 1 by the modular 
multiplication 

a, = U, * al (mod MO), 

and the new sequence, al,*. a, a,,, is published as the 
encryption key. 

To show that the asymptotic complexity of our cryptana- 
lytic attack is polynomial, we have to consider a family of 
cryptosystems whose sizes grow to infinity. There are two 
basic parameters we have to consider: the number of 
elements in the published key and their sizes. If either one 
of these is kept constant, there is a trivial polynomial-time 
algorithm for solving the associated knapsack instances. 
We thus make the assumption that the size of the modulus 
M,, (and therefore also the size of the a, elements) grows 
linearly with n. If d is the proportionality constant (1 < d 
< co), we choose a; to be a dn - n bit number, ai to be a 
dn - n + i - 1 bit number, and MO to be a dn bit number 
(dn is rounded to the nearest integer whenever necessary). 
Merkle and Hellman use this scheme with d = 2 and 
n = 100, so that the ai grow in size from 100 to 199 bits 
and ] M,,I is 200. The parameter d measures the redundancy 
introduced by the cryptosystem (i.e., the ratio between the 
sizes of the ciphertext and the cleartext). The complexity of 
our algorithm is a rapidly growing function of d, but for 
each fixed d it is polynomial in n. 

III. INFORMAL DESCRIPTION OF THE ALGORITHM 

The algorithm proposed in this paper analyzes the given 
numbers a,; - *, a, and attempts to find a trapdoor pair of 
natural numbers M and W such that W * a,(mod M) is a 
super-increasing sequence and its sum is smaller than M. If 
any pair of numbers with these properties are known, then 
one can solve all the knapsack instances associated with 
a,, . . -, a, in linear time. Since the a, were obtained from a 
super-increasing sequence by modular multiplication, we 
know that at least one such pair exists (with W, = 
U;‘(mod MO)). Our algorithm finds some trapdoor pair, 
but it is not guaranteed to find the original modulus and 
multiplier used in the construction of the public key. 

The algorithm is divided into two parts. In the first part 
Lenstra’s integer programming algorithm [4] is used to find 
a few small intervals in [0, l] such that a necessary condi- 
tion for M and W to be a trapdoor pair is that the ratio 
W/M is in such an interval. In the second part of the 
algorithm we use the fact that W/M is approximately 
known to carry out a finer analysis and divide each interval 
into smaller subintervals such that a sufficient condition 
for M and W to be a trapdoor pair is that their ratio is in 
such a subinterval. At least one of the subintervals must be 
nonempty, and by using a fast diophantine approximation 
algorithm [1], we can find the smallest M and W whose 
ratio satisfies this condition. 

4 w=i (mod MJ MO --^- ---- --_ ___ 
w I 1 
Y y ;I 4 A )W “0 

Fig. 1. 

Let MO be the (unknown) dn bit modulus used in the 
construction of the encryption key. We now generalize the 
definition of a trapdoor pair by considering arbitrary real 
positive values of W. The graph of the function 
Wa,(mod M,,) for real multipliers 0 I W -C MO has a 
sawtooth form, as shown in Fig. 1. The slope of the 
function (except at discontinuity points) is ai, the number 
of minima is ai, and the distance between successive minima 
is M,-Jai (which is slightly more than 1). 

Let us consider now the sawtooth curve associated with 
a,. The multiplier W, has the property that a; = W, . 
a,(mod M,,) is at most 2dn-n. Since the slope of the curve 
is a,, the horizontal distance between W, and the closest 
minimum of the a, curve to its left cannot exceed 2d”-“/al 
= 2-“. The unknown W, must thus be extremely close to 
some minimum of the a, sawtooth curve. Unfortunately, 
even if we impose the integrality constraint on W (which 
we do not), there are too many possible values for W,, and 
we cannot check them one by one. 

A similar analysis shows that W, must also be within a 
distance of 2dn-n+1/a2 = 2-“+l from the closest a2 curve 
minimum to its left. Consequently, the two minima of the 
a, and a2 curves must be very close to each other (the a2 
minimum can be up to 2-“+l to the left or up to 2-” to 
the right of the a, minimum, depending on the exact 
location of W,). This closeness condition greatly reduces 
the number of places in which W, may be, but in most 
cases it still does not characterize it uniquely. 

Similarly, we can superimpose more sawtooth curves on 
the same diagram. The fact that W, is close to a minimum 
on each curve implies that all these minima are close to 
each other, and thus instead of finding W,, we must find 
the accumulation points of minima of the various curves. 

