Reordering a tree according to an order on its leaves and studying the evolution of the idiolect of writers

L. Bulteau ${ }^{1}$, P. Gambette ${ }^{1}$, O. Seminck ${ }^{2}$
${ }^{1}$ LIGM, CNRS, Université Gustave Eiffel, France
${ }^{2}$ Lattice, CNRS \& ENS/PSL \& Université Sorbonne nouvelle, France

LIGM - 2022-05-17

Introduction

Initial Motivation

Studying the evolution of the idiolect of authors

The idiolect according to Dittmar, 1996

"the language of the individual, which because of the acquired habits and the stylistic features of the personality differs from that of other individuals and in different life phases shows, as a rule, different or differently weighted"

Initial Motivation

Studying the evolution of the idiolect of authors

The idiolect according to Dittmar, 1996

"the language of the individual, which because of the acquired habits and the stylistic features of the personality differs from that of other individuals and in different life phases shows, as a rule, different or differently weighted"

The idiolect according to Bloch, 1948
"the totality of the possible utterances of one speaker at one time in using a language to interact with one other speaker."

Initial Motivation

Studying the evolution of the idiolect of authors

The idiolect according to Dittmar, 1996

"the language of the individual, which because of the acquired habits and the stylistic features of the personality differs from that of other individuals and in different life phases shows, as a rule, different or differently weighted"

The idiolect according to Bloch, 1948

"the totality of the possible utterances of one speaker at one time in using a language to interact with one other speaker."

- We prefer Bloch's definition, independent of the notion of style, which is linked with aesthetic values and judgements.

Initial Motivation

Studying the evolution of the idiolect of authors

Question

Can we measure and characterise how the idiolect of an author evolves with time?

Idiolect project

- funded by the PR[AI]RIE institute
- started by Thierry Poibeau, Dominique Legallois and Olga Seminck
- produced a corpus of novels by 11 prolific $19^{\text {th }}$ century French authors: The Corpus for Idiolectal Research (CIDRE) [Seminck, Gambette, Legallois \& Poibeau, JOHD 2022]

Initial Motivation

Studying the evolution of the idiolect of authors

- a natural first step: hierarchical clustering:
- compute distances between all pairs of novels of an author, depending on the contents of the novels (linguistic parameters)
- perform hierarchical clustering of this distance matrix to get a dendrogram (rooted tree).
- does the clustering group together novels published in consecutive years?

Initial Question

How much is the dendrogram consistent with time?

Initial Question

How much is the dendrogram consistent with time?

Initial Question

How much is the dendrogram consistent with time?

Initial Question

How much is the dendrogram consistent with time?

Initial Question

How much is the dendrogram consistent with time?

Modelization

\qquad

Motivation

Is a clustering consistent with external data?
Input:

- Elements

D
A E
B F
C
H

Motivation

Is a clustering consistent with external data?

Input:

- Elements
- Ordering (time-line, ...)

Motivation

Is a clustering consistent with external data?
Input:

- Elements
- Ordering (time-line, ...)
- Clustering

Is the clustering consistent with the ordering?

Motivation

Is a clustering consistent with external data?
Input:

- Elements
- Ordering (time-line, ...)
- Clustering

Is the clustering consistent with the ordering?

Motivation

Is a clustering consistent with external data?
Input:

- Elements
- Ordering (time-line, ...)
- Hierarchical Clustering

Is the clustering consistent with the ordering?

Motivation

Is a clustering consistent with external data?
Input:

- Elements
- Ordering (time-line, ...)
- Hierarchical Clustering (seen as a tree / dendrogram)

Definitions

- Tree T with leaf set X, ordering $\sigma: X \rightarrow \mathbb{N}$ (weak order \leq_{σ})

Definitions

- Tree T with leaf set X, ordering $\sigma: X \rightarrow \mathbb{N}$ (weak order \leq_{σ})
- Conflict: leaves a, b, c with $a<{ }_{\sigma} c<{ }_{\sigma} b$ and (a) (b) (c)

