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Twenty Years of
Attacks on the RSA

Cryptosystem
Dan Boneh

Introduction
The RSA cryptosystem, invented by Ron Rivest, Adi
Shamir, and Len Adleman [18], was first publi-
cized in the August 1977 issue of Scientific Amer-
ican. The cryptosystem is most commonly used for
providing privacy and ensuring authenticity of
digital data. These days RSA is deployed in many
commercial systems. It is used by Web servers and
browsers to secure Web traffic, it is used to ensure
privacy and authenticity of e-mail, it is used to se-
cure remote login sessions, and it is at the heart
of electronic credit card payment systems. In short,
RSA is frequently used in applications where se-
curity of digital data is a concern.

Since its initial publication, the RSA system has
been analyzed for vulnerability by many re-
searchers. Although twenty years of research have
led to a number of fascinating attacks, none of
them is devastating. They mostly illustrate the
dangers of improper use of RSA. Indeed, securely
implementing RSA is a nontrivial task. Our goal is
to survey some of these attacks and describe the
underlying mathematical tools they use. Through-
out the survey we follow standard naming con-
ventions and use “Alice” and “Bob” to denote two
generic parties wishing to communicate with each
other. We use “Marvin” to denote a malicious at-
tacker wishing to eavesdrop or tamper with the
communication between Alice and Bob.

We begin by describing a simplified version of
RSA encryption. Let N = pq be the product of two
large primes of the same size (n/2 bits each). A
typical size for N is n = 1024 bits, i.e., 309 deci-

mal digits. Each of the factors is 512 bits. Let e, d
be two integers satisfying ed = 1 mod ϕ(N) where
ϕ(N) = (p − 1)(q − 1) is the order of the multi-
plicative group Z∗N. We call N the RSA modulus, e
the encryption exponent, and d the decryption ex-
ponent. The pair 〈N, e〉 is the public key. As its
name suggests, it is public and is used to encrypt
messages. The pair 〈N,d〉 is called the secret key
or private key and is known only to the recipient
of encrypted messages. The secret key enables de-
cryption of ciphertexts.

A message is an integer M ∈ Z∗N. To encrypt M,
one computes C =Me mod N . To decrypt the ci-
phertext, the legitimate receiver computes
Cd mod N. Indeed,

Cd =Med =M mod N,

where the last equality follows by Euler’s theo-
rem.1 One defines the RSA function as
x 7−→ xe mod N. If d is given, the function can be
easily inverted using the above equality. We refer
to d as a trapdoor enabling one to invert the func-
tion. In this survey we study the difficulty of in-
verting the RSA function without the trapdoor. We
refer to this as breaking RSA. More precisely, given
the triple 〈N, e,C〉, we ask how hard is it to com-
pute the eth root of C modulo N = pq when the
factorization of N is unknown. Since Z∗N is a finite
set, one may enumerate all elements of Z∗N until
the correct M is found. Unfortunately, this results
in an algorithm with running time of order N,
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1Our description slightly oversimplifies RSA encryption.
In practice, messages are padded prior to encryption
using some randomness [1]. For instance, a simple (but in-
sufficient) padding algorithm may pad a plaintext M by
appending a few random bits to one of the ends prior to
encryption. Adding randomness to the encryption process
is necessary for proper security.

boneh.qxp  12/7/98 11:40 AM  Page 203



204 NOTICES OF THE AMS VOLUME 46, NUMBER 2

namely, exponential in the size of its input, which
is of the order log2N . We are interested mostly in
algorithms with a substantially lower running time,
namely, on the order of nc where n = log2N and
c is some small constant (less than 5, say). Such
algorithms often perform well in practice on the
inputs in question. Throughout the paper we refer
to such algorithms as efficient.

In this survey we mainly study the RSA function
as opposed to the RSA cryptosystem. Loosely speak-
ing, the difficulty of inverting the RSA function on
random inputs implies that given 〈N, e,C〉, an at-
tacker cannot recover the plaintext M. However,
a cryptosystem must resist more subtle attacks. If
〈N, e,C〉 is given, it should be intractable to recover
any information about M. This is known as se-
mantic security.2 We do not discuss these subtle
attacks, but point out that RSA as described above
is not semantically secure: given 〈N, e,C〉, one can
easily deduce some information about the plain-
text M (for instance, the Jacobi symbol of M over
N can be easily deduced from C). RSA can be
made semantically secure by adding randomness
to the encryption process [1].

The RSA function x 7−→ xe mod N is an exam-
ple of a trapdoor one-way function. It can be eas-
ily computed, but (as far as we know) cannot be
efficiently inverted without the trapdoor d except
in special circumstances. Trapdoor one-way func-
tions can be used for digital signatures [16]. Digi-
tal signatures provide authenticity and nonrepu-
diation of electronic legal documents. For instance,
they are used for signing digital checks or electronic
purchase orders. To sign a message M ∈ Z∗N using
RSA, Alice applies her private key 〈N,d〉 to M and
obtains a signature S =Md mod N. Given 〈M,S〉,
anyone can verify Alice’s signature on M by check-
ing that Se =M mod N. Since only Alice can gen-
erate S , one may suspect that an adversary can-
not forge Alice’s signature. Unfortunately, things
are not so simple; extra measures are needed for
proper security. Digital signatures are an impor-
tant application of RSA. Some of the attacks we sur-
vey specifically target RSA digital signatures.

