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closed free special
surface counting homotopy feature

Chillingworth winding
’69 number
Birman & retraction
Series ’84 X onto a graph
Cohen & retraction
Lustig ’87 X X onto a graph

canonical
Lustig ’87 X X X representative
de Graaf & Reidemeister
Schrijver ’97 X X X moves

Reidemeister
Paterson ’02 X X X moves
Gonçalves algebraic
et al. ’05 X X X approach



If a curve c is primitive its lifts are uniquely defined by their
limit points.
If τ is the hyperbolic translation corresponding to a lift c̃0 of
a primitive c then

ı(c) = |{set of pairs of limit points crossing c̃0}/〈τ〉|

The plan
For a given curve c

1 Determine the primitive root of c.
2 Count the number of classes of crossing pairs of limit

points (for the root of c).
3 Use adequate formula if c is not primitive.
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Non-primitive curves

Lemma

ı(cp,dq) =

{
2pq × ı(c) if c ∼ d or c ∼ d−1,
pq × ı(c,d) otherwise.

c

d

c

c

p x
q x

p x

p x
q x

q x
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Bigon swapping

Hass and Scott ’85
A curve with excess intersection has either a monogon or a
singular bigon.

Despré and L. ’16
Given c, an homotopic immersion with a minimal number of
intersections can be computed in O(|c|4) time.
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Find a better algorithm (less than quartic) to compute a
minimal immersion of single curve.
Design a better algorithm to just decide if the geometric
intersection number is null.
Propose an algorithm to compute a minimal immersion in
hyperbolic configuration (cf. Hass and Scott ’99).
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