Definitions

- Tree T with leaf set X, ordering $\sigma: X \rightarrow \mathbb{N}$ (weak order \leq_{σ})
- Conflict: leaves a, b, c with $a<{ }_{\sigma} c<_{\sigma} b$ and (a) (b) (c)

OTDE One-Tree Drawing by Deleting Edges

Given T, σ, k,
Find $X^{\prime} \subseteq X,\left|X^{\prime}\right| \geq|X|-k$
Such that $T\left[X^{\prime}\right]$ has no conflict with σ

Definitions

- Tree T with leaf set X, ordering $\sigma: X \rightarrow \mathbb{N}$ (weak order \leq_{σ})
- Conflict: leaves a, b, c with $a<{ }_{\sigma} c<_{\sigma} b$ and (a) (b) (c)
- Ordering of T : strict order σ^{\prime} without conflict with T

TTDE Two-Tree Drawing by Deleting Edges

Given T_{1}, T_{2}, k,
Find $X^{\prime} \subseteq X,\left|X^{\prime}\right| \geq|X|-k$, and an ordering σ of both $T_{1}\left[X^{\prime}\right]$ and $T_{2}\left[X^{\prime}\right]$

Definitions

- Tree T with leaf set X, ordering $\sigma: X \rightarrow \mathbb{N}$ (weak order \leq_{σ})
- Conflict: leaves a, b, c with $a<{ }_{\sigma} c<_{\sigma} b$ and (a) (b) (c)
- Ordering of T : strict order σ^{\prime} without conflict with T
- Crossing between σ and σ^{\prime} : pair $\{a, b\}$ with $a<{ }_{\sigma} b$ and $b<\sigma^{\prime} a$

OTCM One-Tree Crossing Minimization

Given T, σ, k,
Find σ^{\prime} ordering of T
Such that σ^{\prime} has at most k crossings with σ

Example

Tree T

$\operatorname{Order} \sigma \quad$ (A) (B) C (D) (E)
Input instance

Example

Tree T

Order σ

Score for OTDE: $k=2$ deletions

Example

Another solution with the same score fun fact: all possible permutations of each node's children need 2 deletions

Example

Score for OTCM: 4 crossings

Previous Results

OTCM on binary trees

Most studied variant, from phylogenetics

- Dwyer, Schreiber '04:
- Fernau, Kaufmann, Poths '05:
- Bansal et al. '09:
- Fernau, Kaufmann, Poths. '10 and Venkatachalam, et al. '10:

$$
\begin{array}{r}
O\left(n^{2}\right) \\
O\left(n \log ^{2} n\right) \\
O\left(n \log ^{2} n / \log \log n\right)
\end{array}
$$

$O(n \log n)$

Previous Results

OTCM on binary trees

Most studied variant, from phylogenetics

- Dwyer, Schreiber '04:
- Fernau, Kaufmann, Poths '05:
- Bansal et al. '09:

$$
\begin{array}{r}
O\left(n^{2}\right) \\
O\left(n \log ^{2} n\right) \\
O\left(n \log ^{2} n / \log \log n\right)
\end{array}
$$

- Fernau, Kaufmann, Poths. '10 and Venkatachalam, et al. '10:
$O(n \log n)$

OTDE, TTDE

Introduced by Fernau et al.:

- Reduction from OTDE to 3-Hitting Set
- NP-hardness still open

Our Results

OTCM on arbitrary trees

- NP-hardness (from Feedback Arc Set)

Our Results

OTCM on arbitrary trees

- NP-hardness (from Feedback Arc Set)

OTDE

- NP-hardness (from Independent Set)
- Parameterized algorithms
- (simple) XP for the degree d
- (advanced) FPT for the deletion-degree ∂^{1}
${ }^{1} \partial=$ degree of $T\left[X \backslash X^{\prime}\right], \partial \leq \min \{d, k\}$

Our Results

OTCM on arbitrary trees

- NP-hardness (from Feedback Arc Set)

OTDE

- NP-hardness (from Independent Set)
- Parameterized algorithms
- (simple) XP for the degree d
- (advanced) FPT for the deletion-degree ∂^{1}