An RSA key pair is generated by picking two ran-
dom n2-bit primes and multiplying them to obtain
N . Then, for a given encryption exponent
e < ϕ(N), one computes d = e−1 mod ϕ(N) using
the extended Euclidean algorithm. Since the set of
primes is sufficiently dense, a random n2-bit prime
can be quickly generated by repeatedly picking
random n2-bit integers and testing each one for
primality using a probabilistic primality test [16].
Factoring Large Integers
The first attack on an RSA public key 〈N, e〉 to con-
sider is factoring the modulus N. Given the fac-
torization of N, an attacker can easily construct

ϕ(N) , from which the decryption exponent
d = e−1 mod ϕ(N) can be found. We refer to fac-
toring the modulus as a brute-force attack on RSA.
Although factoring algorithms have been steadily
improving, the current state of the art is still far
from posing a threat to the security of RSA when
RSA is used properly. Factoring large integers is
one of the most beautiful problems of computa-
tional mathematics [14, 17], but it is not the topic
of this article. For completeness we note that the
current fastest factoring algorithm is the General
Number Field Sieve. Its running time on n-bit in-
tegers is exp

(
(c + o(1))n1/3 log2/3 n

)
for some

c < 2. Attacks on RSA that take longer than this
time bound are not interesting. These include at-
tacks such as an exhaustive search for M and
some older attacks published right after the ini-
tial publication of RSA.

Our objective is to survey attacks on RSA that
decrypt messages without directly factoring the
RSA modulus N. Nevertheless, it is worth noting
that some sparse sets of RSA moduli, N = pq , can
be easily factored. For instance, if p − 1 is a prod-
uct of prime factors less than B, then N can be fac-
tored in time less than B3. Some implementations
explicitly reject primes p for which p − 1 is a prod-
uct of small primes.

As noted above, if an efficient factoring algo-
rithm exists, then RSA is insecure. The converse
is a long-standing open problem: must one factor
N in order to efficiently compute eth roots mod-
ulo N? Is breaking RSA as hard as factoring? We
state the concrete open problem below.

Open Problem 1. Given integers N and e satisfy-
ing gcd(e,ϕ(N)) = 1 , define the function
fe,N : Z∗N → Z∗N by fe,N (x) = x1/e mod N. Is there a
polynomial-time algorithm A that computes the
factorization of N given N and access to an “ora-
cle” fe,N (x) for some e?

An oracle for f (x) evaluates the function on any
input x in unit time. Recently Boneh and Venkate-
san [6] provided evidence that for small e the an-
swer to the above problem may be no. In other
words, for small e there may not exist a polyno-
mial-time reduction from factoring to breaking
RSA. They do so by showing that in a certain model,
a positive answer to the problem for small e yields
an efficient factoring algorithm. We note that a pos-
itive answer to Open Problem 1 gives rise to a
“chosen ciphertext attack”3 on RSA. Therefore, a
negative answer may be welcome.

Next we show that exposing the private key d
and factoring N are equivalent. Hence there is no

2A source that explains semantic security and gives ex-
amples of semantically secure ciphers is [9].

3In this context, “chosen ciphertext attack” refers to an at-
tacker, Marvin, who is given a public key 〈N, e〉 and ac-
cess to a black box that decrypts messages of his choice.
Marvin succeeds in mounting the chosen ciphertext attack
if by using the black box he can recover the private key
〈N,d〉.
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point in hiding the factorization of N from any
party who knows d.

Fact 1. Let 〈N, e〉 be an RSA public key. Given the
private key d, one can efficiently factor the mod-
ulus N = pq . Conversely, given the factorization of
N, one can efficiently recover d.

Proof. A factorization of N yields ϕ(N). Since e
is known, one can recover d. This proves the con-
verse statement. We now show that given d, one
can factor N. Given d, compute k = de− 1. By de-
finition of d and e we know that k is a multiple
of ϕ(N). Since ϕ(N) is even, k = 2t r with r odd
and t ≥ 1. We have gk = 1 for every g ∈ Z∗N , and
therefore gk/2 is a square root of unity modulo N.
By the Chinese Remainder Theorem, 1 has four
square roots modulo N = pq . Two of these square
roots are ±1. The other two are ±x where x sat-
isfies x = 1 mod p and x = −1 mod q. Using either
one of these last two square roots, one can reveal
the factorization of N by computing gcd(x− 1,N).
A straightforward argument shows that if g is
chosen at random from Z∗N, then with probability
at least 1/2 (over the choice of g) one of the ele-
ments in the sequence gk/2, gk/4, . . . , gk/2t mod N
is a square root of unity that reveals the factor-
ization of N. All elements in the sequence can be
efficiently computed in time O(n3) where
n = log2N. ■■

Elementary Attacks
We begin by describing some old elementary at-
tacks. These attacks illustrate blatant misuse of
RSA. Although many such attacks exist, we give
only two examples.
Common Modulus
To avoid generating a different modulus N = pq
for each user, one may wish to fix N once and for
all. The same N is used by all users. A trusted cen-
tral authority could provide user i with a unique

pair ei, di from which user i forms a public key
〈N, ei〉 and a secret key 〈N,di〉.

At first glance this may seem to work: a ci-
phertext C =Mea mod N intended for Alice cannot
be decrypted by Bob, since Bob does not possess
da . However, this is incorrect, and the resulting sys-
tem is insecure. By Fact 1 Bob can use his own ex-
ponents eb, db to factor the modulus N. Once N
is factored Bob can recover Alice’s private key da
from her public key ea. This observation, due to
Simmons, shows that an RSA modulus should
never be used by more than one entity.

