Cop and Robber Game and Hyperbolicity

J. Chalopin¹ V. Chepoi¹ P. Papasoglu² T. Pecatte³

¹LIF. CNRS & Aix-Marseille Université

²Mathematical Institute, University of Oxford

³ÉNS de Lyon

Séminaire GAC – 23 février 2017

A game between one cop ${\bf C}$ and one robber ${\bf R}$ on a graph ${\bf G}$

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge
- R traverses at most 1 edge

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

A game between one cop ${\bf C}$ and one robber ${\bf R}$ on a graph ${\bf G}$

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge
- R traverses at most 1 edge

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

A game between one cop ${\bf C}$ and one robber ${\bf R}$ on a graph ${\bf G}$

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge
- R traverses at most 1 edge

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

A game between one cop ${\bf C}$ and one robber ${\bf R}$ on a graph ${\bf G}$

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge
- R traverses at most 1 edge

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

A game between one cop ${\bf C}$ and one robber ${\bf R}$ on a graph ${\bf G}$

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge
- R traverses at most 1 edge

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

A game between one cop ${\bf C}$ and one robber ${\bf R}$ on a graph ${\bf G}$

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge
- R traverses at most 1 edge

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

A game between one cop ${\bf C}$ and one robber ${\bf R}$ on a graph ${\bf G}$

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge
- R traverses at most 1 edge

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

A game between one cop ${\bf C}$ and one robber ${\bf R}$ on a graph ${\bf G}$

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most 1 edge
- R traverses at most 1 edge

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

A graph *G* is cop-win if **C** can win whatever **R** does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order $v_1, v_2, ..., v_n$ such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

$$G_i$$
: graph induced by $X_i = \{v_1, v_2, \dots, v_i\}$

A graph *G* is cop-win if **C** can win whatever **R** does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order $v_1, v_2, ..., v_n$ such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_i]$$

$$G_i$$
: graph induced by $X_i = \{v_1, v_2, \dots, v_i\}$

A graph *G* is cop-win if **C** can win whatever **R** does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order $v_1, v_2, ..., v_n$ such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

$$G_i$$
: graph induced by $X_i = \{v_1, v_2, \dots, v_i\}$

A graph *G* is cop-win if **C** can win whatever **R** does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order $v_1, v_2, ..., v_n$ such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_i]$$

$$G_i$$
: graph induced by $X_i = \{v_1, v_2, \dots, v_i\}$

A graph *G* is cop-win if **C** can win whatever **R** does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order v_1, v_2, \dots, v_n such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

$$G_i$$
: graph induced by $X_i = \{v_1, v_2, \dots, v_i\}$

A graph *G* is cop-win if **C** can win whatever **R** does

Theorem (Nowakowski and Winkler; Quilliot '83)

A graph G is cop-win iff there exists a dismantling order $v_1, v_2, ..., v_n$ such that

$$\forall i > 1, \exists j < i, N[v_i, G_i] \subseteq N[v_j]$$

 G_i : graph induced by $X_i = \{v_1, v_2, \dots, v_i\}$

A game between one cop C moving at speed s' and one robber R moving at speed s

- C traverses at most s' edges
- R traverses at most s edges

- C has speed s' = 1
- ▶ R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

- C traverses at most s' edges
- R traverses at most s edges

- C has speed s' = 1
- ▶ R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

- C traverses at most s' edges
- R traverses at most s edges

- C has speed s' = 1
- ▶ R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

- C traverses at most s' edges
- R traverses at most s edges

- C has speed s' = 1
- ▶ R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

- C traverses at most s' edges
- R traverses at most s edges

- C has speed s' = 1
- ▶ R has speed s = 2

A game between one cop C moving at speed s' and one robber R moving at speed s

- C traverses at most s' edges
- R traverses at most s edges

- C has speed s' = 1
- ▶ R has speed s = 2

(s, s')-Cop-win Graphs and (s, s')-dismantlability

A graph G is (s,s')-cop-win if C (moving at speed s') can win whatever R (moving at speed s) does

