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Combining 2 levels of information with tree clouds

Inaugural speech of Barack Obama in 2008, Wordle
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Building a tree cloud

Removing stop words

Selecting target words

Searching for cooccurrences

Computating distances

Building the tree

Resizing the words

Coloring the words

Drawing the tree cloud

Text
Concordance of a word, lemmatization 

or other preprocessing tasks...
Available in the TreeCloud 
standalone application

Stoplists (English, French, Spanish, etc.)

n most frequent words, or word with at 
least k occurrences, or user list

12 formulas evaluating the coocurrence 
distance between two words

Automatic call to SplitsTree (Neighbor-
Joining)

Automatic call to SplitsTree ou 
Dendroscope

Frequencies or user valuers

Frequency, average position in the text, 
dispersion, reflecting cooccurrence with 
a target word or user values

Cooccurrence window (parameters: size 
+ sliding step), or separating character



  

Why use tree clouds?

textual
corpus visual summary

Amstutz & Gambette, JADT 2010



  

Why use tree clouds?

textual
corpus visual summary

TreeCloud (50 words, 10 word window, 
Liddell distance) of the description of Paris IAS 

available on page http://www.paris-
iea.fr/en/presentation-of-the-
institute/mission-and-history
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textual
corpus visual summary

representing the
results of analyzes

other textual
analysis tools

Amstutz & Gambette, JADT 2010

raising working hypotheses

supporting working hypotheses
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Corpus exploration with TreeCloud

textual
corpus

Ongoing work with Edna Hernandez

only 1
corpus

2 comparable 
sub-corpuses

• Interpreting the subtrees
• Focusing on the neighborhood 
of frequent words in the tree
• Focusing on the neighborhood 
of target words («actors», verbs, 
etc.) in the tree

If the corpus is big enough:
• Identifying words present in the beginning or 
in the end of the corpus
• Focusing on words appearing in the context of 
a target word

• Identifying common or distinct subtrees
• Comparing in both trees the frequency of frequent words 
• Comparing (size+content) subtrees in the two trees
• Building the tree cloud of specific words of each sub-corpus
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Interpreting the subtrees

Drawing « potatos »
Corpus: 100 CVs of PhD candidates and PhDs attending a meeting with companies
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Neighborhood of frequent words

Tree cloud of the 60 most frequent words in Cinna  by Corneille (Liddell distance,
20 word window), colored chronologically (red in the beginning, blue in the end)

Amstutz & Gambette, JADT 2010
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Neighborhood of frequent words

Specificity score of « Rome », « liberté »
and « empire », for the characters of Cinna,

according to Lexico3

Amstutz & Gambette, JADT 2010
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Neighborhood of frequent words

« Carte des sections » Lexico3 and contexts of « amis »
(« friends ») in Auguste’s lines in Cinna

1. Voilà, mes chers amis, ce qui me met en peine.
2. Quoi ! mes plus chers amis ! quoi ! Cinna ! quoi ! Maxime ! 

3. Reprenez le pouvoir que vous m'avez commis, Si donnant des sujets il ôte les amis 
4. Soyons amis, Cinna, c'est moi qui t'en convie

5. Il nous a trahis tous ; mais ce qu'il a commis Vous conserve innocents, et me rend mes amis.

Amstutz & Gambette, JADT 2010



  

Corpus exploration with TreeCloud

textual
corpus

only 1
corpus

2 comparable 
sub-corpuses

• Interpreting the subtrees
• Focusing on the neighborhood 
of frequent words in the tree
• Focusing on the neighborhood 
of target words («actors», 
verbs, etc.) in the tree

If the corpus is big enough:
• Identifying words present in the beginning or 
in the end of the corpus
• Focusing on words appearing in the context of 
a target word
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Neighborhoods of words

Corpus: answers to open questions to health professionals, about the health path of old 
people in the south of France (Alpes de Haute-Provence)

Suggestions for improvements:

P. Grenier-Tisserand 
and the DT 04 team
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nouns
adjectives
verbs
proper noun

Tree cloud of words present
5 times or more in the article of 

Amstutz & Gambette at
JADT 2010, Liddell distance, 20 

word window, imposed colouring 
deduced from a TreeTagger 

analysis of the text

Grammatical colouring
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Words in the beginning or in the end

Tree cloud of all 
campaing speeches of 

Barack Obama in 2008, 
chronological coloring

Beginning of the 
campaign

End of the campaign

Gambette & Véronis, 
IFCS 2009
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Focusing on a target word

Tree cloud of the words 
cooccurring with «vie» 
(«life»), in a corpus of articles 
by writers and philosophers 
in La Revue des deux mondes 
(19th century), colored 
according to cooccurrence 
score

Lechevrel & Gambette, 2016
ANR/DFG project «Biolographes»
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Comparing press agency and other journalist articles
Corpus: 595 press agency articles vs 1496 other journalist articles in 2011 about the 
Mediator case in the French press.

All articles

Identifying distinct or common subtrees

Gambette & Martinez,
Texto!, 2013

Summary
of the
case 

public 
health
in France

medical aspects

Servier company
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Comparing press agency and other journalist articles
Corpus: 595 press agency articles vs 1496 other journalist articles in 2011 about the 
Mediator case in the French press.

Journalist articles

Identifying distinct or common subtrees

public 
health
in France

medical aspects

Judicial and legislative 
consequences

Servier company

Summary
of the
case 

Gambette & Martinez,
Texto!, 2013



  

Corpus exploration with TreeCloud

textual
corpus
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Comparing subtrees
Tree cloud of the 100 most frequent 

words in « corpus Biodiversa » 
(> 5000 research projects

on biodiversity supported by 
European funding agencies),

2004-2007,
Liddel distance,

10 word window

Gambette, 
Eggermont & 

Le Roux, 2014
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Tree cloud of
the 100 most
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« corpus Biodiversa »

(> 5000 research projects on 
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10 word window

Gambette, 
Eggermont & 

Le Roux, 2014
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Comparing specific words

Tree clouds of the specific words in the theater plays Cinna et Othon, resized and colored 
according to their specificity score in Lexico 3.

What is political power based on?

Amstutz & Gambette,
JADT 2010
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JADT 2010



  

Comparing specific words

Cinna Othon

Location of power (what the characters 
are fighting for)

Rome (« liberté ») Empire (« trône »)

Reigning monarch tyran (tyrant) Empereur (emperor)

Characters with political influence amis (friends) maîtres / seigneurs (master / lord)

What political power is based on gloire (glory) amour matrimonial : « amour », « hymen », 
« choix » (love)

Characterization of the theater play FOUNDATION DYNASTIC SUCCESSION

Specific words of
Cinna et Othon according to Lexico3



  

Comparing with other visualizations
Tree clouds 
(TreeCloud)

Word networks (PhraseNet)

Word projections (Astartex)
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Implementations

www.treecloud.org www.splitstree.org

Free software TreeCloud (Python/Delphi) + SplitsTree (Java)
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Web interface

www.treecloud.org

Interface based on the free 
software NuageArboré by Jean-
Charles Bontemps (C, 
CGI/Python, JavaScript).

http://sourceforge.net/projects/
nuagearbor/

Integration of Unitex for the 
detection of compound words by 
Claude Martineau



  

Execution time

Limits on the corpus size to use TreeCloud ?

30 seconds to build the tree cloud of Barack Obama 2008 
campaign speeches (>300 000 words)



  

Perspectives

Integrating the visualization in other software

→ Integration into Unitex       thanks to Google Summer of Code

→ Javascript treecloud visualization available in PhyloPlot 
http://adamzy.github.io/PhyloPlot/ 

Helping users with the methodology

→ Adding tools to compare the trees

→ Adding dynamic processes:
* adding words, removing words, etc.
* going back to the full text

http://adamzy.github.io/PhyloPlot/
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