Blinding
Let 〈N,d〉 be Bob’s private key and 〈N, e〉 his cor-
responding public key. Suppose Marvin wants Bob’s
signature on a message M ∈ Z∗N. Being no fool,
Bob refuses to sign M. Marvin can try the follow-
ing: he picks a random r ∈ Z∗N and sets
M′ = reM mod N. He then asks Bob to sign the
random message M′. Bob may be willing to pro-
vide his signature S′ on the innocent-looking M′.
But recall that S′ = (M′)d mod N . Marvin now sim-
ply computes S = S′/r mod N and obtains Bob’s
signature S on the original M. Indeed,

Se = (S′)e/re = (M′)ed/re ≡M′/re =M (mod N).

This technique, called blinding, enables Marvin
to obtain a valid signature on a message of his
choice by asking Bob to sign a random “blinded”
message. Bob has no information as to what mes-
sage he is actually signing. Since most signature
schemes apply a “one-way hash” to the message
M prior to signing [16], the attack is not a serious
concern. Although we presented blinding as an
attack, it is actually a useful property of RSA
needed for implementing anonymous digital cash
(cash that can be used to purchase goods, but does
not reveal the identity of the person making the
purchase).
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Low Private Exponent
To reduce decryption time (or signature-generation
time), one may wish to use a small value of d
rather than a random d. Since modular exponen-
tiation takes time linear in log2 d, a small d can
improve performance by at least a factor of 10 (for
a 1024-bit modulus). Unfortunately, a clever attack
due to M. Wiener [19] shows that a small d results
in a total break of the cryptosystem.

Theorem 2 (M. Wiener). Let N = pq with
q < p < 2q . Let d < 1

3N
1/4 . Given 〈N, e〉 with

ed = 1 mod ϕ(N) , Marvin can efficiently recover d.

Proof. The proof is based on approximations
using continued fractions. Since ed = 1 mod ϕ(N) ,
there exists a k such that ed − kϕ(N) = 1. There-
fore, ∣∣∣∣∣ e

ϕ(N)
− k
d

∣∣∣∣∣ =
1

dϕ(N)
.

Hence, kd is an approximation of e
ϕ(N). Although

Marvin does not know ϕ(N), he may use N to ap-
proximate it. Indeed, since ϕ(N) = N − p − q + 1
and p + q − 1 < 3

√
N, we have |N −ϕ(N)| < 3

√
N .

Using N in place of ϕ(N), we obtain:

∣∣∣∣ eN − k
d

∣∣∣∣ =
∣∣∣∣ed − kϕ(N)− kN + kϕ(N)

Nd

∣∣∣∣
=
∣∣∣∣1− k(N −ϕ(N))

Nd

∣∣∣∣ ≤
∣∣∣∣∣3k

√
N

Nd

∣∣∣∣∣
=

3k
d
√
N
.

Now, kϕ(N) = ed − 1 < ed. Since e < ϕ(N), we see
that k < d < 1

3N
1/4. Hence we obtain:∣∣∣∣ eN − k
d

∣∣∣∣ ≤ 1
d 4
√
N
<

1
2d2 .

This is a classic approximation relation. The 

number of fractions kd with d < N approximating
e
N so closely is bounded by log2N . In fact, all such 
fractions are obtained as convergents of the con-
tinued fraction expansion of eN [10, Th. 177]. All
one has to do is compute the logN convergents
of the continued fraction for eN . One of these will 
equal k

d .  Since ed − kϕ(N) = 1, we have 
gcd(k, d) = 1, and hence kd is a reduced fraction. 
This is a linear-time algorithm for recovering the
secret key d. ■■

Since typically N is 1024 bits, it follows that d
must be at least 256 bits long in order to avoid this
attack. This is unfortunate for low-power devices
such as “smartcards”, where a small d would re-
sult in big savings. All is not lost however. Wiener
describes a number of techniques that enable fast
decryption and are not susceptible to his attack:

Large e: Suppose instead of reducing e modulo
ϕ(N), one uses 〈N, e′〉 for the public key, where
e′ = e + t ·ϕ(N) for some large t. Clearly e′ can be
used in place of e for message encryption. How-
ever, when a large value of e is used, the k in the
above proof is no longer small. A simple calcula-
tion shows that if e′ > N1.5, then no matter how
small d is, the above attack cannot be mounted.
Unfortunately, large values of e result in increased
encryption time.
Using CRT: An alternate approach is to use the Chi-
nese Remainder Theorem (CRT). Suppose one
chooses d such that both dp = d mod (p − 1) and
dq = d mod (q − 1) are small, say, 128 bits each.
Then fast decryption of a ciphertext C can be car-
ried out as follows: first compute Mp = Cdp mod p
and Mq = Cdq mod q. Then use the CRT to com-
pute the unique value M ∈ ZN satisfying
M =Mp mod p and M =Mq mod q . The resulting
M satisfies M = Cd mod N as required. The point
is that although dp and dq are small, the value of
d mod ϕ(N) can be large, i.e., on the order of
ϕ(N). As a result, the attack of Theorem 2 does
not apply. We note that if 〈N, e〉 is given, there ex-
ists an attack enabling an adversary to factor N in 
time O

(
min(

√
dp,

√
dq)
)

. Hence, dp and dq cannot 
be made too small.

We do not know whether either of these meth-
ods is secure. All we know is that Wiener’s attack
is ineffective against them. Theorem 2 was re-
cently improved by Boneh and Durfee [4], who
show that as long as d < N0.292, an adversary can
efficiently recover d from 〈N, e〉. These results
show that Wiener’s bound is not tight. It is likely
that the correct bound is d < N0.5. At the time of
this writing, this is an open problem.

Open Problem 2. Let N = pq and d < N0.5. If Mar-
vin is given 〈N, e〉 with ed = 1 mod ϕ(N) and
e < ϕ(N), can he efficiently recover d?