There is a simple rule of thumb that can help us estimate 
how many sawtooth curves have to be, analyzed simulta- 
neously before their set of accumulation points is reduced 
to manageable size. Extensive experimentation has shown 
that this estimate is realistic but not fail-safe. A formal 
analysis of the question can be found in Section IV. 

Let I be the number of sawtooth curves we superimpose 
in our diagram. Consider the pth minimum of the a, 
curve, which is located at W = pM,,/a,. The closest mini- 
mum of the a, curve can be anywhere in the interval 

[ pMo/al - M&ai, pMo/al + MJ2ai], 

whose length is MO/ai = 1. By making the reasonable (but 
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unrigorous) assumption that the actual locations of the are 
various a, m inima in these intervals are independent ran- 
dom variables with uniform probability distributions, we p,q,r;..,integers, llplq-1, 

can estimate the probability that the m inima of the -z2 I p/a, - q/a, I c;, llqla,-1, 
a2,- * 0) a, curves are all close enough  to the pth m inimum -c3 I p/a, - r/a3 I c;, llrla,-1, 
of the a, curve by 

2- n+l . z-n+2 . . .2-“+I-1 = 2-ln+n+12/2e 
where the ci and  C; represent the allowable deviations to 

Since we must consider ai possible values of P, the ex- the right and  to the left of p/a,, respectively. By mu ltiply- 
petted number  of accumulation points is ing each double inequality by its denominators, we get the 

a, .2- ln+n+P/2 = 2dn-ln+n+lz/2 
1 

and this value is smaller than 1  whenever 

(1 - d  - 1)n > Z2/2. 

When  n  is large enough,  this condition is satisfied by 
l>d+l, 

and  thus the number  1 is a  constant that depends on  d but 
not on  n. The  claim that the expected number  of accumu- 
lation points is smaller than 1  should not be  taken literally, 
since we know that one  accumulation point always exists 
by construction. However, it is reasonable to assume that 
in practice the “built in” point will not be  accompanied by 
too many “accidental” points when I is larger that d + 1. 
In particular, when n  = 100  and  lM( = 200, 1  = 4  seems 
to be  a  reasonable candidate for the number  of sawtooth 
curves we have to analyze. 

Two problems remain: how to get rid of M ,, (whose 
value is actually unknown) and  how to find the accumula- 
tion points of the m inima of the 1 sawtooth curves. 

The  problem of locating the accumulation points of 1  
m inima in the new coordinate system can be  described by 
linear inequalities with 1  integral unknowns. The  condi- 
tions that the pth m inimum of a,, qth m inimum of a2, 
rth m inimum of a3, etc., are sufficiently close to each other 

The  key observation is that the locations of the accumu- 
lation points in F ig. 1  depend  on  the slopes of the curves 
but not on  their sizes. If we divide both coordinates in the 
i th curve by M ,,, we get the sawtooth curve of the function 
T/a,(mod l), 0  I v < 1, which is independent of M ,,, as 
shown in F ig. 2. In the new coordinate system, the slope of 
the curve remains ai, and the number  of m inima remains 
ai, but the distance between successive m inima is reduced 
to l/ai. The  original W , parameter is replaced by a  new 
V, = I&/M,, parameter, and  the allowable distance be- 
tween this parameter and  the closest ai curve m inimum is 
reduced by a  factor of approximately 2d” (from 2-“+i-1 to 
2-dn-nii-l 

). 

equivalent system 

p,q,r;**,integers, llpSa,--1, 

-S, Spa, - qa, I S;, llqla,-1, 

-6, I pa, - ra, I S;, llrla,-1, 

which shows that the values of the a2, a3, . . . are simulta- 
neously reduced to small absolute values when mu ltiplied 
by p and reduced mod  a,. 

F ig. 3  is a,typical, enlarged section of the super imposed 
diagram in the vicinity of WJM,. The  problem of simulta- 
neously m inimizing two numbers by mu ltiplication modu lo 
a  third number  can be  solved with a  simple continued 
fraction algorithm. In the general  case, we have to use 
Lenstra’s integer programming algorithm, which is much 
slower but still polynomial in the size of the coefficients for 
any fixed number  of unknowns. This algorithm is basically 
a  decision procedure that tells us if a  certain system of 
linear inequalities has integral solutions. By using binary 
search on  the successive bits of p, we can find all the 
accumulation points of the I sawtooth curves. 