TTDE

- NP-hardness (from OTDE)
${ }^{1} \partial=$ degree of $T\left[X \backslash X^{\prime}\right], \partial \leq \min \{d, k\}$

Algorithms

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

(A) (B) (C) (D) © © (G)

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

$$
X(u, 1,4)=2
$$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

$$
\begin{array}{lll}
X(u, 1,4)=2 & X(v, 2,4)=1 & X(w, 1,2)=2 \\
X(u, 4,7)=2 & X(v, 4,5)=1 &
\end{array}
$$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

$$
\begin{array}{lll}
X(u, 1,4)=2 & X(v, 2,4)=1 \\
X(u, 4,7)=2 & X(v, 4,5)=1 & X(w, 1,2)=2 \\
X(r, 1,7)=\min (5, \ldots) & X(w, 5,7)=1
\end{array}
$$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

$$
\begin{array}{lll}
X(u, 1,4)=2 & X(v, 2,4)=1 & X(w, 1,2)=2 \\
X(u, 4,7)=2 & X(v, 4,5)=1 \\
X(r, 1,7)=\min (5,4, \ldots) & X(w, 5,7)=1
\end{array}
$$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

n^{3} DP entries

$$
\begin{array}{lll}
X(u, 1,4)=2 & X(v, 2,4)=1 & X(w, 1,2)=2 \\
X(u, 4,7)=2 & X(v, 4,5)=1 & X(w, 5,7)=1 \\
X(r, 1,7)=\min (5,4, \ldots) &
\end{array}
$$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

n^{3} DP entries
$d!$ permutations of the children

$$
n^{d-1} \text { pivots }
$$

$$
\begin{array}{lll}
X(u, 1,4)=2 & X(v, 2,4)=1 & X(w, 1,2)=2 \\
X(u, 4,7)=2 & X(v, 4,5)=1 \\
X(r, 1,7)=\min (5,4, \ldots) & X(w, 5,7)=1
\end{array}
$$

OTDE is XP for the degree

Bottom-up Dynamic Programming

For each internal node v, interval I, r $X(v, I, r)=$ deletions in $T[v]$ when mapped with $\sigma[I . . r]$

n^{3} DP entries
$d!$ permutations of the children

$$
n^{d-1} \text { pivots }
$$

Overall $O\left(d!n^{d+2}\right)$

$$
\begin{array}{lll}
X(u, 1,4)=2 & X(v, 2,4)=1 & X(w, 1,2)=2 \\
X(u, 4,7)=2 & X(v, 4,5)=1 & X(w, 5,7)=1 \\
X(r, 1,7)=\min (5,4, \ldots) &
\end{array}
$$

OTDE is FPT for the deletion degree

From XP to FPT

- augment the DP table with sets of children,
- progress one pivot at a time

OTDE is FPT for the deletion degree

From XP to FPT

- augment the DP table with sets of children,
- progress one pivot at a time

OTDE is FPT for the deletion degree

From XP to FPT

- augment the DP table with sets of children,
- progress one pivot at a time

OTDE is FPT for the deletion degree

From XP to FPT

- augment the DP table with sets of children,
- progress one pivot at a time

Table size: $2^{d} n^{3}$, each entry in $O(d n)$, overall: $O\left(d 2^{d} n^{4}\right)$

OTDE is FPT for the deletion degree

From degree to deletion-degree

- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict

OTDE is FPT for the deletion degree

From degree to deletion-degree

- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- compute some backbone using Vertex Cover

OTDE is FPT for the deletion degree

From degree to deletion-degree

- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- compute some backbone using Vertex Cover

OTDE is FPT for the deletion degree

From degree to deletion-degree

- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- compute some backbone using Vertex Cover

OTDE is FPT for the deletion degree

From degree to deletion-degree

- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- compute some backbone using Vertex Cover
- compute DP entries for each (prefix of the backbone) \cup (any vertices out of the backbone)