Low Public Exponent
To reduce encryption or signature-verification
time, it is customary to use a small public expo-
nent e. The smallest possible value for e is 3, but
to defeat certain attacks the value
e = 216 + 1 = 65537 is recommended. When the
value 216 + 1 is used, signature verification re-
quires 17 multiplications, as opposed to roughly
1,000 when a random e ≤ϕ(N) is used. Unlike the
attack of the previous section, attacks that apply
when a small e is used are far from a total break.
Coppersmith’s Theorem
The most powerful attacks on low public exponent
RSA are based on a theorem due to Coppersmith
[7]. Coppersmith’s theorem has many applications,
only some of which will be covered here. The proof
uses the LLL lattice basis reduction algorithm [15],
as explained below.

boneh.qxp  12/7/98 11:40 AM  Page 206



FEBRUARY 1999 NOTICES OF THE AMS 207

Theorem 3 (Coppersmith). Let N be an integer and
f ∈ Z[x] be a monic polynomial of degree d. Set
X = N

1
d−ε for some ε ≥ 0. Then, given 〈N, f 〉, Mar-

vin can efficiently find all integers |x0| < X satis-
fying f (x0) = 0 mod N. The running time is domi-
nated by the time it takes to run the LLL algorithm
on a lattice of dimension O(w ) with
w = min(1/ε, log2N).

The theorem provides an algorithm for effi-
ciently finding all roots of fmodulo N that are less
than X = N1/d. As X gets smaller, the algorithm’s
running time decreases. The theorem’s strength is
its ability to find small roots of polynomials mod-
ulo a composite N. When working modulo a prime,
there is no reason to use Coppersmith’s theorem,
since other, far better root-finding algorithms exist.

We sketch the main ideas behind the proof of
Coppersmith’s theorem. We follow a simplified
approach due to Howgrave-Graham [12]. Given a
polynomial h(x) =

∑
aixi ∈ Z[x] ,  define

‖h‖2 =
∑
i |ai|2. The proof relies on the following

observation.

Lemma 4. Let h(x) ∈ Z[x] be a polynomial of de-
gree d, and let X be a positive integer. Suppose
‖h(xX)‖ < N/√d .  If |x0| < X satisfies h(x0) =
0 mod N, then h(x0) = 0 holds over the integers.

Proof. Observe from the Schwarz inequality that

|h(x0)| =
∣∣∣∑aixi0

∣∣∣
=

∣∣∣∣∣∑aiXi
(x0

X

)i∣∣∣∣∣ ≤∑
∣∣∣∣∣aiXi

(x0

X

)i∣∣∣∣∣
≤
∑∣∣∣aiXi∣∣∣ ≤ √d ‖h(xX)‖ < N.

Since h(x0) = 0 mod N ,  we conclude that 
h(x0) = 0. ■■

The lemma states that if h is a polynomial with
low norm, then all small roots of hmod N are also
roots of h over the integers. The lemma suggests
that to find a small root x0 of f (x) mod N , we
should look for another polynomial h ∈ Z[x] with
small norm having the same roots as f modulo N.
Then x0 will be a root of h over the integers and
can be easily found. To do so, we may search for
a polynomial g ∈ Z[x] such that h = gf has low
norm, i.e., norm less than N. This amounts to
searching for an integer linear combination of the
polynomials f , xf , x2f , . . . , xr f with low norm.
Unfortunately, most often there is no nontrivial lin-
ear combination with sufficiently small norm.

Coppersmith found a trick to solve the problem:
if f (x0) = 0 mod N, then f (x0)k = 0 mod Nk for any
k. More generally, define the following polynomi-
als:

gu,v (x) = Nm−vxuf (x)v

for some predefined m. Then x0 is a root of gu,v (x)
modulo Nm for any u ≥ 0 and 0 ≤ v ≤m. To use
Lemma 4 we must find an integer linear combi-
nation h(x) of the polynomials gu,v (x) such that
h(xX) has norm less than Nm (recall that X is an
upper bound on x0 satisfying X ≤ N1/d). Thanks
to the relaxed upper bound on the norm (Nm
rather than N), one can show that for sufficiently
large m there always exists a linear combination
h(x) satisfying the required bound. Once h(x) is
found, Lemma 4 implies that it has x0 as a root
over the integers. Consequently x0 can be easily
found.

It remains to show how to find h(x) efficiently.
To do so, we must first state a few basic facts
about lattices in Zw. We refer to [15] for a concise
introduction to the topic. Let u1, . . . , uw ∈ Zw be
linearly independent vectors. A (full-rank) lattice
L spanned by 〈u1, . . . , uw 〉 is the set of all integer
linear combinations of u1, . . . , uw . The determi-
nant of L is defined as the determinant of the
w ×w square matrix whose rows are the vectors
u1, . . . , uw .

In our case, we view the polynomials gu,v (xX)
as vectors and study the lattice L spanned by
them. We let v = 0, . . . ,m and u = 0, . . . , d − 1,
and hence the lattice has dimension w = d(m + 1).
For example, when f is a quadratic monic polyno-
mial and m = 3, the resulting lattice is spanned by
the rows of the following matrix:

1 x x2 x3 x4 x5 x6 x7

g0,0(xX)
g1,0(xX)
g0,1(xX)
g1,1(xX)
g0,2(xX)
g1,2(xX)
g0,3(xX)
g1,3(xX)



N3

XN3

∗ ∗ X2N2

∗ ∗ X3N2

∗ ∗ ∗ ∗ X4N
∗ ∗ ∗ ∗ X5N

∗ ∗ ∗ ∗ ∗ ∗ X6

∗ ∗ ∗ ∗ ∗ ∗ X7



The entries ∗ correspond to coefficients of the
polynomials whose value we ignore. All empty en-
tries are zero. Since the matrix is triangular, its de-
terminant is the product of the elements on the di-
agonal (which are explicitly given above). Our
objective is to find short vectors in this lattice.