1 

Fig. 2. 

k = 100). An extreme example of a  bad  key is when all the 
a, are equal, since in this case all the sawtooth m inima are 

Fig. 3. 

accumulation points. By changing k and I, it is possible to 
control the fraction of keys for which the algorithm fails to 
compute a  trapdoor pair (see Section IV for more details). 
Note that failure to solve all the instances of a  problem is 

To  make the running time  of the algorithm provable as a  

not a  severe handicap in the context of cryptography, since 

polynomial, the algorithm should be  aborted if it finds 

a  cryptosystem becomes useless when most of its keys can 

more than a  certain number  k of accumulation points (say, 

be  efficiently cryptanalyzed. 



702 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 5, SEPTEMBER 1984 

Before publishing his encryption key, the receiver could 
permute the order of the elements in the sequence so that 
a, would no longer correspond to the ith smallest element 
in the original superincreasing sequence. This variant of 
the basic Merkle-Hellman cryptosystem can still be cryp- 
tanalyzed in polynomial time by our technique. Since the 
cryptanalyst has to identify only the Z  smallest elements in 
the superincreasing sequence, he can guess them in O(n’) 
ways. Incorrect guesses are likely to make the integer 
programming problem impossible to satisfy, and thus the 
correct guess can be easily identified. Since Z is a constant 
that does not depend on n the complexity of our technique 
is increased by just a polynomial factor. Alternatively, the 
cryptanalyst can relax the tight e bounds on the distance 
between the various sawtooth m inima, so that the integer 
programming problem can be satisfied not only when the Z 
smallest superincreasing values are correctly guessed, but 
for any choice of I small enough values. By properly 
choosing the relaxed values of the E bounds, it is possible 
to replace the O(n’) factor by a constant, which in practi- 
cal applications saves time. 

Analyzing the first Z  sawtooth curves lets us concentrate 
on a few small regions in which the actual value of IQ/M, 
must be located. Within these regions, the sawtooth curves 
are piecewise linear with just a few discontinuity points, 
and thus their values can be expressed and compared 
without excessive case analysis. 

The second part of the algorithm discards from these 
regions all those subregions in which the sequence of 
sawtooth values is not super increasing, or its sum is larger 
than 1. Every rational point in the remaining subregions 
corresponds to a trapdoor pair. Since W,/M, could not 
have been discarded by this process, some nonempty sub- 
region must remain. 

Let p be one of the values computed in the first part of 
the algorithm. Consider the interval [p/al,(p + 1)/a& 
between successive a, m inima. The expected number of 
discontinuity points of other curves in it is O(n). Let 
v,,-. .> V, be the list of V coordinates of these discontinu- 
ity points, sorted into increasing order. Between any V, and 
V f+l, all the a, curves look like simple linear segments. The 
i th linear segment can be expressed by the formula 

Va, - 7:, v, < v < Fvr+l, 

in which rif is the number of m inima of the a, curve in 
(0, V,] (i.e., 7,‘/ai is the point in which the line crosses the V 
axis). 

Consequently, the range, size, and superincreasing con- 
ditions can be written as 

v, 5 v < y+1, 

e (Vai - 7,‘) < 1, 
i=l 

i-l 

(Va, - 7:) > C (Vaj - T’), for i = 2;**,n. 
j=l 

The solution of this system of linear inequalities in V is a 
(possibly empty) subinterval of [I$ V,, J, and membership 

of W/M in such a subinterval for some p and t is a 
necessary and sufficient condition for M  and W  to be a 
trapdoor pair. 

If the order of the elements of the encryption key is 
permuted before the elements are published, we have to use 
a permuted superincreasing condition as well. We cannot 
guess the correct permutation of the n elements in poly- 
nomial time. However, because any superincreasing se- 
quence is also an increasing sequence we can reduce the 
number of possible permutations that we must consider. 
We augment the definition of the V,, . * a, V, sequence by 
including not only the discontinuity points of all the curves, 
but also the V coordinates of all the intersections between 
pairs of curves (this may increase the expected value of s 
from O(n) to O(n2)). Within each new [V,, V,,,) interval, 
there is a well-defined vertical ordering of the various 
curves, and thus only one possible permutation of their 
names sorts them into an increasing sequence. Conse- 
quently, only O(n2) out of the possible n! permutations 
have to be considered at each accumulation point. 

V. NUMBEROFACCUMULATIONPOINTS 

As we described in Section III, the algorithm is aborted 
if the Z  sawtooth curves have at least k accumulation 
points. In this section we analyze the effect of the Z  and k 
parameters on the fraction of the keys for which the 
algorithm fails, and we show that in a simplified prob- 
abilistic model this fraction can be made arbitrarily small. 