OTDE is FPT for the deletion degree

From degree to deletion-degree

- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- compute some backbone using Vertex Cover
- compute DP entries for each (prefix of the backbone) \cup (any vertices out of the backbone)
$-2^{d} \rightarrow d 2^{\partial}\left(+\mathrm{VC}\right.$ preprocessing in $\left.O\left(1.3^{\partial} d+\partial d^{2}\right)\right)$

OTDE is FPT for the deletion degree

Hardness Results

OTDE is NP-hard: reduction from Independent Set

Given a graph G,

OTDE is NP-hard: reduction from Independent Set

Given a graph G, Build tree $T(G)$:

- One cherry per vertex $\left(u, u^{\prime}\right)$
- One cherry per edge (e, e^{\prime})
- Separators

OTDE is NP-hard: reduction from Independent Set

Given a graph G, Build tree $T(G)$:

- One cherry per vertex $\left(u, u^{\prime}\right)$
- One cherry per edge (e, e^{\prime})
- Separators

Build order $\sigma(G)$ (seen as a string):

- Factor $u e_{1} e_{2} e_{3} u^{\prime}$ for each vertex and incident edges
- Separators between factors

OTDE is NP-hard: reduction from Independent Set

Given a graph G, Build tree $T(G)$:

- One cherry per vertex $\left(u, u^{\prime}\right)$
- One cherry per edge (e, e^{\prime})
- Separators

Build order $\sigma(G)$ (seen as a string):

- Factor $u e_{1} e_{2} e_{3} u^{\prime}$ for each vertex and incident edges
- Separators between factors

Wlog, delete ≤ 1 leaf per cherry,

OTDE is NP-hard: reduction from Independent Set

Given a graph G, Build tree $T(G)$:

- One cherry per vertex $\left(u, u^{\prime}\right)$
- One cherry per edge (e, e^{\prime})
- Separators

Build order $\sigma(G)$ (seen as a string):

- Factor $u e_{1} e_{2} e_{3} u^{\prime}$ for each vertex and incident edges
- Separators between factors

Wlog, delete ≤ 1 leaf per cherry, keep both leaves for vertices in an independent set.

TTDE is NP-hard: reduction from OTDE

Given T, σ

TTDE is NP-hard: reduction from OTDE

Given T, σ
Build T_{1} :

- Caterpillar following σ
- Large subtree ("anchor") at the bottom

TTDE is NP-hard: reduction from OTDE

Given T, σ
Build T_{1} :

- Caterpillar following σ
- Large subtree ("anchor") at the bottom

TTDE is NP-hard: reduction from OTDE

Given T, σ
Build T_{1} :

- Caterpillar following σ
- Large subtree ("anchor") at the bottom
Build T_{2} :
- Start with T
- Connect anchor to the root

The anchor must be at one end of $T_{1} \Rightarrow$ leaf order is the same as σ.

OTCM is NP-hard: reduction from Feedback Arc Set

Given G, build $T(G)$ with one large subtree per vertex.

OTCM is NP-hard: reduction from Feedback Arc Set

Given G, build $T(G)$ with one large subtree per vertex.
Build $\sigma(G)$ with one factor per arc:

$$
v_{1} \rightarrow v_{3} \Longrightarrow v_{1} v_{3} v_{2} v_{4} v_{4} v_{2} v_{1} v_{3}
$$

OTCM is NP-hard: reduction from Feedback Arc Set

Given G, build $T(G)$ with one large subtree per vertex.
Build $\sigma(G)$ with one factor per arc:

$$
v_{1} \rightarrow v_{3} \Longrightarrow v_{1} v_{3} v_{2} v_{4} v_{4} v_{2} v_{1} v_{3}
$$

Solution: pick a permutation of the vertices

OTCM is NP-hard: reduction from Feedback Arc Set

G

Given G, build $T(G)$ with one large subtree per vertex.
Build $\sigma(G)$ with one factor per arc:

$$
v_{1} \rightarrow v_{3} \Longrightarrow v_{1} v_{3} v_{2} v_{4} v_{4} v_{2} v_{1} v_{3}
$$

Solution: pick a permutation of the vertices In the arc gadget:

- v_{1}, v_{3} have 0 crossing if v_{1} is before $v_{3}, 2$ otherwise
- Each other v_{i}, v_{j} have 1 crossing.