A classic result of Hermite states that any 
lattice L of dimension w contains a nonzero 
point v ∈ L whose L2 norm satisfies ‖v‖ ≤
γw det(L)1/w, where γw is a constant depending
only on w . Hermite’s bound can be used to show
that for large enough m our lattice contains vec-
tors of norm less than Nm, as required. The ques-
tion is whether we can efficiently construct a short
vector in L whose length is not much larger than
the Hermite bound. The LLL algorithm is an effi-
cient algorithm that does precisely that.

Fact 5 (LLL). Let L be a lattice spanned by
〈u1, . . . , uw 〉 . When 〈u1, . . . , uw 〉 are given as
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vin can recover M if k ≥ 3. Indeed, Marvin obtains
C1, C2, C3, where

C1 =M3 mod N1, C2 =M3 mod N2,
C3 =M3 mod N3.

We may assume that gcd(Ni,Nj ) = 1 for all i 6= j ,
since otherwise Marvin can factor some of the
Ni’s. Hence, applying the Chinese Remainder The-
orem (CRT) to C1, C2, C3 gives a C′ ∈ ZN1N2N3 sat-
isfying C′ =M3 mod N1N2N3. Since M is less than
all the Ni’s, we have M3 < N1N2N3. Then C′ =M3

holds over the integers. Thus, Marvin may recover
M by computing the real cube root of C′. More gen-
erally, if all public exponents are equal to e, Mar-
vin can recover M as soon as k ≥ e. The attack is
feasible only when a small e is used.

Hastad [11] describes a far stronger attack. To
motivate Hastad’s result, consider a naive defense
against the above attack. Rather than broadcast-
ing the encryption of M, Bob could “pad” the mes-
sage prior to encryption. For instance, if M is m
bits long, Bob could send Mi = i2m +M to party Pi.
Since Marvin obtains encryptions of different mes-
sages, he cannot mount the attack. Unfortunately,
Hastad showed that this linear padding is insecure.
In fact, he proved that applying any fixed polyno-
mial to the message prior to encryption does not
prevent the attack.

Suppose that for each of the participants
P1, . . . , Pk, Bob has a fixed public polynomial
fi ∈ ZNi [x]. To broadcast a message M, Bob sends
the encryption of fi(M) to party Pi. By eavesdrop-
ping, Marvin learns Ci = fi(M)ei mod Ni for
i = 1, . . . , k. Hastad showed that if enough parties
are involved, Marvin can recover the plaintext M
from all the ciphertexts. The following theorem is
a stronger version of Hastad’s original result.

Theorem 6 (Hastad). Let N1, . . .Nk be pairwise
relatively prime integers, and set Nmin = mini(Ni).
Let gi ∈ ZNi [x] be k polynomials of maximum de-
gree d. Suppose there exists a unique M < Nmin
satisfying

gi(M) = 0 mod Ni for all i = 1, . . . , k.

Under the assumption that k > d , one can effi-
ciently find M given 〈Ni, gi〉ki=1.

Proof. Let N = N1 · · ·Nk. We may assume that all
gi’s are monic. (Indeed, if for some i the leading
coefficient of gi is not invertible in Z∗Ni, then the
factorization of Ni is exposed.) By multiplying
each gi by the appropriate power of x, we may as-
sume they all have degree d. Construct the poly-
nomial

g(x) =
k∑
i=1

Tigi(x),

where Ti =

{
1 mod Nj if i = j
0 mod Nj if i 6= j.

input, then the LLL algorithm outputs a point
v ∈ L satisfying

‖v‖ ≤ 2w/4 det(L)1/w .

The running time for LLL is quartic in the length
of the input.

The LLL algorithm (named after its inventors L.
Lovasz, A. Lenstra, and H. Lenstra Jr.) has many ap-
plications in both computational number theory
and cryptography. Its discovery in 1982 provided
an efficient algorithm for factoring polynomials
over the integers and, more generally, over num-
ber rings. LLL is frequently used to attack various
cryptosystems. For instance, many cryptosystems
based on the “knapsack problem” have been bro-
ken using LLL.

Using LLL, we can complete the proof of Cop-
persmith’s theorem. To ensure that the vector pro-
duced by LLL satisfies the bound of Lemma 4, we
need

2w/4det(L)1/w < Nm/
√
w,

where w = d(m + 1) is the dimension of L. A rou-
tine calculation shows that for large enough m the
bound is satisfied. Indeed, when 

X = N
1
d−ε , it suffices to take m = O(k/d) with

k = min(1
ε , logN). Consequently, the running time

is dominated by running LLL on a lattice of di-
mension O(k), as required.

A natural question is whether Coppersmith’s
theorem can be applied to bivariate and multi-
variate polynomials. If f (x, y) ∈ ZN [x, y] is given
for which there exists a root (x0, y0) with |x0y0|
suitably bounded, can Marvin efficiently find
(x0, y0)? Although the same technique appears to
work for some bivariate polynomials, it is cur-
rently an open problem to prove it. As an increasing
number of results depend on a bivariate extension
of Coppersmith’s theorem, a rigorous algorithm
will be very useful.

Open Problem 3. Find general conditions under
which Coppersmith’s theorem can be generalized
to bivariate polynomials.