Remark

If **s** < **s**', every graph is (**s**,**s**')-cop-win

Theorem (C., Chepoi, Nisse, Vaxès '11)

A graph G is (s,s')-cop-win if and only if there exists a (s,s')-dismantling order v_1, v_2, \ldots, v_n such that

$$\forall i > 1, \exists j < i, B_s(v_i, G \setminus v_j) \cap X_i \subseteq B_{s'}(v_j)$$

$$X_i = \{v_1, v_2, \dots, v_i\}$$

Two kinds of (s, s')-dismantlability

An ordering v_1, v_2, \dots, v_n of the vertices of V(G) is

 \triangleright (s, s')-dismantling if

$$\forall i > 1, \exists j < i, B_s(v_i, G \setminus v_j) \cap X_i \subseteq B_{s'}(v_j)$$

▶ (s, s')*-dismantling if

$$\forall i > 1, \exists j < i, B_s(v_i, G) \cap X_i \subseteq B_{s'}(v_j)$$

Remarks

- ▶ (s, s')-dismantling $\implies (s, s 1)$ -dismantling if s' < s
- $(s, s')^*$ -dismantling $\implies (s, s')$ -dismantling
- (s, s-1)-dismantling $\implies (s, s-1)^*$ -dismantling
- ▶ G is $(s, s)^*$ -dismantlable iff G^s is dismantlable

A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

$$d(a,b)+d(c,d) \leq \max\{d(a,c)+d(b,d),d(a,d)+d(b,c)\}+2\delta$$

The hyperbolicity δ^* of a graph G is the minimal value of δ such that G is δ -hyperbolic

A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

$$d(a,b)+d(c,d) \leq \max\{d(a,c)+d(b,d),d(a,d)+d(b,c)\}+2\delta$$

The hyperbolicity δ^* of a graph G is the minimal value of δ such that G is δ -hyperbolic

Examples:

- Trees and cliques are 0-hyperbolic
- Cycles are ⁿ/₄-hyperbolic
- ▶ Square grids are \sqrt{n} 1-hyperbolic
- Chordal graphs are 1-hyperbolic [Brinkmann, Koolen, Moulton '01]

A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

$$d(a,b)+d(c,d) \leq \max\{d(a,c)+d(b,d),d(a,d)+d(b,c)\}+2\delta$$

The hyperbolicity δ^* of a graph G is the minimal value of δ such that G is δ -hyperbolic

Examples:

- Trees and cliques are 0-hyperbolic
- ightharpoonup Cycles are $\frac{n}{4}$ -hyperbolic
- ▶ Square grids are \sqrt{n} 1-hyperbolic
- Chordal graphs are 1-hyperbolic [Brinkmann, Koolen, Moulton '01]

A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

$$d(a,b)+d(c,d) \leq \max\{d(a,c)+d(b,d),d(a,d)+d(b,c)\}+2\delta$$

The hyperbolicity δ^* of a graph G is the minimal value of δ such that G is δ -hyperbolic

Remark

- ► The hyperbolicity of G measures how G is metrically close from a tree
- ► There exist many definitions of δ-hyperbolicity; they are equivalent up to a multiplicative factor

Why is hyperbolicity an interesting parameter?

A notion from Geometric Group Theory [Gromov '87]

 for δ-hyperbolic group, the word problem is solvable in linear time (it is undecidable for general groups)

Some large scale graphs are known to be of small hyperbolicity

- the Internet topology can be embedded into a hyperbolic space [Boguna et al. '10]
- the map of the AS of the Internet has small hyperbolicity [Cohen et al. '13]

Efficient algorithms exist for graphs of small hyperbolicity

- Greedy routing algorithms can be expected to perform very well [Papadopoulos et al. '09]
- Routing labeling schemes with small labels and small additive error [Chepoi et al '12]

In this talk

- Characterization of hyperbolicity via cop and robber games
 - δ -hyperbolic graphs are $(2s, s + 2\delta)$ -cop-win for any s
 - (s, s 1)-cop-win graphs are $64s^2$ -hyperbolic