Experiments

\qquad

Experiments: data \& methods

Data

- Dated novels of 11 French $19^{\text {th }}$ century writers
- Distance tables of novels using the relative frequencies of the 500 most frequent tokens
- Hierarchical clustering based on the distance tables, producing binary trees

Experiments: speed

tree	\# leaves	OTCM (ime $(\mathbf{m s})$	\# inversions	OTDE time $(\mathbf{m s})$	\# deleted leaves
Ségur	22	1	40	200	9
Féval	23	2	47	268	8
Aimard	24	1	35	401	8
Zévaco	29	1	42	727	11
Lesueur	31	1	48	676	13
Zola	35	2	60	1203	9
Gréville	36	2	105	2211	18
Ponson	42	3	167	3447	18
Verne	58	3	183	13446	27
Balzac	59	4	248	8292	34
Sand	62	4	283	17557	39

Future work

\Rightarrow Improve the complexity of the dynamic programming algorithm solving OTDE

Experiments: presence of chronological signal

tree	\# leaves	\# inversions	pOTCM	\# deleted leaves	p OTDE $^{\text {Ségur }}$
22	40	0.24	9	1	
Féval	23	47	0.38	8	0
Aimard	24	35	0	8	0
Zévaco	29	42	0	11	0
Lesueur	31	48	0	13	0
Zola	35	60	0	9	0
Gréville	36	105	0	18	1
Ponson	42	167	2.23	18	0
Verne	58	183	0	27	0
Balzac	59	248	0	34	0
Sand	62	283	0	39	1

$p_{\text {OTCM }}$ (resp. P $_{\text {OTDE }}$) $=$ percentage of cases when the best order on the leaves of the tree has the same number of inversions (resp. deleted leaves), or less than the chronological order, among 10000 (resp. 100) randomly generated orders for OTCM (resp. OTDE).

Experiments: identification of noise

Simulation experiment by adding errors in the leaf order Repeat 100 times:

1. randomly choose "dates" from the interval $[0,999]$
2. build a distance matrix of the absolute differences between "dates" and the corresponding dendrogram
3. insert e artificial errors: pick a new random "date" for e randomly chosen leaves.

- Does OTDE output the set L_{e} of leaves with artificial errors?

Experiments: identification of noise

$n=$ \# leaves	$e=$ \# errors	proportion of cases when $L=L_{e}$	when $\left\|L-L_{e}\right\|=1$
20	1	0.79	1
20	2	0.62	0.96
20	3	0.39	0.88
20	4	0.33	0.77
20	5	0.27	0.67
50	1	0.93	1
50	2	0.83	0.99
50	3	0.70	0.98
50	4	0.59	0.91
50	5	0.56	0.90

Observations

- if at most 2 errors, identified in more than 60% of the experiments, at least 1 identified in more than 96%.

Other Methods to Evaluate the Chronological Signal

What do we want to study/evaluate?

- the chronological signal in the clustering? (lots of DH tools produce clustering)

What do we want to study/evaluate?

- the chronological signal in the clustering? (lots of DH tools produce clustering)
- the chronological signal in the original data? 2 ideas:

What do we want to study/evaluate?

- the chronological signal in the clustering? (lots of DH tools produce clustering)
- the chronological signal in the original data? 2 ideas:
- how much is the distance matrix Robinsonian?

What do we want to study/evaluate?

- the chronological signal in the clustering? (lots of DH tools produce clustering)
- the chronological signal in the original data? 2 ideas:
- how much is the distance matrix Robinsonian?
- how successful is supervised machine-learning in capturing the chronological signal?

What do we want to study/evaluate?

- the chronological signal in the clustering? (lots of DH tools produce clustering)
- the chronological signal in the original data? 2 ideas:
- how much is the distance matrix Robinsonian?
- how successful is supervised machine-learning in capturing the chronological signal?
- which linguistic patterns change with the chronology?