Hastad’s Broadcast Attack
As a first application of Coppersmith’s theorem,
we present an improvement to an old attack due
to Hastad [11]. Suppose Bob wishes to send an en-
crypted message M to a number of parties
P1, P2, . . . , Pk. Each party has its own RSA key
〈Ni, ei〉. We assume M is less than all the Ni’s.
Naively, to send M, Bob encrypts it using each of
the public keys and sends out the ith ciphertext
to Pi. Marvin can eavesdrop on the connection out
of Bob’s sight and collect the k transmitted ci-
phertexts.

For simplicity, suppose all public exponents ei
are equal to 3. A simple argument shows that Mar-
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The Ti’s are integers known as the Chinese Re-
mainder Coefficients. Then g(x) must be monic,
since it is monic modulo all the Ni. Its degree is
d. Furthermore, we know that g(M) = 0 mod N .
Theorem 6 now follows from Theorem 3, since
M < Nmin ≤ N 1/k < N 1/d. ■■

The theorem shows that a system of univariate
equations modulo relatively prime composites 
can be efficiently solved, assuming sufficiently
many equations are provided. By setting gi =
f eii − Ci mod Ni, we see that Marvin can recover M
from the given ciphertexts whenever the number
of parties is at least d, where d is the maximum
of eideg(fi) over all i = 1, . . . , k. In particular, if all
ei ’s are equal to e and Bob sends out linearly re-
lated messages, then Marvin can recover the plain-
text as soon as k > e.

Hastad’s original theorem is weaker than the one
stated above. Rather than d polynomials, Hastad
required d(d + 1)/2 polynomials. Hastad’s proof is
similar to the proof of Coppersmith’s theorem de-
scribed in the previous section. However, Hastad
does not use powers of g in the lattice and con-
sequently obtains a weaker bound.

To conclude this section, we note that to prop-
erly defend against the broadcast attack above, one
must use a randomized pad [1] rather than a fixed
one.

Franklin-Reiter Related Message Attack
Franklin and Reiter [8] found a clever attack when
Bob sends Alice related encrypted messages using
the same modulus. Let 〈N, e〉 be Alice’s public
key. Suppose M1,M2 ∈ Z∗N are two distinct mes-
sages satisfying M1 = f (M2) mod N for some pub-
licly known polynomial f ∈ ZN [x]. To send M1 and
M2 to Alice, Bob may naively encrypt the mes-
sages and transmit the resulting ciphertexts C1, C2.
We show that given C1, C2, Marvin can easily re-
cover M1,M2. Although the attack works for any
small e, we state the following lemma for e = 3 in
order to simplify the proof.

Lemma 7 (FR). Set e = 3, and let 〈N, e〉 be an
RSA public key. Let M1 6=M2 ∈ Z∗N satisfy
M1 = f (M2) mod N for some linear polynomial
f = ax + b ∈ ZN [x] with b 6= 0. Then, given
〈N, e,C1, C2, f 〉, Marvin can recover M1,M2 in time
quadratic in logN.

Proof. To keep this part of the proof general, we
state it using an arbitrary e (rather than restrict-
ing to e = 3). Since C1 =Me

1 mod N , we know 
that M2 is a root of the polynomial g1(x) =
f (x)e − C1 ∈ ZN [x] . Similarly, M2 is a root of
g2(x) = xe − C2 ∈ ZN [x]. The linear factor x−M2
divides both polynomials. Therefore, Marvin may
use the Euclidean algorithm4 to compute the gcd
of g1 and g2. If the gcd turns out to be linear, M2
is found. The gcd can be computed in quadratic
time in e and logN.

We show that when e = 3, the gcd must be lin-
ear. The polynomial x3 − C2 factors modulo both
p and q into a linear factor and an irreducible qua-
dratic factor (recall that gcd(e,ϕ(N)) = 1, hence
x3 − C2 has only one root in ZN). Since g2 cannot
divide g1, the gcd must be linear. For e > 3 the gcd
is almost always linear. However, for some rare
M1,M2, and f, it is possible to obtain a nonlinear
gcd, in which case the attack fails. ■■

For e > 3 the attack takes time quadratic in e.
Consequently, it can be applied only when a small
public exponent e is used. For large e the work in
computing the gcd is prohibitive. It is an interest-
ing question (though likely to be difficult) to de-
vise such an attack for arbitrary e. In particular,
can the gcd of g1 and g2 above be found in time
polynomial in log e?
Coppersmith’s Short Pad Attack
The Franklin-Reiter attack might seem a bit artifi-
cial. After all, why should Bob send Alice the en-
cryption of related messages? Coppersmith
strengthened the attack and proved an important
result on padding [7].

A naive random padding algorithm might pad
a plaintext M by appending a few random bits to
one of the ends. The following attack points out
the danger of such simplistic padding. Suppose Bob
sends a properly padded encryption of M to Alice.
Marvin intercepts the ciphertext and prevents it
from reaching its destination. Bob notices that
Alice did not respond to his message and decides
to resend M to Alice. He randomly pads M and
transmits the resulting ciphertext. Marvin now has
two ciphertexts corresponding to two encryptions
of the same message using two different random
pads. The following theorem shows that although
he does not know the pads used, Marvin is able to
recover the plaintext.

Theorem 8. Let 〈N, e〉 be a public RSA key where
N is n-bits long. Set m = [n/e2]. Let M ∈ Z∗N be a
message of length at most n−m bits. Define
M1 = 2mM + r1 and M2 = 2mM + r2, where r1 and
r2 are distinct integers with 0 ≤ r1, r2 < 2m. If Mar-
vin is given 〈N, e〉 and the encryptions C1, C2 of
M1,M2 (but is not given r1 or r2), he can effi-
ciently recover M.