An efficient algorithm to approximate the hyperbolicity of a graph

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s+2\delta)^*$ -dismantlable, and thus $(2s, s+2\delta)$ -cop-win

- Consider any BFS ordering of V(G) from a vertex u
- For all v, let v' be a vertex on a shortest path from v to u such that d(v, v') = s

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s+2\delta)^*$ -dismantlable, and thus $(2s, s+2\delta)$ -cop-win

Let
$$w \in B_{2s}(v) \cap X_v$$

$$d(u,v') + d(v,w) \leq d(u,v') + 2s$$

$$\leq d(u,v) + s$$

$$d(v,v') + d(u,w) \leq s + d(u,v)$$

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s+2\delta)^*$ -dismantlable, and thus $(2s, s+2\delta)$ -cop-win

Let
$$w \in B_{2s}(v) \cap X_v$$

$$d(u,v') + d(v,w) \leq d(u,v') + 2s$$

$$\leq d(u,v) + s$$

$$d(v,v') + d(u,w) \leq s + d(u,v)$$

Consequently,

$$d(v', w) + d(u, v) \le s + d(u, v) + 2\delta$$

 $d(v', w) \le s + 2\delta$

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s+2\delta)^*$ -dismantlable, and thus $(2s, s+2\delta)$ -cop-win

Question

Is any (s, s')-cop-win graph f(s)-hyperbolic (when s' < s) ?

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s+2\delta)^*$ -dismantlable, and thus $(2s, s+2\delta)$ -cop-win

Question

Is any (s, s')-cop-win graph f(s)-hyperbolic (when s' < s) ?

Theorem

G is (s, s-1)-cop-win $\implies G$ is $64s^2$ -hyperbolic

Another characterization of hyperbolicity

For a cycle c, (D, Φ) is an N-filling of c if

- D is a 2-connected planar graph
- every internal face of D has at most 2N edges
- ▶ $\Phi: D \rightarrow G$ is a simplicial map
- ▶ $\Phi(\partial D) = c$

Another characterization of hyperbolicity

For a cycle c, (D, Φ) is an N-filling of c if

- D is a 2-connected planar graph
- every internal face of D has at most 2N edges
- ▶ $\Phi: D \rightarrow G$ is a simplicial map
- $\Phi(\partial D) = c$
- The area of (D, Φ) is the number of faces of D
- Area_N(c) is the minimum area of an N-filling of c
- $\ell(c)$ is the length of c

Another characterization of hyperbolicity

For a cycle c, (D, Φ) is an N-filling of c if

- ▶ D is a 2-connected planar graph
- every internal face of D has at most 2N edges
- $\Phi: D \to G$ is a simplicial map
- $\Phi(\partial D) = c$
- The area of (D, Φ) is the number of faces of D
- Area_N(c) is the minimum area of an N-filling of c
- $\ell(c)$ is the length of c

Another characterization of hyperbolicity

For a cycle c, (D, Φ) is an N-filling of c if

- D is a 2-connected planar graph
- every internal face of D has at most 2N edges
- ▶ $\Phi: D \rightarrow G$ is a simplicial map
- $\Phi(\partial D) = c$
- The area of (D, Φ) is the number of faces of D
- Area_N(c) is the minimum area of an N-filling of c
- \blacktriangleright $\ell(c)$ is the length of c

Linear Isoperimetric Inequality

A graph G satisfies the linear isoperimetric inequality, if there exists $K \in \mathbb{N}$ and N such that

$$\forall c, \text{Area}_N(c) \leq K\ell(c)$$

Theorem (Gromov)

- ▶ G is δ -hyperbolic $\implies \forall c$, Area_{16 δ}(c) $\leq \ell(c)$
- ▶ $\forall c, Area_N(c) \leq K\ell(c) \implies G \text{ is } O(K^2N^3)\text{-hyperbolic}$

For a proof, see [Bridson and Haefliger]

Linear Isoperimetric Inequality

A graph G satisfies the linear isoperimetric inequality, if there exists $K \in \mathbb{N}$ and N such that

$$\forall c, \operatorname{Area}_{N}(c) \leq K\ell(c)$$

Theorem (Gromov)