How Robinsonian is the input matrix?

Robinsonian matrix

Given a matrix d expressing the distance between novels, we say that d is Robinsonian if for any set of three distinct texts text ${ }_{i}$, text j_{j} and text $_{k}$ such that date $\left(\right.$ text $\left._{i}\right)<\operatorname{date}^{\left(\text {text }_{j}\right)<d a t e\left(\text { text }_{k}\right) \text {, }}$ $\max \left(d\left(\right.\right.$ text $_{i}$, text $\left._{j}\right), d\left(\right.$ text $_{j}$, text $\left.\left._{k}\right)\right) \leq d\left(\right.$ text $_{i}$, text $\left._{k}\right)$.

	text $_{1}$	text $_{2}$	text $_{3}$
text $_{1}$	0	2	4
text $_{2}$	2	0	1
text $_{3}$	4	1	0

An example of a Robinsonian distance matrix: both $d\left(\right.$ text $_{1}$, text $\left._{2}\right)$ and $d\left(t e x t_{2}, t e x t_{3}\right)$ are lower than $d\left(\right.$ text $_{1}$, text $\left._{3}\right)$.

How to measure distance?

- "motifs" : n-grams (unigram to pentagram) of part of speech and semantic labels
- create vectors of relative frequencies of motifs : $p=\left(p_{1}, p_{2}, \ldots p_{n}\right), q=\left(q_{1}, q_{2}, \ldots q_{n}\right)$
- canberra metric $D(p, q)=\sum \frac{\left|p_{i}-q_{i}\right|}{p_{i}+q_{i}}$

Example motifs

"Il est fâcheux que cela traîne en longueur"

- Unigrams :['il', 'être', 'ADJ', 'que’, 'cela’, ‘PRES', ‘en', ‘NC', '...']
- Bigrams :[('Il’,'être'), ('être','ADJ'),('ADJ’,'que'), ('que','cela'), ('cela','PRES'), ('PRES','en'), ('en','NC'), ('NC', '..')]

Regression

Methodology for the regression

- Get vector representations of texts with the relative frequency of motifs.
- Split a corpus of an author in 5 parts: 80% train, 20% test. The books are the data-points.
- Proceed by cross-validation to get predictions on every book.
- Perform Lasso LARS (regression with feature selection)
- Study the correlation between the predicted and actual year.
- Study the remaining features in context and try to interpret them.

Result of the regression

Result of the regression

Corpus lesueur

Which linguistic patterns are increasing or decreasing?

Some patterns are stylemes

- ". Et" (Zola)
- Quoi donc ? Était-ce la fin ? Un souffle glacé avait couru sur le camp, anéanti de sommeil et d'angoisse. Et ce fut alors que Jean et Maurice reconnurent le colonel de Vineuil [...] (La débâcle)
- What then? Was it the end? An icy breath had run over the camp, annihilated by sleep and anguish. And it was then that Jean and Maurice recognized Colonel de Vineuil [...]
- "dit à [proper_name]" (Balzac)
- J'attends la réponse, dit à Rastignac le commissionnaire de madame de Nucingen. (Le père Goriot)
- I'm waiting for an answer, said the commissioner of Madame de Nucingen to Rastignac.

Conclusion

Main results

- NP-hardness proofs for problems useful in bioinformatics and digital humanities
- FPT-algorithm in the deletion degree
- implementation in Python of an algorithm solving OTCM and OTDE, to evaluate the chronological signal in a tree
- a direct method to study the presence of the chronological signal in the data

Conclusion

Future works

- optimize the dynamic programming algorithm for OTDE
- evaluate the expected number of inversions or deleted leaves for a random order
- do more experiments about the new approaches:
- solve OTCM / OTDE on other datasets from different fields (some examples already added to https://github.com/oseminck/tree_order_evaluation)
- in-depth studies of cases where some leaves are expected to be wrongly ordered for OTDE
- discuss the obtained results about the evolution of idiolect with specialists of the authors