Proof. Define g1(x, y) = xe − C1 and g2(x, y)
= (x + y)e − C2. We know that when y = r2 − r1,
these polynomials have M1 as a common root. In
other words, ∆ = r2 − r1 is a root of the “resultant”
h(y) = resx(g1, g2) ∈ ZN [y]. The degree of h is at
most e2. Furthermore, |∆| < 2m < N1/e2

. Hence, ∆
is a small root of h modulo N, and Marvin can ef-
ficiently find it using Coppersmith’s theorem (The-

4Although ZN [x] is not a Euclidean ring, the standard Eu-
clidean algorithm can still be applied to polynomials in
ZN [x]. One can show that if the algorithm “breaks” in
any way, then the factorization of N is exposed.

boneh.qxp  12/7/98 11:40 AM  Page 209



210 NOTICES OF THE AMS VOLUME 46, NUMBER 2

tial key exposure. Indeed, if gx mod p and a con-
stant fraction of the bits of x are given, there is
no known polynomial-time algorithm to compute
the rest of x.

To conclude the section, we show that when the
encryption exponent e is small, the RSA system
leaks half the most significant bits of the corre-
sponding private key d. To see this, consider once
again the equation ed − k(N − p − q + 1) = 1 for
an integer 0 < k ≤ e. Given k, Marvin may easily
compute

d̂ = [(kN + 1)/e].
Then

|d̂ − d| ≤ k(p + q)/e ≤ 3k
√
N/e < 3

√
N.

Hence, d̂ is a good approximation for d. The bound
shows that, for most d, half the most significant
bits of d̂ are equal to those of d. Since there are
only e possible values for k, Marvin can construct
a small set of size e such that one of the elements
in the set is equal to half the most significant bits
of d. The case e = 3 is especially interesting. In this
case one can show that always k = 2 and hence the
system completely leaks half the most significant
bits of d.

Implementation Attacks
We turn our attention to an entirely different class
of attacks. Rather than attacking the underlying
structure of the RSA function, these attacks focus
on the implementation of RSA.

Timing Attacks
Consider a smartcard that stores a private RSA key.
Since the card is tamper resistant, Marvin may not
be able to examine its contents and expose the key.
However, a clever attack due to Kocher [13] shows
that by precisely measuring the time it takes the
smartcard to perform an RSA decryption (or sig-
nature), Marvin can quickly discover the private de-
cryption exponent d.

We explain how to mount the attack against a
simple implementation of RSA using the “repeated
squaring algorithm”. Let d = dndn−1 . . . d0 be the
binary representation of d (i.e., d =

∑n
i=0 2idi with

di ∈ {0,1}). The repeated squaring algorithm com-
putes C =Md mod N, using at most 2n modular
multiplications. It is based on the observation that
C =

∏n
i=0M2idi mod N. The algorithm works as fol-

lows:

Set z equal to M and C equal to 1. For
i = 0, . . . , n, do these steps:

1. If di = 1, set C equal to Cz mod N.

2. Set z equal to z2 mod N.

At the end, C has the value Md mod N.

orem 3). Once ∆ is known, the Franklin-Reiter at-
tack of the previous section can be used to re-
cover M2 and consequently M. ■■

When e = 3, the attack can be mounted as long as
the pad length is less than 1/9 the message length.
This is an important result. Note that for the rec-
ommended value of e = 65537, the attack is use-
less against standard moduli sizes.

Partial Key Exposure Attack
Let 〈N,d〉 be a private RSA key. Suppose by some
means Marvin is able to expose a fraction of the
bits of d, say, a quarter of them. Can he reconstruct
the rest of d? Surprisingly, the answer is positive
when the corresponding public key is small. Re-
cently Boneh, Durfee, and Frankel [5] showed that
as long as e <

√
N , it is possible to reconstruct all

of d from just a fraction of its bits. These results
illustrate the importance of safeguarding the en-
tire private RSA key.

Theorem 9 (BDF). Let 〈N,d〉 be a private RSA key
in which N is n bits long. Given the dn/4e least
significant bits of d, Marvin can reconstruct all of
d in time linear in e log2 e .

The proof relies on yet another beautiful theo-
rem due to Coppersmith [7].

Theorem 10 (Coppersmith). Let N = pq be an n-
bit RSA modulus. Then given the n/4 least sig-
nificant bits of p or the n/4 most significant bits
of p, one can efficiently factor N.

Theorem 9 readily follows from Theorem 10. In
fact, by definition of e and d, there exists an in-
teger k such that

ed − k(N − p − q + 1) = 1.

Since d < ϕ(N), we must have 0 < k ≤ e. Reduc-
ing the equation modulo 2n/4 and setting q = N/p,
we obtain

(ed)p − kp(N − p + 1) + kN = p mod 2n/4.