- ▶ G is δ -hyperbolic $\implies \forall c$, Area_{16 δ}(c) $\leq \ell(c)$
- ▶ $\forall c, Area_N(c) \leq K\ell(c) \implies G \text{ is } O(K^2N^3)\text{-hyperbolic}$

For a proof, see [Bridson and Haefliger]

Proposition

When $K \in \mathbb{Q}$, $\forall c$, Area_N $(c) \leq \lceil K\ell(c) \rceil \implies G$ is $(32KN^2 + \frac{1}{2})$ -hyperbolic

Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$\forall c, Area_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$\forall c, Area_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

Proof by induction on $\ell(c)$:

- v: the last vertex of c in the dismantling order
- ▶ $B_s(v) \cap c \subseteq B_s(v) \cap X_v \subseteq B_{s'}(u)$

Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$\forall c, \textit{Area}_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

Proof by induction on $\ell(c)$:

- v: the last vertex of c in the dismantling order
- $B_s(v) \cap c \subseteq B_s(v) \cap X_v \subseteq B_{s'}(u)$
- ▶ $\ell(c_0) \le 2(s + s')$
- ▶ $\ell(c_1) \le \ell(c) 2(s s')$

Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$orall c, \mathit{Area}_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

Proof by induction on $\ell(c)$:

- v: the last vertex of c in the dismantling order
- ▶ $B_s(v) \cap c \subseteq B_s(v) \cap X_v \subseteq B_{s'}(u)$
- ▶ $\ell(c_0) \le 2(s + s')$
- ▶ $\ell(c_1) < \ell(c) 2(s s')$

Theorem

If G is $(s, s')^*$ -dismantlable with s' < s,

$$orall c, \mathit{Area}_{s+s'}(c) \leq \left\lceil rac{\ell(c)}{2(s-s')}
ight
ceil$$

- v: the last vertex of c in the dismantling order
- ▶ $B_s(v) \cap c \subseteq B_s(v) \cap X_v \subseteq B_{s'}(u)$
- ▶ $\ell(c_0) \le 2(s + s')$
- ▶ $\ell(c_1) \le \ell(c) 2(s s')$
- ▶ Area_{s+s'}(c) $\leq 1 + \left\lceil \frac{\ell(c_1)}{2(s-s')} \right\rceil \leq \left\lceil \frac{\ell(c)}{2(s-s')} \right\rceil$

(s, s')-cop-win graphs are hyperbolic

Theorem

G is
$$(s, s')^*$$
-dismantlable with $s' < s \implies \delta^*(G) \le 16 \frac{(s+s')^2}{s-s'} + \frac{1}{2}$

Corollary

G is (s, s-1)-cop-win \implies G is $64s^2$ -hyperbolic

Computing the hyperbolicity

Assume the distance-matrix of G has been computed

Computing the hyperbolicity $\delta^*(G)$

• 4 points condition: $O(n^4)$

Computing an approximation of $\delta^*(G)$

• fixing one point: a 2-approx. in $O(n^3)$

Computing the hyperbolicity

Assume the distance-matrix of G has been computed

Computing the hyperbolicity $\delta^*(G)$

- 4 points condition: $O(n^4)$
- ► Using (max, min)-matrix product: $O(n^{3.69})$ [Fournier, Ismail, Vigneron '12]

Computing an approximation of $\delta^*(G)$

- fixing one point: a 2-approx. in $O(n^3)$
- ► Using (max, min)-matrix product: a 2-approx. in O(n^{2.69}) [Fournier, Ismail, Vigneron '12]
- a $(2 + \epsilon)$ -approx. in $O(\frac{1}{\epsilon}n^{2.38})$ [Duan '14]

Computing the hyperbolicity

Assume the distance-matrix of G has been computed

Computing the hyperbolicity $\delta^*(G)$

- 4 points condition: $O(n^4)$
- ► Using (max, min)-matrix product: $O(n^{3.69})$ [Fournier, Ismail, Vigneron '12]