To simplify the analysis, we assume that a, is a fixed 
prime number and that a2, * * . , a, are independent random 
variables with uniform probability distribution in [l, a, - 
11. The primality assumption guarantees that all the mod- 
ular inverses considered in this section are well defined, but 
it is not essential and can be replaced by a careful case 
analysis. We further simplify our notation by assuming 
that all the ai and 8; bounds in the integer programming 
problem are equal, and we denote this common bound by 
6. 

For each 2 I i I I, we define S, to be the set of indices 
of a, m inima which are close enough to some m inimum of 
a,. 

Definition: 

Si = (1 2 p S a, - 1)3qj,l I qi I a, - 1, such that 
-6 Spa, - qa, I S}. 

Since all the Si are sets of m inima of a common a, 
curve, their intersection S, n . . . n S, is exactly the set of 
accumulation points in which an a, m inimum is simulta- 
neously close to m inima of all the other curves. 

An alternative characterization of these sets, which is 
easier to analyze and manipulate follows. 

Lemma I: S, = { j,a;‘(mod a,)1 - 8 4 ji I 8, j, # O}. 

Proof: When p = j,a,‘(mod a,), pai = j,a,:‘a, = 
;icczd a,), and thus there is a qi such that pai = ji + qia,. 

-6 < ji I 6, pa, - qia, is within the required 
bounds. The value ji = 0 is not allowed by the definition of 
S,. 0 
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The  relationship p = j,a;‘(mod a,) establishes for each 
p a one-to-one correspondence between the sequence 
a2,’ * a, a, and the sequence j,; . - , J;. A given p is an  
accumulation point of a*, . * a, a, if and  only if all the 
corresponding j, are nonzero integers [ -6, S]. Alterna- 
tively, when p and a  sequence of small ji are given, there 
is a  unique sequence of a, for which p is an  accumulation 
point with these j, indices. 

Lemma 2: Let p’ and p” be two accumulation points 
of a2;--, a,, and let j;;.., j,’ and  j;l;.., j,” be  their 
associated j indices. If 6  < \la,/2, then both sequences 
are integral mu ltiples of some common j,, . . . , j, sequence 
for which the greatest common divisor (gcd) ( j,, . . . , j,) = 
1. 

Proof: From p’ = j;a;‘(mod a,) and p” = 
j,la,‘(mod a,) we can derive the equality 

a, rj;p'-' =jyp"-'(moda,), 

which can be  simplified to 

j:jy-l ~p'p"-~(modq). 

The  right-hand side does not depend  on  i, and  thus for any 
s and  t, 

jiji’-’ = j:j;l-‘(mod a,), 

or 

j,‘jy = j,‘ji’(mod aI). 

By the assumption of 6, each j’j” product can range only 
between -a,/2 and a,/2, and thus the equation holds 
even without the (mod a,) clause 

This equality can hold for all s and  t only if the j’ and  j” 
sequences are rational mu ltiples of each other. Since they 
contain only integers, they must be  mu ltiples of some 
common sequence j,, . . . , j, of integers whose gcd is 1. 0  

Corollary: When  S < @  and  S, n  . . . n  S, is not 
empty, there is a  basic accumulation point with j,, . * . , j, 
indices whose gcd is 1, and  all the other accumulation 
points are obtained by mu ltiplying this j, sequence by 
- 1,2,- 2,3,- 3, etc., until some sequence element ex- 
ceeds 6. When  6  2  @ , the structure of S, n  . . . nS, 
becomes much harder to analyze, and  we do  not have any 
simple characterization for it. 

Definition: N(Z, k,6) is the number  of a2;. *, a, se- 
quences in [l, a, - l] for which the intersection S, 
n  . . . n  S, contains at least k points when the allowable 
distance is 6. 

We  are interested in the conditional probability that the 
1  curves have at least k accumulation points when it is 
known that they have at least one. Since the first event 
implies the second event, this conditional probability is just 

N(L k, 8)/N@, 1,s). 
Lemma 3: For any 6  < @  and  1  2  3, there is a  

constant r between 3/?r2 and  l/2 that depends only on  1  

such that 

N(Z,l,S) = 7(a1 - 1)(26)/-l. 