Since Marvin is given the n/4 least significant bits
of d, he knows the value of ed mod 2n/4. Conse-
quently, he obtains an equation in k and p. For each
of the e possible values of k, Marvin solves the qua-
dratic equation in p and obtains a number of can-
didate values for p mod 2n/4. For each of these can-
didate values, he runs the algorithm of Theorem
10 to attempt to factor N. One can show that the
total number of candidate values for p mod 2n/4

is at most e log2 e . Hence, after at most e log2 e at-
tempts, N will be factored. ■■

Theorem 9 is known as a partial key-exposure
attack. Similar attacks exist for larger values of e
as long as e <

√
N . However, the techniques are a

bit more complex [5]. It is interesting that discrete
log-based cryptosystems, such as the El-Gamal
public key system, do not seem susceptible to par-
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in a given iteration the card performs one or two
multiplications, thus exposing the bits of d.
Random Faults
Implementations of RSA decryption and signa-
tures frequently use the Chinese Remainder The-
orem to speed up the computation of Md mod N.
Instead of working modulo N, Bob first computes
the signatures modulo p and q and then com-
bines the results using the Chinese Remainder
Theorem. More precisely, Bob first computes

Cp =Mdp mod p and Cq =Mdq mod q,

where dp = d mod (p − 1) and dq = d mod (q − 1).
He then obtains the signature C by setting

C = T1Cp + T2Cq mod N,
where

T1 =

{
1 mod p
0 mod q

}
and T2 =

{
0 mod p
1 mod q

}
.

The running time of the last CRT step is negligi-
ble compared to the two exponentiations. Note
that p and q are half the length of N. Since sim-
ple implementations of multiplication take qua-
dratic time, multiplication modulo p is four times
faster than modulo N. Furthermore, dp is half the
length of d ,  and consequently computing
Mdp mod p is eight times faster than computing
Md mod N. Overall signature time is thus reduced
by a factor of four. Many implementations use
this method to improve performance.

Boneh, DeMillo, and Lipton [3] observed that
there is an inherent danger in using the CRT
method. Suppose that while generating a signature,
a glitch on Bob’s computer causes it to miscalcu-
late in a single instruction. For instance, while
copying a register from one location to another, one
of the bits is flipped. (A glitch may be caused by
ambient electromagnetic interference or perhaps
by a rare hardware bug, like the one found in an
early version of the Pentium chip.) Given an invalid
signature, Marvin can easily factor Bob’s modulus
N.

We present a version of the attack as described
by A. K. Lenstra. Suppose a single error occurs
while Bob is generating a signature. As a result, ex-
actly one of Cp or Cq will be computed incorrectly.
Say Cp is correct, but Ĉq is not. The resulting 
signature is Ĉ = T1Cp + T2Ĉq. Once Marvin receives 
Ĉ ,  he knows it is a false signature, since
Ĉe 6=M mod N . However, notice that

Ĉe =M mod p while Ĉe 6=M mod q.

As a result, gcd(N, Ĉe −M) exposes a nontrivial
factor of N.

For the attack to work, Marvin must have full
knowledge of M; namely, we are assuming Bob
does not use any random padding procedure. Ran-

The variable z runs through the set of values
M2i mod N for i = 0, . . . , n. The variable C “col-
lects” the appropriate powers in the set to obtain
Md mod N.

To mount the attack, Marvin asks the smartcard
to generate signatures on a large number of ran-
dom messages M1, . . . ,Mk ∈ Z∗N and measures the
time Ti it takes the card to generate each of the
signatures.

The attack recovers bits of d one at a time, be-
ginning with the least significant bit. We know d
is odd. Thus d0 = 1. Consider the second itera-
tion. Initially z =M2 mod N and C =M. If d1 = 1,
the smartcard computes the product
Cz =M ·M2 mod N . Otherwise, it does not. Let ti
be the time it takes the smartcard to compute
Mi ·M2

i mod N. The ti’s differ from each other,
since the time to compute Mi ·M2

i mod N depends
on the value of Mi (simple modular reduction al-
gorithms take a different amount of time de-
pending on the value being reduced). Marvin mea-
sures the ti’s offline (prior to mounting the attack)
once he obtains the physical specifications of the
card.

Kocher observed that when d1 = 1, the two en-
sembles {ti} and {Ti} are correlated. For instance,
if for some i, ti is much larger than its expecta-
tion, then Ti is also likely to be larger than its ex-
pectation. On the other hand, if d1 = 0, the two en-
sembles {ti} and {Ti} behave as independent
random variables. By measuring the correlation,
Marvin can determine whether d1 is 0 or 1. Con-
tinuing in this way, he can recover d2, d3, and so
on. Note that when a low public exponent e is
used, the partial key exposure attack of the pre-
vious section shows that Kocher’s timing attack
need only be employed until a quarter of the bits
of d are discovered.

There are two ways to defend against the attack.
The simplest is to add appropriate delay so that
modular exponentiation always takes a fixed
amount of time. The second approach, due to
Rivest, is based on blinding. Prior to decryption of
M the smartcard picks a random r ∈ Z∗N and com-
putes M′ =M · re mod N. It then applies d to M′
and obtains C′ = (M′)d mod N . Finally, the smart-
card sets C = C′/r mod N. With this approach, the
smartcard is applying d to a random message M′
unknown to Marvin. As a result, Marvin cannot
mount the attack.

Kocher recently discovered another attack along
these lines called power cryptanalysis. Kocher
showed that by precisely measuring the smart-
card’s power consumption during signature gen-
eration, Marvin can often easily discover the secret
key. As it turns out, during a multiprecision mul-
tiplication the card’s power consumption is higher
than normal. By measuring the length of high con-
sumption periods, Marvin can easily determine if
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We categorized known attacks on RSA into four
categories: (1) elementary attacks that exploit bla-
tant misuse of the system, (2) low private exponent
attacks serious enough that a low private exponent
should never be used, (3) low public exponent at-
tacks, (4) and attacks on the implementation. These
last attacks illustrate that a study of the underly-
ing mathematical structure is insufficient. Through-
out the paper we observed that many attacks can
be defeated by properly padding the message prior
to encryption or signing.

The first twenty years of RSA have led to a num-
ber of fascinating algorithms. My hope is the next
twenty will prove to be equally exciting.
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