Computing an approximation of $\delta^*(G)$

- fixing one point: a 2-approx. in $O(n^3)$
- ► Using (max, min)-matrix product: a 2-approx. in O(n^{2.69}) [Fournier, Ismail, Vigneron '12]
- a $(2 + \epsilon)$ -approx. in $O(\frac{1}{\epsilon}n^{2.38})$ [Duan '14]

Theorem

From the distance-matrix of G, one can compute a constant approximation of $\delta^*(G)$ in $O(n^2)$

$\overline{\mathsf{Approx-}\delta^*(\mathsf{G},\alpha)}$

Consider a BFS ordering \prec of V(G) from any vertex u;

For all v, let $f_{\alpha}(v)$ be on a shortest path from v to u such that $d(v, f_{\alpha}(v)) = 2\alpha$;

for all $v \in V$ do

return YES;

$\overline{\mathsf{Approx-}\delta^*(\mathsf{G},\alpha)}$

Consider a BFS ordering \prec of V(G) from any vertex u;

For all v, let $f_{\alpha}(v)$ be on a shortest path from v to u such that $d(v, f_{\alpha}(v)) = 2\alpha$;

for all $v \in V$ do

if $B_{4\alpha}(v,G) \cap X_v \not\subseteq B_{3\alpha}(f_{\alpha}(v),G)$ then \bot return NO

return YES;

NO
$$\prec$$
 is not (2(2 α), 2 α + α)*-dismantling $\implies \delta^* > \frac{\alpha}{2}$

YES
$$G$$
 is $(4\alpha, 3\alpha)^*$ -dismantlable
 $\implies \delta^* \le 16 \frac{(7\alpha)^2}{\alpha} + \frac{1}{2} = 784\alpha + \frac{1}{2}$

Approx- $\delta^*(G,\alpha)$

Consider a BFS ordering \prec of V(G) from any vertex u;

For all v, let $f_{\alpha}(v)$ be on a shortest path from v to u such that $d(v, f_{\alpha}(v)) = 2\alpha$;

for all $v \in V$ do

return YES;

NO
$$\prec$$
 is not (2(2 α), 2 α + α)*-dismantling $\implies \delta^* > \frac{\alpha}{2}$

YES *G* is
$$(4\alpha, 3\alpha)^*$$
-dismantlable
 $\implies \delta^* \le 16 \frac{(7\alpha)^2}{\alpha} + \frac{1}{2} = 784\alpha + \frac{1}{2}$

We can find α^*

$$\alpha^*/2 \le \delta^* \le 784\alpha^* + \frac{1}{2}$$

1569-approx. of $\delta^*(G)$

$\overline{\mathsf{Approx-}\delta^*(\mathsf{G},\alpha)}$

Consider a BFS ordering \prec of V(G) from any vertex u;

For all v, let $f_{\alpha}(v)$ be on a shortest path from v to u such that $d(v, f_{\alpha}(v)) = 2\alpha$;

for all $v \in V$ do

∟ return NO return YES:

Ctarri TEO,

Complexity: **Approx**- $\delta^*(G,\alpha)$ runs in time $O(n^2)$

Proposition

One can compute a 1569-approximation of δ^* in time $O(n^2 \log \delta^*)$

$\overline{\mathsf{Approx-}\delta^*(\mathsf{G},\alpha)}$

Consider a BFS ordering \prec of V(G) from any vertex u;

For all v, let $f_{\alpha}(v)$ be on a shortest path from v to u such that $d(v, f_{\alpha}(v)) = 2\alpha$;

for all $v \in V$ do

return YES;

We can avoid to recompute everything when we increase α

Theorem

One can compute a 1569-approximation of δ^* in time $O(n^2)$

Conclusion

 Characterization of hyperbolicity via a cop and robber game

Different notions that are qualitatively equivalent

- (s, s')-cop-win graphs
- (s, s')-dismantlability
- ► (s, s')*-dismantlability
- bounded hyperbolicity
- ► Links between (s, s')*-dismantlability and hyperbolicity hold for infinite graphs
- ► A constant-factor approximation of the hyperbolicity in O(n²) (starting from the distance-matrix)