’ Proof: We can overcount the number  of a2,. . +, a, 
sequences that have at least one  accumulation point by 
counting the number  of p, a2; . . , a, sequences in which p 
is an  accumulation point of the a,. This number  is equal  to 
the number  of p, j,,-.-, j, sequences in which p is arbi- 
trary and  the j, are nonzero integers in [ - 6,S], which is 
(a, - 1)(26)‘-‘. To  correct the overcounting, we consider 
only j, sequences whose gcd is 1. By Lemma 2, for each ai, 
sequence with accumulation points there are exactly two j, 
sequences with gcd of 1  (each sequence is the negation of 
the other). For I= 3, the fraction of integer sequences of 
length 1  - 1  whose gcd is 1  converges to 6/m2 (see [3]) and  
for higher values of 1  this fraction approaches 1. Since each 
ai sequence with accumulation points is counted exactly 
twice, we have to divide this constant by 2  to get the 
correct constant 7. q  

Lemma 4: If 6  -C \la,/2, then N(1, k, 8) 5  
N(L 1, Vf k/21). 

Proof: Let j,;.., j, be  the sequence of indices with 
gcd of 1  whose existence is proved in Lemma 2. Since 

. . . , a, has at least k accumulation points, this j, se- 
l:knce can be  mu ltiplied by [k/2], and all its elements 
will still be  in [ - 6,6]. Consequently, all the original j, 
indices are in the range [ - S/i k/2], S/f k/2] 1, and  thus 
the a, sequence has at least one  accumulation point even 
when the 6  bound  is replaced by the tighter S/f k/2] 
bound.  q  

We can now prove the ma in theorem. 

Theorem 1: When  6  < @  and  12 3, the conditional 
probability N(Z, k, 8)/N(Z, 1,s) is at most (l//k/2])‘-1. 

Proof: 

N(U,~)/N(LL~) 

= 7(a1 - 1)(26/[k/21)‘-‘/T(a, - 1)(26)/-l 

= (l/[k,‘2])? 
q  

Example: When  I= 4, k = 100, and  6  < Ja,/2, the 
probability that four randomly chosen sawtooth curves 
have at least 100  accumulation points when it is known 
that they have at least one  is at most (1/5O)3 = l/125 000. 
Thus if we use Lenstra’s algorithm to find the accumula- 
tion points and  abort after 100  points are found, the 
probability of failure is negligible. 

In our cryptanalytic application, 6  is approximately 
2dn-n and  a, is approximately 2d”. The  condition 6  
< @  is thus equivalent to the condition d < 2. We 
were unable to prove the upper  bound  of Theorem 1  for 
cryptosystems in which the ratio d between the modu lus 
size and  the number  of elements is larger than 2, but Jeff 
Lagarias (private communication) recently announced a  
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different upper bound which is applicable to the whole 
range1 cd< CO. 

V. DISCUSSION 

In this paper we have shown that almost all the single- 
iteration Merkle-Hellman cryptosystems can be broken in 
polynomial time and that the probability of failure can be 
made arbitrarily small. The most time-consuming part of 
the algorithm is the application of Lenstra’s integer pro- 
gramming algorithm, whose worst-case complexity is poly- 
nomial in n but exponential in 1. The exact complexity of 
this algorithm is still unknown, and the current upper 
bound of the form poly(n) . exp ((d + 2)3) is based on 
highly pessimistic assumptions about the algorithm’s pro- 
gress at each stage. The average-case complexity of the 
algorithm is probably much better than the worst-case 
complexity, and further study is required before the real 
possibilities and limitations of the cryptanalytic attack 
proposed in this paper can be quantified 

An important property of the proposed attack is that it 

most certainly) unique interval in which W/M must be 
located, but not W and M themselves. In the case of 
single-iteration knapsacks, any such pair was useful, since 
it generated an easily solvable super-increasing sequence. In 
the case of multi-iteration knapsacks, on the other hand, 
only the correct W and M enable the cryptanalyst to do 
the inverse multiplication properly and to attack the inner 
iterations one by one. 

ACKNOWLEDGMENT 

The research reported in this paper is the result of a 
team effort that started shortly after Merkle and Hellman 
published their seminal paper. Dozens of researchers from 
all over the world published papers on this subject, and I 
have greatly benefited from their ingenious ideas and 
beautiful insights. They are too numerous to list here, but I 
gratefully acknowledge the contribution of all of them. 

is directed at the public key rather than at individual 
ciphertexts. The cryptanalyst can thus work on standby or 
low-volume keys even before they are used for the first 1” 
time and can spend months of computer time on each key [21 
if this later enables him to decrypt each ciphertext in 
microseconds. [31 

The most important problem left open in this paper is [4] 
the cryptographic security of multi-iteration Merkle- 
Hellman cryptosystems. At each iteration the randomly 15] 
chosen modulus must be larger than the sum of the ele- 
ments, and thus the inverse modular multiplications 
simultaneously reduce the size of all the elements by at 161 
least logn bits. In principle, this condition finds the (al- 
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