Séminaire Francilien de Géométrie Algorithmique et Combinatoire
Le Séminaire de Géométrie Algorithmique et Combinatoire vise à regrouper des exposés dans ce domaine au sens le plus large, et dans les disciplines connexes en mathématiques et informatique. Il est ouvert à tous les chercheurs et étudiants intéressés. Les exposés sont destinés à un public large.

Pour recevoir les annonces de ce séminaire, envoyer un message à arnaud [dot-sign] de-mesmay [the-funny-at-sign] univ-eiffel [dot-sign] fr

La liste des exposés passés est disponible ici.


12 juin 2025

Salle Maurice Fréchet

14h00 Jean Cardinal Université libre de Bruxelles
Shortest paths on polymatroids
Base polytopes of polymatroids, also known as generalized permutohedra, are polytopes whose edges are parallel to a vector of the form e_i – e_j. We consider the following computational problem: Given two vertices of a generalized permutohedron P, find a shortest path between them on the skeleton of P. This captures many known flip distance problems, such as computing the minimum number of exchanges between two spanning trees of a graph, the rotation distance between binary search trees, the flip distance between acyclic orientations of a graph, or rectangulations of a square. We prove that this problem is NP-hard, even when restricted to very simple polymatroids in ℝ^n defined by O(n) inequalities. We also prove the APX-hardness of the shortest path problem when the polymatroid is a hypergraphic polytope, whose vertices are in bijection with acyclic orientations of a given hypergraph. The shortest path problem then amounts to computing the flip distance between two acyclic orientations of a hypergraph. On the positive side, we provide an exact polynomial-time algorithm for the flip distance between two acyclic orientations of any linear hypergraph. Joint work with Raphael Steiner (ETH Zurich).
15h30 Ivan Rasskin Aix-Marseille University
Polytopal crystallographic sphere packings for geometric knot theory and fractal modeling
Polytopal crystallographic sphere packings are a family of highly symmetric configurations defined in multiple dimensions, constructed from crystallographic polytopes. In this talk, we will review some of their key properties and demonstrate how they can be applied in geometric knot theory. We will also use them to introduce a new model for assembling lacunar fractal polygons with customizable shapes. Based in joint works with Boris Bordeaux, Christian Gentil, Lionel Garnier, and Jorge L. Ramírez Alfonsín

Le séminaire bénéficie du soutien de l'Institut Henri Poincaré..

Le comité d'organisation est constitué de Alfredo Hubard, Arnaud de Mesmay et Lionel Pournin.